
INTRODUCTION TO COMPUTING
TOPIC 8: SOFTWARE

PAUL L. BAILEY

1. What is software?

Software consists of the instructions which tell the computer’s hardware how to
behave. When manufactured, the computer has virtually no software. The software
is installed on the computer.

The instructions, at their lowest level, consist of a sequence of words, which are
in turn a sequence of bits. These bits are stored in the computer’s memory or disk
drives; they are changeable.

2. Types of software

We may classify software by its general function, and by its level.

2.1. Functional Categories.
• System software: coordinates and manages hardware operations

– Drivers: manage particular peripheral devices
∗ Video driver
∗ Printer driver
∗ Disk driver

– File system: knows where files are kept on the disk, and how to access
them

• Programming languages: enables programmers to create new software
– Compilers - take the “source code” and convert it into machine lan-

guage, which is then executed by the computer
– Interpreters - execute the program one command at a time; the inter-

preter itself is the program being executed, what it does is interpret
the program

• Applications: programs written for the “end-user”
– Games, entertainment
– Horizontal market applications: word-processing, spreadsheets
– Vertical market applications: information systems for hospitals, banks,

etc.

2.2. Generation Categories.
• First Generation - Machine language: a sequence of single word instructions
• Second Generation - Assembler: a sequence of mnemonics corresponding

to machine instructions
• Third Generation - Compilers: higher level languages such as Pascal and C
• Fourth Generation - Code generators, whose output is the source code for

a compiler, typically with a specific built-in database management tool

Date: April 24, 2008.
1



2

To see the variety of how programs look, we give three examples; each example
computes the factorial of a positive integer. Recall that n factorial, written n!, is
define the be the product of the distinct integers between 1 and n:

n! = 1× 2× · · · × (n− 1)× n.

For example,
5! = 1× 2× 3× 4× 5 = 120.

Assembly Language for the Intel series:
; Assembly language subroutine to compute the factorial of n

mov ecx,n ;copy parameter n to ECX register
push ecx ;push parameter onto the stack
call factor ;call the local factorial procedure
jmp outtahere ;we have an answer, so jump to exit

factor: ;We are forced to use the simplest form of
;an assembly procedure since inline code does
;not support the PROC assembler directive.

push ebp ;Establish the "stack frame"
mov ebp,esp ;
push ecx ;place a copy of "n" on the stack
;if n = 1 ;if "n" is not equal to 1
cmp dword ptr [ebp+8],1 ; "n" is located on the stack
jne else01 ; jump to the else condition
mov eax,1 ; otherwise n==1, so set EAX to 1
jmp endif01 ; and exit the if

else01: ;
mov ecx,dword ptr [ebp+8] ;else retrieve n from stack
dec ecx ; decrement n
push ecx ; place n back on the stack
call factor ; and call factor again
add esp, 4 ;reduce the stack pointer by one dword
mul dword ptr [ebp+8] ;multiply EAX by n
push ecx ;place n parameter back on the stack

endif01: ;end of if statement
pop ecx ;remove left over paramter from the stack
pop ebp ;restore the original base pointer
ret 4 ;discard the original value of n

outtahere: ;the answer is in EAX register
mov n,eax ;so copy it to the parameter n



3

We see that the programs for higher level languages are much shorter. They are
also slower.

C Compiler:
// factorial.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

int factorial(int n)
{ int f=1,a=2;

while (a<=n)
{ f=f*a;
a=a+1; }

return f; }

int main(int argc, char* argv[])
{ int n=5,f=factorial(n);
printf("%d! = %d\n",n,f);

return 0; }

BASIC Interpreter:
10 LET N=5
20 GOSUB 100
30 PRINT N,F
40 END
100 F=1
110 A=2
120 IF A<=N THEN LET F=F*A: LET A=A+1: GOTO 120
130 RETURN

Department of Mathematics & Computer Science, Southern Arkansas University

E-mail address: plbailey@saumag.edu


