Math 3063	Calculus 1
	Prof. Paul Bailey

Project 1 February 11, 2008 Name:

Due Friday, February 15, 2008.

Write all solutions neatly, in complete sentences. The statement of the problem should always be copied onto a blank sheet of $8\frac{1}{2} \times 11$ computer paper, followed by the solution. Staple this sheet to the front of your solutions.

Definition 1. Let P, Q, and R be points in a plane. We use the following notation

- |PQ| is the distance from P to Q.
- \overline{PQ} is the line segment from P to Q.
- $\angle PQR$ is the angle between \overline{PQ} and \overline{QR} .
- $\triangle PQR$ is the triangle with vertices P, Q, and R.

Problem 1. Compute $\cos 72^\circ$, as follows.

- (a) Sketch the following diagram. Let $\triangle ABC$ be an isosceles triangle with base \overline{AC} and $\angle CAB = 72^{\circ}$. Bisect $\angle CAB$ and let D be the point of intersection of the bisecting ray and the line segment \overline{BC} .
- (b) Show that $\triangle CAD$ is similar to $\triangle ABC$.
- (c) Assume |AB| = 1. Let x = |AC| and y = |CD|. Form two equations involving x and y.
- (d) Solve these equations for x.
- (e) Find $\cos 72^{\circ}$.

Definition 2. Let $A \subset \mathbb{R}$. We say that A is *globally discrete* if

there exists $\epsilon > 0$ such that for every $a \in A, (a - \epsilon, a + \epsilon) \cap A = \{a\}$.

We say that A is *locally discrete* if

for every $a \in A$ there exists $\epsilon > 0$ such that $(a - \epsilon, a + \epsilon) \cap A = \{a\}$.

Problem 2. Discuss the difference between the definitions of globally discrete and locally discrete, including the following.

- (a) Explain why every globally discrete set is locally discrete.
- (b) Give two fundamentally different examples of globally discrete sets.
- (c) Give two fundamentally different examples of locally discrete sets which are not globally discrete.