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Exercise 1 (9.3). Let (an) and (bn) be sequences of real numbers and suppose
that lim an = a and lim bn = b. Let

sn =
a3

n + 4an

b2
n + 1

.

Show that

lim sn =
a3 + 4a

b2 + 1
.

Proof. In order to use Theorems 9.2 through 9.6, we have to verify that the com-
ponents limits exist.

Since (an) converges to a, then (a2
n) converges to a2 by Theorem 9.4. Thus (a3

n)
converges to a3 by another application of Theorem 9.4. Also (4an) converges to 4a
by Theorem 9.2. Thus (a3

n + 4an) converges to a3 + 4a by Theorem 9.3.
Since (bn) converges to b, then (b2

n) converges to b2 by Theorem 9.4. Since
lim 1 = 1 (proof left to reader), we have the (b2

n +1) converges to b2 +1 by Theorem
9.3.

Thus (sn) converges to a3+4a
b2+1 by Theorem 9.6. �

We use the following lemma in Exercises 9.4 and 9.6.

Lemma 1. Let (sn) be a convergent sequence of real numbers. Then lim sn =
lim sn+1.

Proof. Let L = lim sn. Let ε > 0 and let N ∈ N be so large that |sn − L| < ε for
all n > N . Now if n > N , then so is n + 1; thus |sn+1 − L| < ε for all n > N . �
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Exercise 2 (9.4). Let s1 = 1 and for n ≥ 1, let sn+1 =
√

sn + 1. This defines a
sequence (sn)n∈N. Show that (sn) converges, and that

lim sn =
1 +

√
5

2
.

Point of Interest. Let a, b ∈ R with a < b. A golden section of [a, b] is a point
c ∈ [a, b] with c− a ≥ b− c such that b−a

c−a = c−a
b−c . This common ratio is known as

the golden number, and is denoted by ϕ.
Let x = b− a, y = c− a, and z = b− c; we have x = y + z and ϕ = x

y = y
z . Thus

y2 − zy − z2; by the quadratic formula, y = z±
√

z2+4z2

2 = z 1±
√

5
2 . The negative

solution is spurious, and taking the ratio y
z cancels the z; thus

ϕ =
1 +

√
5

2
.

This number reappears in the context of regular pentagons, logarithmic spirals, and
the Fibonacci sequence.

Note that ϕ is the positive solution to x2−x− 1 = 0. Thus ϕ2 = ϕ+1 and that
1
ϕ = ϕ− 1. �

Solution to Exercise. To show that (sn) converges, we use Ross Theorem 10.2,
which states at bounded monotone sequences converge. Thus we show that (sn) is
increasing and bounded above by ϕ, that is, we show that 0 < sn < sn+1 < ϕ.

Proceed by induction on n. For n = 1, we have s1 = 1 and s2 =
√

2. Since
0 < 1 <

√
2 < ϕ, the base case holds.

By induction, assume that 0 < sn−1 < sn < ϕ. Note that sn =
√

sn−1 + 1,
so s2

n = sn−1 + 1, and sn−1 = s2
n − 1. Thus 0 < s2

n − 1 < sn < ϕ. Similarly,
sn = s2

n+1 − 1, so 0 < s2
n − 1 < s2

n+1 − 1 < ϕ. Thus 0 < sn < sn+1 <
√

ϕ− 1 = ϕ.
Therefore (sn) is a bounded monotone sequence, and as such it converges. Let

s = lim sn.
To show that s = ϕ, we use Ross Example 8.5, which states that if (an) is a

convergent sequence of positive numbers, then lim
√

an =
√

lim an.
Let tn = sn+1. Then lim tn = s. To see this, let ε > 0, and let N be so large

that |sn − s| < ε for all n > N . Then if n > N , we have |tn − s| = |sn+1 − s| < ε,
since n + 1 > N . Thus (tn) converges to s.

Note that tn =
√

sn + 1. Then

s = lim tn = lim
√

sn + 1 =
√

lim sn + 1 =
√

s + 1.

Thus s2 = s + 1, so s2 − s− 1 = 0. By the quadratic formula, s = 1±
√

5
2 . But since

sn > 0 for all n ∈ N and 1−
√

5 < 0, we must have s = 1+
√

5
2 . �
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Exercise 3 (9.6). Let x1 = 1 and xn+1 = 3x2
n for n ≥ 1. Show that if (xn)

converges, then lim xn = 0 or limxn+1 = 1
3 . In fact, show that if (xn) converges,

then there is life on Venus.

Proof. Suppose (xn) converges and that lim xn = a. Then lim xn+1 = a; thus
a = 3a2, so a(3a− 1) = 0, whence a = 0 or a = 1

3 .
However, (xn) does not converge. To see this, note that xn ≥ n for all n ∈ N.

This follows by induction on n: for n = 1, it is immediate. Suppose that n ≥ 2 and
that it is true for n − 1; that is, suppose that xn−1 ≥ n − 1. Then xn = 3x2

n−1 ≥
3(n − 1)2 = 3n2 − 6n + 3 > n (check this last inequality). Since n diverges to ∞,
so does xn by Exercise 9.9.(a).

Now assume that there is not life on Venus. Then (xn) does not converge. Thus
the contrapositive of the last statement is true. �

Exercise 4 (9.9.(a)). Let (sn) and (tn) be sequences in R. Suppose that there
exists N0 ∈ N such that tn ≥ sn for all n ∈ N, n > N0. Show that if sn = +∞,
then tn = +∞.

Proof. To show that a sequence (tn) diverges to +∞, select an arbitrary (think
“large”) real number, and find N ∈ N such that tn > M for all n > M .

Let M > 0 and let N1 be so large that sn > M for all n > N1. Let N =
max{N0, N1}. Then if n > N , M < sn < M . Thus tn →∞. �

Exercise 5 (9.10.(a)). Let (sn) be a sequence in R and let k ∈ R. Show that if
limsn = +∞ and k > 0, then lim(ksn) = +∞.

Proof. This is a particular case of Thm 9.9. Let tn = k for all n ∈ N. Then
lim tn = k > 0, so lim ksn = lim sntn = +∞. �

Exercise 6 (9.11). Let (sn) and (tn) be sequences in R such that lim sn = +∞
and (tn) satisfies one of the following:
(a) inf{tn | n ∈ N} > −∞;
(b) lim tn > −∞;
(c) (tn) is bounded.
Show that lim(sn + tn) = +∞.

Proof. Let T = {tn | n ∈ N}; clearly T is nonempty. The condition that inf T >
−∞ is the same as saying that T is bounded below, so inf T exists as a real number.

Let M ∈ R and let t = inf t. Since sn → +∞, let N be so large that sn > M − t
for all n > N . Then for n > N ,

sn + tn ≥ sn + t > (M − t) + t = M.

Thus sn + tn → +∞.
Now if lim tn > −∞, we see that (tn) is bounded below. If (tn) converges, then

it is bounded. If lim tn = +∞, then either 0 is a lower bound for T or tn > 0 for all
but finitely many n, and the infimum of T is the minimum of the set {t ∈ T | t < 0}.

Finally if (tn) is bounded, then it is bounded below. �



4

Exercise 7 (9.12). Let (sn) be a sequence in R such that sn 6= 0 for all n ∈ N, and
let tn = | sn+1

sn
|. Suppose that (tn) converges to L.

(a) Show that if L < 1, then lim sn = 0.
(b) Show that if L > 1, then lim |sn| = +∞.

Proof.
(a) Suppose that L < 1. Note that since tn > 0 for all n ∈ N, we have L ≥ 0

by Exercise 8.9.(a). Since we wish to show that sn → 0, it suffices to assume that
sn > 0 for all n ∈ N. This is because a sequence converges to zero if and only if its
absolute value converges to zero by Exercise 8.6.(a). Saying this simply allows us
to avoid writing lots of absolute value signs.

Let ε > 0. Since L < 1, there exists a ∈ R such that L < a < 1. Since tn → L,
there exists N0 ∈ N such that | sn+1

sn
− L| < a − L. Since sn > 0 for all n ∈ N, we

have sn+1
sn

− L < a− L, so sn+1
sn

< a, and sn+1 < asn for all n > N0.
Claim: sn < an−N0sN0 for n > N0.

We prove this by induction, and note that we have the base case already. By
induction, we assume that n > N0 + 1 and that sn−1 < an−1−N0sN0 . Multiply
both sides by a, which is positive, to get asn−1 < an−N0sN0 . Now asn−1 > sn, so
sn < an−N0sN0 by transitivity.

By Example 9.7.(b), we see that an → 0 as n → ∞. Let N1 be so large that
|an − 0| < ε

sN0
for all n > N1. Let N = N0 + N1. Then for n > N , we have

|sn − 0| = sn

< an−N0sN0

<
ε

N0
sN0 because n−N0 > N1

= ε.

Therefore limn→∞ sn = 0.
(b) Suppose that L > 1. Then lim t−1

n = L−1 < 1 by Theorem 9.5. Now

t−1
n =

|sn|
|sn+1|

=
|sn+1|−1

|sn|−1
;

by part (a), we know that |sn|−1 → 0 as n → ∞. Therefore lim |sn| = +∞ by
Theorem 9.10. �

Exercise 8 (9.15). Show that limn→∞
an

n! = 0 for all a ∈ R.

Proof. We apply Exercise 9.12.
Let sn = an

n! , and let

tn =
sn+1

sn
=

an+1(n)!
an(n + 1)!

=
a

n
.

Then lim tn = a lim 1
n = 0 < 1, so by Exercise 9.12, we have lim sn = 0. �
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Exercise 9 (9.16.(a)). Let an = n4+8n
n2+9 . Show that lim an = +∞.

Proof. By Theorem 9.10, it suffices to show that lim a−1
n = 0, because (an) is a

sequence of positive numbers.
Now a−1

n = n2+9
n4+8n = ( 1

n2 + 9
n4 )/(1 + 8

n3 ). Using Theorem 9.3, we see that the
numerator of this fraction converges to 0 and the denominator converges to 1. Since
the denominator does not converge to 0, we can use Theorem 9.6 to conclude that
lim a−1

n = 0
1 = 0. Thus lim an = +∞ by Theorem 9.10. �

Exercise 10 (9.16.(b)). Let bn = 2n

n2 + (−1)n. Show that lim bn = +∞.

Proof. First we let sn = n2

2n and show that lim sn = 0. Consider

sn+1

sn
=

(n + 1)22n

n22n+1
=

1
2

+
1
n

+
1

2n2
.

By Theorem 9.3, this converges to 1
2 < 1. Then by Exercise 9.12.(a), (sn) converges

to 0. Since this is a sequence of positive numbers, we have that lim s−1
n = lim 2n

n2 =
+∞.

Since the sequence ((−1)n) is bounded, we can now apply Exercise 9.11 to see
that

lim bn = lim(s−1
n + (−1)n) = +∞.

�

Exercise 11 (9.16.(c)). Let cn = 3n

n3 − 3n

n! . Show that lim cn = +∞.

Proof. Let sn = 3n

n3 and let un = − 3n

n! . By Exercise 9.11, it suffices to show that
sn → +∞ and (un) is bounded. Now lim un = 0 by Exercise 9.15. By Theorem
9.10, it suffices to show that lim s−1

n = 0. This can be shown by the same method
as in part (b). �
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We can solve 9.1.(a), 9.1.(b), 9.1.(c), 9.16.(a), and many others, with the follow-
ing proposition.

Proposition 1. Let f(x) = asx
s + · · ·+ a1x + a0 and g(x) = btx

t + · · ·+ b1x + b0

be polynomial functions with real coefficients such that as 6= 0 and bt > 0. Let
rn = f(n)

g(n) if g(n) 6= 0 and rn = c if g(n) = 0, where c is any real number. Then

lim rn =


0 if s < t;
as

bt
if s = t;

sgn(am)∞ if s > t.

Proof. First note that, for any positive integer m, we have limn→∞ n−m = 0. To
see this, let ε > 0 and let N ∈ N be so large that 1

ε < N ; then 1
N < ε. For n > N ,

we have
|n−m − 0| = 1

nm
≤ 1

n
<

1
N

< ε.

Let n be any positive integer; we may multiply f(n)
g(n) by 1/nt

1/nt to obtain

rn =
asn

s−t + as−1n
s−t−1 · · ·+ a0n

−t

bt + bt−1n−1 · · ·+ b0x−t
.

Let sn = asn
s−t + · · ·+ a0n

−t and let tn = bt + · · ·+ b0x
−t; then rn = sn

tn
. Now

lim tn = bt + bt−1 lim n−1 + · · ·+ b0 limx−t = bt;

taking the limit inside of the sum is justified by the fact that the individual limits
of the summands each exist. If s ≤ t, then s − t − i < 0 for i = 0, 1, . . . , s, so the
limits of the summands of sn exist and

lim sn = as lim ns−t + · · ·+ a0 lim n−t = 0.

If s < t, then lim sn = 0, and if s = t, we have lim sn = as.
Still assuming that s ≤ t, since (sn) and (tn) are convergent in this case, we have

lim rn =
lim sn

lim tn
=

{
as

bt
if s = t;

0 if s ¡ t.

Now suppose that s > t, and assume that as > 0. By the above, we know that
the sequence ( 1

rn
) = ( g(n)

f(n) ) converges to 0. By Theorem 9.10, (rn) diverges to +∞.
Finally, if as < 0, then lim rn = − lim−rn = −∞ by Exercise 9.10.(b). �
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