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Abstract. The document reviews the main properties of the integers, in-

cluding the division algorithm, the Euclidean algorithm, and the Fundamental
Theorem of Arithmetic, as well as giving several examples of proof by induc-

tion. We then move into modular arithmetic.

Modular arithmetic involves computing remainders upon addition and mul-
tiplication, and has wide ranging applications.

1. The Well-Ordering Principle

The set of natural numbers is N = {0, 1, 2, 3, . . . }, as characterized by the five
Peano axioms. The main axiom with which we are concerned is as follows.

Proposition 1. (Peano’s Axiom)
Let S ⊂ N. If

(a) 0 ∈ S, and
(b) n ∈ S ⇒ n + 1 ∈ S,

then S = N.

From this, we are able to develop two related tools for proving many properties of
the integers. These tools are known as the Well-Ordering Principle, which says that
every nonempty set of natural numbers has a smallest element, and the Induction
Principle, which says that if we have a sequence of propositions where the first is
true and others follow from the previous one, then they are all true.

Proposition 2. (Well-Ordering Principle)
Let X ⊂ N be nonempty. Then there exists a ∈ X such that a ≤ x for every x ∈ X.

Proof. Let X ⊂ N and assume that X has no smallest element; we show that
X = ∅. Let

S = {n ∈ N | n < x for every x ∈ X}.
Clearly S ∩X = ∅; if we show that S = N, then X = ∅.

Since 0 is less than or equal to every natural number, 0 is less than or equal to
every natural number in X. Since X has no smallest element, 0 /∈ X, so 0 < x for
every x ∈ X. Thus 0 ∈ S.

Suppose that n ∈ S. Then n < x for every x ∈ X, so n + 1 ≤ x for every x ∈ X.
If n + 1 were in X, it would be the smallest element of X; since X has no smallest
element, n + 1 /∈ X; thus n + 1 6= x for every x ∈ X, whence n + 1 < x for every
x ∈ X. It follows that n + 1 ∈ S, and by Peano’s Axiom, S = N. �
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2. The Induction Principles

Proposition 3. (Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(I1) p0 is true;
(I2) pn−1 implies pn, for n > 0.

Then pi is true for all i ∈ N.

Proof. Suppose not, and let n ∈ N be the smallest natural number such that pn is
false. Then n 6= 0, since p0 is true by (I1), so n − 1 exists as a natural number.
Since n− 1 < n, pn−1 is true. By (I2), pn−1 ⇒ pn, so pn is true, contradicting the
assumption. Thus pi is true for all i ∈ N. �

We call (I1) the base case and (I2) the inductive step. We note that by shifting,
we can actually start the induction at any integer. Here is an example demonstrat-
ing proof by induction.

Example 1. Show that 11n − 4n is a multiple of 7 for all n ∈ N.

Proof. A natural number a is a multiple of 7 if and only if a = 7b for some natural
number b. We proceed by induction on n. First we verify the base case, when n = 0,
and then demonstrate the induction step, wherein we show that if the proposition
is true for n− 1, then it is true for n.

(I1) Let n = 0. Then n = 7 · 0, so n is a multiple of 7 in this case. This verifies
the base case.

(I2) Let n > 0, and assume that 11n−1 − 4n−1 is a multiple of 7. Then 11n−1 −
4n−1 = 7k for some k ∈ N. Now compute

11n − 4n = 11n − 11 · 4n−1 + 11 · 4n−1 − 4n

= 11(11n−1 − 4n−1) + 4n−1(11− 4)

= 11 · 7k + 4n−1 · 7
= 7(11k + 4n−1),

which is a multiple of seven.
Thus properties (I1) and (I2) hold, so the proposition is true for all n ∈ N. �

Proposition 4. (Strong Induction Principle)
Let {pi | i ∈ N} be a set of propositions indexed by N. Suppose that

(IS) if pi is true for all i < n, then pn is true.
Then pi is true for all i ∈ N.

Proof. Suppose not, and let m be the smallest natural number such that pm is false.
Then pi is true for all i < m. By (IS), pm is true, contradicting the assumption.
Thus pi is true for all i ∈ N. �

It is common in the statement of the strong induction principle to include the
base case (I1), that p0 is true, as a premise. In practice, we may have to verify
(I1) as a step in demonstrating (IS). We note that (I1) is implied by (IS), but
that (I2) is not implied by (IS) (why?).
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3. The Division Algorithm

Proposition 5. (Division Algorithm)
Let m,n ∈ Z with m 6= 0. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < |m|.

We offer two proofs of this, one using the well-ordering principle directly, and
the other phrased in terms of strong induction.

Proof by Well-Ordering. First assume that m and n are positive.
Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X consisting of

nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n− qm for some q ∈ Z, so n = qm + r. We
know 0 ≤ r. Also, r < m, for otherwise, r −m is positive, less than r, and in X.

For uniqueness, assume n = q1m + r1 and n = q2m + r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1 − q2) = r1 − r2; also −m < r1 − r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces q1 = q2.

The proposition remains true if one or both of the original numbers are negative
because, if n = mq + r with 0 ≤ r < m, then 0 ≤ m− r < m when r > 0, and

• (−n) = m(−q − 1) + (m− r) if r > 0 and (−n) = m(−q) if r = 0;
• (−n) = (−m)(q + 1) + (m− r) if r > 0 and (−n) = (−m)q if r = 0;
• n = (−m)(−q) + r.

�

Proof by Strong Induction. Assume that m and n are positive.
If m > n, set q = 0 and r = n. If m = n, set q = 1 and r = 0. Otherwise,

we have 0 < m < n. Proceed by strong induction on n. Here we assume that the
proposition is true for all natural number less that n, and show that this implies
that the proposition is true for n. Then, by the conclusion of the Strong Induction
Principle, the proposition will be true for all natural numbers n.

Note that n = m + (n−m) and n−m < n, so by induction, n−m = mq1 + r
for some q1, r ∈ Z with 0 ≤ r1 < m. Therefore n = m(q1 + 1) + r1; set q = q1 + 1
to see that n = mq + r, with r still in the range 0 ≤ r < m.

The proof for uniqueness and the cases where m and/or n are negative are the
same as above. �

Notice that the proof by induction reveals division as repeated subtraction. It
more closely mimics the algorithm we use to find q and r than does the proof via
the Well-Ordering Principle.
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4. The Euclidean Algorithm

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Definition 2. Let m,n ∈ Z be nonzero. We say that a positive integer d ∈ Z is a
greatest common divisor of m and n, and write d = gcd(m,n), if

(a) d | m and d | n;
(b) e | m and e | n implies e | d, for all e ∈ Z.

Proposition 6. (Euclidean Algorithm)
Let m,n ∈ Z be nonzero. Then there exists a unique d ∈ Z such that d = gcd(m,n),
and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x, y ∈ Z.

Now m = qd + r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm + yn) + r,
so r = (1− qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then d =
xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some i, j ∈ Z.
Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since d and e are
both positive, we must have i = 1. Thus d = e. �

This shows that the d = gcd(m,n) exists and the formula xm + yn = d holds,
but does not give a method of finding x, y, and d. The method we develop is based
on the following propositions.

Proposition 7. Let m,n ∈ N and suppose that m | n. Then gcd(m,n) = m.

Proof. Clearly m | m, and we are given m | n. Now suppose that e | m and e | n.
Then e | m. Thus m = gcd(m,n). �

Proposition 8. Let m,n ∈ Z be nonzero, and let q, r ∈ Z such that n = qm + r.
Then gcd(n, m) = gcd(m, r).

Proof. Let d = gcd(n, m). We wish to show that d = gcd(m, r), which requires
showing that d satisfies the two properties of being the greatest common divisor of
m and r.

Since d = gcd(n, m), we know that d | n and d | m. Thus n = ad and m = bd
for some a, b ∈ Z. Now r = n −mq = ad − bdq = d(a − bq), so d | r. Thus d is a
common divisor of m and r.

Let e ∈ Z such that e | m and e | r. Then m = ge and n = he for some g, h ∈ Z,
so n = geq +he = e(gq +h); thus e | n, so e is a common divisor of n and m. Since
d = gcd(n, m), e | d. Therefore, d = gcd(m, r). �
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There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where 0 ≤ r < m.
Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes r0 = r1q1 + r2.
Repeat the process by writing m = rq2+r3, which is the same as r1 = r2q2+r3, with
0 ≤ r3 < r2. Continue in this manner, so in the ith stage, we have ri−1 = riqi+ri+1,
with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition and
induction,

gcd(n, m) = gcd(m, r) = · · · = gcd(rk−1, rk).
But rk−1 = rkqk + rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. There-
fore gcd(n, m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.

In order to find the unique integers x and y such that xm + yn = gcd(m,n), use
the equations derived above and work backward. Start with rk = rk−2− rk−1qk−1.
Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1 = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.

Example 2. Let n = 210 and m = 165. Work forward to find the gcd:
• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).

Let’s briefly analyze the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger

number. Always attach x to m and y to n, to get d = xm+yn, where d = gcd(m,n).
Now at the very end, the remainder is zero, so n = mq + 0. Thus m = gcd(n, m),
that is, d = m. Writing d as a linear combination at this stage, we have

d = (1)m + (0)nm

so x = 1 and y = 0.
Now we want to lift this to a previous equation of the form n = mq+r. Assume,

by way of induction, that we have already lifted it to the next equation; that is,
we have n′ = m′q′ + r′, where n′ = m, m′ = r, and we can express d as a linear
combination of m′ and n′, like this:

d = x′m′ + y′n′.

Then d = x′r + y′m. Substitute in r = n−mq to express d as a linear combination
of m and n; you get d = x′(n −mq) + y′m = (y′ − x′q)m + x′n. Set x = y′ − x′q
and y = x′ to obtain d = xm + yn.
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Definition 3. Let m,n ∈ Z. We say that m and n are relatively prime if

gcd(m,n) = 1.

Proposition 9. Let m,n ∈ Z. Then

gcd(m,n) = 1 ⇔ xm + yn = 1 for some x, y ∈ Z.

Proof. We have already seen that if gcd(m,n) = 1, then xm + yn = 1 for some
x, y ∈ Z. Thus we prove the reverse direction; suppose that xm + yn = 1 for some
x, y ∈ Z. We wish to show that gcd(m,n) = 1.

Clearly 1 | m and 1 | n. Suppose that e | m and e | n. Then m = ke and n = le
for some k, l ∈ e. So

1 = xke + yle = (xk + yl)e.
Thus e | 1, whence gcd(m,n) = 1. �

Proposition 10. Let m,n, d ∈ Z such that gcd(m,n) = d. Then gcd(m
d , n

d ) = 1.

Proof. Since xm + yn = d for some x, y ∈ Z, we have xm
d + y n

d = 1. From
Proposition 9, we conclude that gcd(m

d , n
d ) = 1. �

Proposition 11. Let a, b, c ∈ Z. If a | bc and gcd(a, b) = 1, then a | c.

Proof. Since a | bc, there exists z ∈ Z such that az = bc. Since gcd(a, b) = 1, there
exist x, y ∈ Z such that xa + yb = 1. Multiplying both sides by c gives

xac + ybc = c ⇒ xac + yaz = c ⇒ a(xc + yz) = c.

Thus a | c. �

Proposition 12. Let a, b, c ∈ Z. If a | c, b | c, and gcd(a, b) = 1, then ab | c.

Proof. There exist e, f, x, y ∈ Z such that ae = c, bf = c, and xa + yb = 1.
Multiplying the last equation by c gives xac + ybc = c. Substitution gives xabf +
ybae = c, so ab(xf + ye) = c. Thus ab | c. �

Definition 4. Let m,n ∈ Z. We say that a positive integer l ∈ Z is a least common
multiple of m and n, and write l = lcm(m,n), if

(a) m | l and n | l;
(b) m | k and n | k implies l | k, for all k ∈ Z.

Proposition 13. Let m,n ∈ Z be nonzero. Then there exists a unique l ∈ Z such
that l = lcm(m,n), and if d = gcd(m,n), then

l =
mn

d
.

Proof. Let l = mn
d ; we wish to show that l is a least common multiple for m and

n. Since d = gcd(m,n), m
d and n

d are integers, and l = mn
d = nm

d . Thus m | l and
n | l.

Now suppose that k is an integer such that m | k and n | k; we wish to show that
l | k. We have k = ae and k = bf for some e, f ∈ Z. Thus ae = bf , and dividing
by d gives ea

d = f b
d . Thus a

d | f b
d , and since gcd(a

d , b
d ) = 1, we have a

d | f . Thus
f = g a

d for some g ∈ Z, so k = bf = g ab
d = gl. Thus l | k, so l is a least common

multiple of m and n.
For uniqueness, note that any two least common multiples must divide each

other; but they are both positive, so they must be equal. �
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5. Fundamental Theorem of Arithmetic

Definition 5. An integer p ≥ 2, is called prime if

a | p ⇒ a = 1 or a = p, where a ∈ N.

Proposition 14. Let a, p ∈ Z, with p prime. Then

gcd(a, p) =

{
p if p | a;
1 otherwise.

Proof. Let d = gcd(a, p). Then d | p, so d = 1 or d = p. We have p | p, so if p | a,
we have p | d. In this case, d = p. If p does not divide a, then d 6= p, so we must
have d = 1. �

Proposition 15. (Euclid’s Argument)
Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab ⇒ p | a or p | b, where a, b ∈ N.

Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb = b.
Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab ⇒ p | a or p | b, suppose that a | p. Then there exists k ∈ N
such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some l ∈ N,
in which case alk = a and lk = 1, which implies that k = 1 so a = p. If p | k, then
k = pm for some m ∈ N, and apm = p, so am = 1 which implies that a = 1. �

Proposition 16. Let n ∈ Z with n ≥ 2.
There exists a prime p ∈ Z such that p | n.

Proof. Proceed by strong induction on n. If n is prime, it divides itself; otherwise,
n is not prime, and n = ab for some a, b ∈ Z with a < n and b < n. By induction,
a is divisible by a prime, so n = ab is divisible by that prime. �

Proposition 17. (Fundamental Theorem of Arithmetic)
Let n ∈ Z, n ≥ 2. Then there exist unique prime numbers p1, . . . , pr, unique up to
order, such that

n =
r∏

i=1

pi.

Proof. We know that n is divisible by some prime, say n = pm for some p, m ∈ Z
with p prime. Since m is smaller than n, we conclude by induction that m factors
into a product of primes; thus n = pm factors into a product of primes. To see that
this factorization is unique, suppose that there exist prime p1, . . . , pr and q1, . . . , qs

such that
n = p1p2 · · · pr = q1q2 · · · qs.

By repeatedly applying Euclid’s Argument, we see that p1 | qi for some i, and by
renumbering if necessary, we may assume that p1 | q1. Since q1 is prime, p1 = 1 or
p1 = q1; but p1 is also prime, so it is greater than 1; thus p1 = q1. Canceling these,
we see that p2 · · · pr = q2 · · · qs, and we may repeat this process obtaining p2 = q2,
p3 = q3, and so forth. We also see that r = s, for otherwise, we would obtain an
equation in which a product of primes equals one. �
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6. Congruence Modulo n

Definition 6. Let n ∈ Z with n ≥ 2. Let a, b ∈ Z. We say that a is congruent to
b modulo n, and write a ≡ b (mod n), if the difference a− b is a multiple of n:

a ≡ b (mod n) ⇔ n | (a− b).

Proposition 18. Let n ∈ Z with n ≥ 2, and let a, b, c ∈ Z. Then
(a) a ≡ a (mod n) (Reflexivity);
(b) if a ≡ b (mod n), then b ≡ a (mod n) (Symmetry);
(c) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (Transitivity).

Proof. We prove each property.
(a) (Reflexivity) Let a ∈ Z. Now 0 · n = 0 = a − a; thus n | (a − a), so a ≡ a.

Therefore ≡ is reflexive.
(b) (Symmetry) Let a, b ∈ Z. Suppose that a ≡ b; then n | (a− b). Then there

exists k ∈ Z such that nk = a− b. Then n(−k) = b− a, so n | (b− a). Thus b ≡ a.
Similarly, b ≡ a ⇒ a ≡ b. Therefore ≡ is symmetric.

(c) (Transitivity) Let a, b, c ∈ Z, and suppose that a ≡ b and b ≡ c. Then
nk = a − b and nl = b − c for some k, l ∈ Z. Then a − c = nk − nl = n(k − l), so
n | (a− c). Thus a ≡ c. Therefore ≡ is transitive. �

We give some examples of where these concepts arise.

Example 3. If the time now is 5 pm, what time will it be in 87 hours?

Solution. Using a 24 hour clock, 5 pm is 17. Now compute modulo n = 24 to obtain

17 + 87 ≡ 104 ≡ 8 (mod 24),

so the time in 87 hours will be 8 am. �

Example 4. If today is Thursday, what day will it be in 258 days?

Solution. Let’s set 0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday,
4 = Thursday, 5 = Friday, and 6 = Saturday. Now compute modulo n = 7 to
obtain

2 + 258 ≡ 260 ≡ 1 (mod 7).
Since 1 = Monday, it will be Monday in 258 days. �

Example 5. Let i ∈ C with i2 = −1. Find i1571.

Proof. Here, we compute modulo 4. Now 1571 = 4(392) + 3, so

i1571 = i4(392)+3 = (i4)392i3 = 1392i3 = i3 = −i.

�
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7. Congruence Classes

Definition 7. Let n ∈ Z with n ≥ 2, and let a ∈ Z. The congruence class of a
modulo n, denoted [a]n or by a, is the set of all integers which are congruent to a
modulo n:

[a]n = {b ∈ Z | a ≡ b (mod n)}.

Proposition 19. Let n ∈ Z with n ≥ 2. Let a, b ∈ Z. The following statements
are equivalent:

(i) a ≡ b (mod n);
(ii) b ∈ [a]n;
(iii) [a]n = [b]n.

Proof. Exercise. �

Let n ∈ Z, n ≥ 2. If a ∈ Z, then a ∈ [a]n by reflexivity. Also, if [a]n ∩ [b]n is
nonempty, we have [a]n = [b]n. So, the relation of congruence modulo n partitions
the set Z into nonoverlapping blocks which cover Z, each block being a congruence
class modulo n.

If A ⊂ Z is a congruence class and a ∈ A, we say that a represents A. Each
congruence class has a lot of representatives. The next proposition firmly describes
which elements are in a given congruence class, and produces a preferred represen-
tative.

Proposition 20. Let n ∈ N and let a1, a2 ∈ Z. By the Division Algorithm, there
exist unique integers q1, r1, q2, r2 ∈ Z such that

• a1 = nq1 + r1, where 0 ≤ r1 < n;
• a2 = nq2 + r2, where 0 ≤ r2 < n.

Then a1 ≡ a2 (mod n) if and only if r1 = r2.

Proof.
(⇒) Suppose that a1 ≡ a2. Then n | (a1 − a2). This means that nk = a1 − a2

for some k ∈ Z. But a1−a2 = n(q1− q2)+ (r1− r2). Then n(k + q1− q2) = r1− r2,
so n | r1 − r2.

Multiplying the inequality 0 ≤ r2 < n by −1 gives −n < −r2 ≤ 0. Adding this
inequality to the inequality 0 ≤ r1 < n gives −n < r1 − r2 < n. But r1 − r2 is an
integer multiple of n; the only possibility, then, is that r1 − r2 = 0. Thus r1 = r2.

(⇐) Suppose that r1 = r2. Then a1 − a2 = nq1 − nq2 = n(q1 − q2). Thus
n | (a1 − a2), so a1 ≡ a2. �

An element r ∈ Z is called a preferred representative for [a]n if r ∈ [a]n and
0 ≤ r < n. This is the remainder when any element in [a]n is divided by n.

The division algorithm for the integers tells us that there is a preferred represen-
tative for each congruence class. Also, Proposition 20 guarantees that as r ranges
over the integers from 0 to n − 1, the congruence classes [r]n are distinct. Thus
there are exactly n equivalence classes, modulo n.
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8. Integers Modulo n

Definition 8. The ring of integers modulo n is

Zn = {[a]n | a ∈ Z}.

That is, Zn is the set of equivalence classes modulo n, and |Zn| = n. If the n is
understood, we usually write a to mean [a]n. For example,

Z7 = {0, 1, 2, 3, 4, 5, 6}.
Henceforth, whenever we refer to Zn, assume that n ∈ Z with n ≥ 2.

Proposition 21. Define the binary operations on Zn,

+ : Zn × Zn → Zn and · : Zn × Zn → Zn,

known as addition and multiplication, by

a + b = a + b and a · b = ab.

These operations are well-defined.

Proof. Select a1, a2, b1, b2 ∈ Z such that a1 ≡ a2 and b1 ≡ b2; say a1− a2 = kn and
b1 − b2 = ln for some k, l ∈ Z.

(Addition) We wish to show that a1 + b1 = a2 + b2, i.e., that a1 + b1 ≡ a2 + b2.
We simply add the equations above to obtain a1 − a2 + b1 − b2 = kn + ln; thus

(a1 + b1)− (a2 + b2) = (k + l)n;

from this, n | ((a1 + b1)− (a2 + b2)), so a1 + b1 ≡ a2 + b2.
(Multiplication) We wish to show that a1 · b1 = a2 · b2, i.e., that a1b1 ≡ a2b2. To

do this, adjust the original equations to obtain a1 = a2 + kn and b1 = b2 + ln, and
multiply them to obtain a1b1 = a2b2 + a2ln + b2kn + kln2, whence

a1b1 − a2b2 = (a2l + b2k + kln)n;

thus n | (a1b1 − a2b2), so a1b1 ≡ a2b2. �

Definition 9. The residue map modulo n is the function

ξn : Z → Zn given by ξn(a) = a.

Proposition 22. Let n ∈ Z, n ≥ 2, and consider the residue map ξn : Z → Zn.
Then

(a) ξn(0) = 0 and ξn(1) = 1;
(b) ξn(a + b) = ξn(a) + ξn(b);
(c) ξn(ab) = ξn(a)ξn(b).

Proof. This is immediate from the definitions of addition and multiplication in Zn,
and the fact that the are well-defined. �
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9. Properties of Addition

Proposition 23. Addition on Zn is commutative, associative, admits an identity
0, and admits additive inverses.

Proof. Select a, b ∈ Z so that a, b, and c are arbitrary members of Zn.
To see that + is commutative, note that

a + b = a + b = b + a = b + a.

To see that + is associative, compute

(a + b) + c = a + b + c = (a + b) + c = a + (b + c) = a + b + c = a + (b + c).

To see that 0 is an additive identity, note that 0 + a = 0 + a = a.
The additive inverse of a is −a, since a +−a = a− a = 0. �

For any k ∈ N and any a ∈ Zn, define ka to be a added to itself k times:

ka =
k∑

i=1

a.

Proposition 24. Let k ∈ N and a ∈ Zn. Then ka = ka.

Proof. ka =
∑k

i=1 a =
∑k

i=1 a = ka. �

In Zn, we have na = na = 0. So, some multiple of a is zero; thus there is a
smallest positive integer k such that ka = 0.

Definition 10. Let a ∈ Zn. Define the additive order of a to be smallest positive
integer k such that ka = 0. The additive order of a is denoted ord+(a).

Proposition 25. Let a ∈ Zn and let ord+(a) = k. Then
(a) ja = 0 ⇔ k | j;
(b) na = 0;
(c) k | n.

Proof.
(a) If k | j, then j = lk for some l ∈ Z. In this case, ja = l0 = 0.
Conversely, suppose that ja = 0. Write j = qk + r, where 0 ≤ r < k. Then

ja = qka + ra = ra since ka = 0. But k is the smallest positive integer such that
ka = 0. Thus r = 0, and j = qk. Thus k | j.

(b) Note that na = na = 0. Thus na = 0.
(c) By (b), na = 0. Thus k | n by part (a). �

Proposition 26. Let a ∈ Zn and let d = gcd(a, n). Then ord+(a) = n
d .

Proof. Let k = ord(a). Now n
d a = na

d = na
d = 0; thus k | n

d .
On the other hand, ka = 0, so ka = nl for some l ∈ Z. Dividing by d gives

k a
d = n

d l. Thus n
d | k

a
d , and since gcd(a

d , n
d ) = 1, we have n

d | k.
Thus k | n

d and n
d | k, and since both are positive they must be equal. �

Example 6. Let n = 24 and a = 20. Now gcd(a, n) = 4, so ord+(a) = 24
4 = 6.

Indeed, 6 · 20 = 120 is the smallest multiple of 20 which is divisible by 24.

Example 7. Let p = 7 and consider Zp. The order of every nonzero element is 7.
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10. Properties of Multiplication

Proposition 27. Multiplication on Zn is commutative and associative, with iden-
tity element 1. Furthermore, multiplication distributes over addition.

Proof. Select a, b, c ∈ Z so that a, b, and c are arbitrary members of Zn.
To see that multiplication is commutative, compute

a · b = ab = ba = b · a.

To see that multiplication is associative, compute

(a · b) · c = ab · c = abc = a · bc = a · (b · c).
To see that 1 is a multiplicative identity, compute a · 1 = a · 1 = a = 1 · a = 1 · a.
To see the multiplication distributes over addition, compute

a · (b + c) = a · b + c = a(b + c) = ab + ac = ab + ac = (a · b) + (a · c).
�

Proposition 28. Let a ∈ Zn. Then a · 0 = 0 · a = 0.

Proof. By definition of multiplication in Zn, a · 0 = a · 0 = 0 = 0 · a = 0 · a. �

Definition 11. Let n ∈ Z, n ≥ 2, and let a ∈ Zn. We say that a is invertible in
Zn if there exists an element b ∈ Zn such that a · b = 1.

Proposition 29. Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1.

Proof.
(⇒) Suppose that a is invertible, and let b be its inverse. Then ab = 1, so

ab ≡ 1 (mod n). That is, kn = ab − 1 for some k ∈ Z. Thus ab + (−k)n = 1. By
Proposition 9, gcd(a, n) = 1.

(⇐) Suppose that gcd(a, n) = 1. Then there exist x, y ∈ Z such that xa+yn = 1.
Then x · a + y · n = 1. But n = 0, so y · n = 0. Thus x · a = 1, and x is the inverse
of a, so a is invertible. �

Example 8. Let p ∈ N be a prime number.
Then every nonzero element of Zp is invertible, because each nonzero positive inte-
ger less than p is relatively prime to p.

Definition 12. Let n ∈ Z with n ≥ 2, and let a ∈ Zn be nonzero. We say that a
is a zero divisor if there exists b ∈ Zn which is nonzero such that ab = 0.

Proposition 30. Let n ∈ Z with n ≥ 2, and let a ∈ Zn. If a is invertible, then a
is not a zero divisor.

Proof. Suppose a is invertible, and let b ∈ Z such that ab = 0. Multiply on the
left by a−1 to get a−1ab = a−1 · 0, whence b = 0. This shows that a is not a zero
divisor, because the only element in Zn which can be multiplied with a to produce
0 is 0 itself. �

Example 9. Let n = 6; in Z6, the invertible elements are 1 and 5. The zero
divisors are 2, 3, and 4. To see this, consider 2 · 3 = 6 = 0, and 3 · 4 = 12 = 0.
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Proposition 31. Let n ∈ Z with n ≥ 2, and let a ∈ Zn be nonzero. Then a is a
zero divisor if and only if gcd(a, n) ≥ 2.

Proof. Let d = gcd(a, n).
Suppose that d = 1. Then a is invertible by Proposition 29, so a is not a zero

divisor by Proposition 30.
Suppose that d ≥ 2. Using arithmetic in Z, the Euclidean algorithm dictates

that there exist x, y ∈ Z such that ax + ny = d. We also have d | n. Then there
exists b ∈ Z such that bd = n, and since d ≥ 2, we have 0 < b < n. Applying the
residue map to ax + ny = d gives ax + ny = d, and since n = 0, we have ax = d.
Multiply this equation by b to get

axb = db = n = 0.

Thus a is a zero divisor. �

Definition 13. The group of units of Zn is

Z∗
n = {a ∈ Zn | gcd(a, n) = 1}.

The Euler phi function is defined by φ(n) = |Z∗
n|.

Thus a ∈ Z∗
n if and only if a is invertible in Zn. The next proposition says that

Z∗
n is closed under multiplication.

Proposition 32. Let n ∈ Z, n ≥ 2, and let a, b ∈ Z be invertible. Then ab is
invertible.

Proof. Clearly, (ab) = b
−1

a−1, since (ab)(b
−1

a−1) = a(bb
−1

)a−1 = aa−1 = 1. �

For example,
• Z∗

p = {1, . . . , p− 1}, if p is prime;
• Z∗

6 = {1, 5};
• Z∗

12 = {1, 5, 7, 11};
• Z∗

15 = {1, 2, 4, 6, 7, 8, 11, 13, 14}.

Definition 14. Let n ∈ Z, n ≥ 2, and let a ∈ Z∗
n. The multiplicative order of a,

denoted ord∗(a) is the smallest positive integer k such that ak = 1.

Example 10. Find ord∗(7) in Z∗
15.

Solution. We have

72 = 49 = 4;

73 = 4 · 7 = 28 = 13;

74 = 13 · 7 = 91 = 1.

Thus ord∗(7) = 4. �
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11. Algebraic Equations in Zn

We now turn our attention to the question of when an equation, such as 14x = 1
or x2 + 1 = 0, has a solution in Zn, and how many solutions it has. For example,
14x = 1 has a solution if and only if 14 is invertible in Zn, and this is the case if
and only if n and 14 are relatively prime. In fact, we have an explicit technique for
finding the inverse 14. This technique makes repeated use of the division algorithm.

Suppose n = 33. Then 14 and 33 are relatively prime, so there exist integers x
and y such that 14x + 33y = 1. To find them, we divide:

• 33 = 14 · 2 + 5;
• 14 = 5 · 2 + 4
• 5 = 4 · 1 + 1;
• 2 = 1 · 2 + 0.

The second to last remainder is 1, so gcd(14, 33) = 1. Now work backwards to
find x and y:

• 1 = 5− 4;
• 1 = 5− (14− 5 · 2) = 5 · 3− 14 · 1;
• 1 = (33− 14 · 2) · 3− 14 · 1 = 33 · 3− 14 · 7.

Thus the inverse of 14 in Z33 is −7 = 26.
The equation x2+1 = 0 is more interesting. To understand it, note that negative

1 exists in Zn as n− 1. So a solution to the equation x2 + 1 = 0 would be a square
root of negative 1 in Zn. For example, in Z5, we have 22 = 4 = −1.

It is also possible that a quadratic equation, such as x2 − 1 = 0, can have more
than two solutions in Zn. Note that x2 − 1 = (x + 1)(x− 1), even in Zn. Suppose
that n = 15. Then x = 1 and x = −1 = 14 are solutions, but so is 4, since
(4 + 1)(4− 1) = 5 · 3 = 0 in Z15.

However, suppose that n = p is a prime number. Then in Zp, a quadratic
equation can have at most 2 roots. This is because Zp has no zero divisors. If the
quadratic has a root, it factors; then if the product of the factors is zero, one of
them must be zero.

For example, let us find the roots of x2+8x+1 = 0 in Z11. Now 8 ≡ −3 (mod 11)
and 1 ≡ −10 (mod 11), so our equation becomes x2 − 3x− 10 = 0. This factors as
(x− 5)(x + 2) = 0. Since 11 is prime, the only roots are 8 and −2 = 8.
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12. Casting Out n’s

The process of casting out n’s involves subtracting n from a number until one
arrives at a number less than n. Clearly, this number is the remainder upon division
by n, so it is related to modular arithmetic.

The method of casting out n’s, together with decimal notation, led Arabs of 1500
years ago to discover certain divisibility criteria. We demonstrate this in modern
notation.

Fix n ∈ Z with n ≥ 0. For a ∈ Z, let a denote the remainder when a is divide
by n. The last proposition states that a + b ≡ a + b and ab ≡ ab, modulo n.

If d0, d1, . . . , dr are the digits of a ∈ N (where 0 ≤ di ≤ 9), then

a =
r∑

i=0

di · 10i.

The idea of casting out n’s revolves around the fact that

a ≡
r∑

i=0

di · 10i (mod n).

Proposition 33. (Casting Out 3’s and 9’s)
Let n = 3 or n = 9. Let a, s ∈ Z be given by

a =
k∑

i=0

di · 10i and s =
k∑

i=0

di.

Then a is divisible by n if and only if s is divisible by n.

Proof. In Z3 or Z9, we have 10 = 1. Thus

a =
k∑

i=0

di · 10i =
k∑

i=0

di · 10i =
k∑

i=0

di = s.

So a and s have the same remainder upon division by n, and in particular a is
divisible by n if and only if s is divisible by n. �

Proposition 34. (Casting Out 11’s)
Let n = 11. Let a, s ∈ Z be given by

a =
k∑

i=0

di · 10i and s =
k∑

i=0

(−1)idi.

Then a is divisible by n if and only if s is divisible by n.

Proof. In Z11, we have 10 ≡ −1 (mod n). Thus

a =
k∑

i=0

di · 10i =
k∑

i=0

di · 10i =
k∑

i=0

di(−1)i = s.

Thus a is divisible by n if and only if s is divisible by n. �
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13. Chinese Remainder Theorem

The Chinese Remainder Theorem indicates a condition under which we can solve
a system of congruences.

Proposition 35. (Chinese Remainder Theorem)
Let a, b, m, n ∈ Z such that gcd(m,n) = 1. Then there exists c ∈ Z with 0 ≤ c < mn
such that

• c ≡ a (mod m);
• c ≡ b (mod n).

Proof. There exist x, y ∈ Z such that mx + ny = 1. Let c = mxb + nya. Then

c− a = mxb + nya− a = mxb + (ny − 1)a = mxb−mxa,

so m divides c− a; thus c ≡ a (mod m). Also

c− b = mxb + nya− b = (mx− 1)b + nya = −nyb + nya,

so n divides c− b; thus c ≡ b (mod n). �

Example 11. Let m = 104, n = 231, a = 11, and b = 23. Find c ∈ Z with
0 ≤ c < mn such that c ≡ a (mod m) and c ≡ b (mod n).

Solution. First we use the Euclidean algorithm to write mx + yn = d. We have

231 = 104 · 2 + 23
104 = 23 · 4 + 12
23 = 12 · 1 + 11
12 = 11 · 1 + 1
11 = 1 · 11 + 0

Thus

1 = (−1)11 + 12

= (2)12 + (−1)23

= (−9)23 + (2)104

= (20)104 + (−9)231

That is, x = 20, y = −9, and d = 1,
Now set

c = mxb + nya (mod 24024) = 24971 (mod 24024) = 947.

�
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14. Exercises

Exercise 1. Use induction to prove that, for all n ∈ N,
n∑

i=1

i =
n(n + 1)

2
.

Exercise 2. Use induction to prove that, for all n ∈ N,
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6
.

Exercise 3. Use induction to prove that, for all n ∈ N,
n∑

i=1

i3 =
n2(n + 1)2

4
.

Exercise 4. Let m,n ∈ Z be nonzero. Use strong induction and Proposition 8 to
show that there exist x, y, d ∈ Z with d = gcd(m,n) such that

mx + ny = d.

Exercise 5. In each case, find d = gcd(m,n), and find x, y ∈ Z such that

mx + ny = d.

(a) m = 75, n = 300
(b) m = 123, n = 248
(c) m = 528, n = 71

Exercise 6. Let a, b, c ∈ N be positive. Show that
(a) a | a;
(b) a | b and b | a implies a = b;
(c) a | b and b | c implies a | c.

Exercise 7. Let m,n, d ∈ Z with d = gcd(m,n). Show that

lcm(m,n) =
mn

d
.

Exercise 8. Let n ∈ Z with n ≥ 2. Let a, b, c, d ∈ Z with a ≡ c (mod n) and
b ≡ d (mod n).
Show that ab ≡ cd (mod n).

Exercise 9. Let n ∈ Z with n ≥ 2. Show that if n is not a prime number, then
Zn contains zero divisors.

Exercise 10. Let n ∈ Z with n ≥ 2, and let a ∈ Zn be a nonzero element. Show
that a is invertible if and only if a is not a zero divisor.

Exercise 11. Find the additive order of 6, 11, 18, and 28 in Z36.

Exercise 12. Find Z∗
48.

Exercise 13. Find φ(100).

Exercise 14. Find the multiplicative order of 10 in Z∗
21.

Exercise 15. Find the inverse of 15 in Z49.

Exercise 16. Solve the equation 17x = 23 in Z71.
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Exercise 17. Solve the equation x2 − 5x− 2 = 0 in Z11.

Exercise 18. Solve the equation x2 − 5x + 4 = 0 in Z6.

Exercise 19. Find all square roots of −1 in Z101.

Exercise 20. Find c ∈ Z with 0 ≤ c < 221 such that c ≡ 7 (mod 13) and c ≡
11 (mod 17).

Exercise 21. Extend the Chinese Remainder Theorem to systems of three con-
gruences; state a proposition, and prove it.
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