
INTRODUCTION TO COMPUTING
TOPIC 10: DATABASES

PAUL L. BAILEY

1. Terminology

A database is a (possible huge) set of information, organized in a fashion to
facilitate retrieval of specific pieces of the information. The software which stores
and retrieves information from the database is known as a database management
system (DBMS). Familiar example of DBMS’s may include Oracle or Microsoft SQL
Server, but there are many, many others.

The database is typically divided into groups of information about specific ob-
jects. Each object is described by its attributes.

For example, consider a simple address book database. The main type of object
in this database is a person. The attributes of a person we wish to store may include
his/her

• Name
• Sex
• Date of Birth
• Address
• City
• State
• Zip
• Phone
• Email

The set of information regarding a specific object is called a record. The record
is subdivided into fields, where each field contains the value of a specific attribute
of the object.

Continuing the example, one record of our database may contain
• John Smith
• Male
• 12/25/1980
• 123 Nowhereland Ave
• Magnolia
• Arkansas
• 12345
• 870-234-5678
• jzsmith@gmail.com

Date: April 24, 2008.

1

2

In order to manage this information effectively, the system needs to know what
type of information to expect in each field. This is known as the field type, or data
type.

The most basic types are
• integer
• floating point number
• string (sequence of ASCII characters)
• blob (binary data of unspecified length)

This types refer to the physical manner in which the data is stored.
In our example, the data types corresponding to the given fields may be

• string (25 characters)
• string (6 characters)
• integer (date stored as number of days since a base date)
• string (40 characters)
• string (25 characters)
• string (20 characters)
• integer (store zip as an integer)
• string (12 characters)
• string (25 characters)

Some database management systems include additional types, built from the basic
types, which in addition to saying how the data is physically stored, also say how it
is to be interpreted. In fact, the DBMS may allow the database designer to define
new types, by specifying the nature of this interpretation. For example, the DBMS
may include separate types like

• Name (always stored as “LAST,FIRST” in up to 25 characters)
• Date (always stored as an integer containing the number of days since a

constant base date)
• Time (always stored as an integer containing the number of seconds since

midnight)
The interpretation of the data gives the system knowledge of how to handle the
data. Storing the name as above allows the system to sort by last name. Storing
date as above allows the system to do automatic calculations, such as finding the
age of a person.

Each object of the same type stores the same set of attributes, and each attribute
has a name and a data type. The list of field names and types is typically known
as the record layout for the object type. In our example, the record layout is

Name string (25 characters)
Sex string (6 characters)
Date of Birth date
Address string (40 characters)
City string (25 characters)
State string (20 characters)
Zip integer
Phone string (12 characters)
Email string (25 characters)

3

2. Physical Implementation of Records

There are two basic historical styles of storing information; fixed-length records,
and delimited records.

2.1. Fixed Length Records. With fixed length records, the maximum field
length is allocated for each field, and the record length is the sum of these field
lengths. If the entire field length is not used, the field is padded with spaces. In
this way, every record has the same length.

For example, consider a DMV database which stores licensed drivers. Its main
type of object is a driver (person), and stores information which goes on the driver’s
license. Suppose our record layout is

Name string (25 characters)
Sex string (1 character)
Birthdate string (10 characters)
Height string (6 characters)
Weight string (4 characters)
Hair string (7 characters)
Eyes string (7 characters)

The total record length is 60. We give some example records, with the end indicated
with a vertical bar.
SMITH,JOHN M11/25/19606’0" 175 BLACK BROWN |
RASKOLNIKOV,CYNTHIA F01/01/19705’10" 135 BLONDE HAZEL |

The system knows where fields begin and end by there length.

2.2. Delimited Records. It is also possible to store variable length fields. Each
field is separated by a specific character, such as a tab, comma, or semicolon. This
separating character is known as a delimiter.

The examples above, using semicolons as delimiters, look like this:
SMITH,JOHN;M;11/25/1960;6’0";175;BLACK;BROWN
RASKOLNIKOV,CYNTHIA;F;01/01/1970;5’10";135;BLONDE;HAZEL

Modern systems use complex mixtures of these techniques.

2.3. String Manipulation Functions. Programming languages typically supply
functions which search and take apart strings, so that field can be extracted from
records. Such functionally usually includes:

• Find finds a substring in a string
Example: Find("This is a test","is") = 3, because the first occur-
rence of "is" in the string "This is a test" starts at the third character
in the string.

• Extract pulls out the characters between to positions
Example: Extract("This is a test",3,6) = "is i"
Extract may be used to pull fields out of a fixed length record.

• Piece pulls out a delimited field
Example: Piece("This;is;a;test",";",4) = "test"
Piece may be used to pull fields out of a delimited record.

4

3. Indices

Consider our DMV database using fixed length records. Suppose we store all of
the drivers in one file. The records occur consecutively in the file. The sequence
number of the record is its record number. Thus, the fifth record in the file has
record number 5.

We know the exact byte position of the file where the nth records begins; it is in
byte position

(bytes per records) × (n − 1).
Here, the first byte of the file is numbered 0.

Now the system can randomly access the nth byte of a file; it does not have to
read the first n − 1 bytes to get to the nth byte. Thus, the system can go straight
to a given record, if we know the number of the record we wish.

However, how does the system know which record is the record for a given
person?

The records of a database typically are stored in the order they are entered, and
there could be millions of them. In order to find the record for (let’s say) John
Smith, we do not wish to sequentially search through millions of records looking
for records which have a name of John Smith.

Index files facilitate finding the desired information in a database. An index on
a particular field stores the values for that field, together with the number of the
record it comes from. The entries in the index are sorted, which makes it easier to
zero in on a specific value.

Each time a record is added, or an indexed field value is changed, the index is
updated.

For example, suppose we indexed the name field in the above example. We look
up SMITH,JOHN in the index, and find that this name occurs in record number
3000. Then we go directly to record 3000 to get the rest of the information.

5

4. B-Trees

A B-tree is an efficient way to store indices; its goal is to find a given piece of
information with a minimal number of “disk hits”.

The phrase B-tree is said to stand for “balanced tree”; this refers to the fact
that the data is obtained by descending a sequence of branches, and that all of the
ultimate information is stored at the same depth.

A file is divided into blocks of equal size. These blocks are allocated to store
either name/data pairs or name/pointer pairs. Directory blocks store name/pointer
pairs, and data blocks store name/data pairs.

A name/data pair consists of the name of a variable, together with its value. A
name/point pair consists of the name of a variable, together with the number of a
block where the system goes to continue to look for the name/data pair.

We describe how a B-tree works by explaining how it grows. The “directory
block”, or root, is at the top of the tree. Initially, this contains name/data pairs.
The system inserts new pairs, in order of the names, until the block is full. When
the block is full, it is split.

Say, for example, a block can hold four pairs. We set BOB=”test1”, AL-
ICE=”test2”, FRED=”test3”, and JOHN=”test4”. The block stores these entries,
sorted by name, and now looks like this:

|BLOCK#1-----------
| ALICE="test2" |
| BOB="test1" |
| FRED="test3" |
JOHN=test4"

The block is full. We set MARY=”test5”. The system splits the block, and creates
a new pointer block, whose entries are name/pointer pairs which tell the system
the block numbers of where to continue looking.

|BLOCK#1--------------
| ALICE=#2 |
FRED=#3

/ \
/ \

|BLOCK#2---------- |BLOCK#3------------
ALICE="test2"		FRED="test3"
BOB="test1"		JOHN="test4"
		MARY="test5"
------------------ --------------------

Now, to find JOHN, the system looks in the directory block, says that JOHN is
greater than FRED, so JOHN must be in block #3. The system continues to add
blocks to the tree structure, and splitting them when they get full. Each time a
data block splits, a new pointer is added to the pointer block above it, until the
pointer block needs to split, and so forth.

The amount of information stored at the data level is exponentially related to
the number of levels between the data level and the top directory block.

6

5. MUMPS Globals

The ANSI standard programming language MUMPS is still common among
hospital database applications. The MUMPS language has an embedded database
scheme, implemented using global variables.

A local variable is stored in memory, is accessible by the single program which
created it, and is temporary; when the program quits, the variable and its value
are forgotten. A global variable is stored permanently on the disk, and is accessible
to all users in a multi-user application. All of MUMPS’s globals are stored in an
enormous B-tree, which is a way of storing sorted data for efficient disk access.

Local variable start with a letter, and global variables start with a caret:
A=1, B="SMITH,JOHN", C("TEST")=23 local variables
^A=1, ^B="SMITH,JOHN", ^C("TEST")=23 global variables

MUMPS programmers create ad hoc databases using delimited records. By ad
hoc, we mean that no database management system is used. The ”file design” is
kept as a separate text document, which is referred to and edited by programmers
as they proceed. Filers which create indices are hand coded.

Records may be stored as follows. Let ^PAT denote the patient database. The
records are stored sequentially:
^PAT(1)="SMITH,JOHN;M;12/25/1960"
^PAT(2)="JONES,TOM;M;01/01/1950"
...
^PAT(1000)="THOMAS,CLARENCE;M;05/05/1940"

If ^NAM is an index by name, it might contain
^NAM("THOMAS,CLARENCE")=1000

So we could look here to find that Clarence Thomas’s record was number 1000.

6. ISAM Files

ISAM (Indexed Sequential Access Method) is a simple database management
scheme for fixed length records.

The record is laid out as a sequence of fixed length fields. A huge file contains all
of the fixed length records. Since all of the records have the same length, a record
can be randomly accessed, as long as the record number is known.

Some of the fields are indicated as “indexed”. Each indexed field supports its
own index file, stored in a B-tree. When a new record is filed, the index files are
built automatically by the DBMS.

To look up a record by an indexed field, the corresponding index is accessed to
find the record number of the indexed record.

7

7. Relational Databases

A relational database combines the underlying ideas of a ISAM database, together
with the mathematical concept of a relation, to organize and empower the ability
to select a subset of the desired records.

7.1. Relations. All modern mathematics is built on the notion of sets and func-
tions. The symbol R denotes the set of real numbers. Recall the mathematical
concept of the Cartesian plane; it is the set of all ordered pairs of real numbers:

R × R = {(x, y) | x and y are real numbers}.
A relation between real numbers can be described as a subset of R × R. For

example, consider the inequality x ≤ y. One way to understand this statement
would be to list all pairs (x, y) such that x ≤ y. There are infinitely many real
numbers, so we couldn’t actually list the pairs; yet we can still consider the set

{(x, y) | x ≤ y}.
In some way, this set defines what it means for x to be less than or equal to y.

Given any two sets A and B, we can form their cartesian product A×B, which
is the set of all ordered pairs whose first entry is from the set A and whose second
entry is from the set B:

A × B = {(a, b) | a is in A and b is in B}.
Now a relation between members of the sets A and B can be described as a subset
of A × B.

For example, consider the case where A and B are sets of people, and the relation
is “is the son of”. We consider the set

{(a, b) | a is the son of b.

This set captures the idea behind the phrase “is the son of”, by listing all of the
pairs of people such that the first is the son of the second.

We can equally define the cartesian product of three sets A × B × C, whose
entries are ordered triples:

A × B × C = {(a, b, c) | a is in A, b is in B, c is in C}.
Again, consider the case where A,B, and C are sets of people. We could from

the relation
{(father,mother, child)},

listing all of the combinations of three people such that the first is the father of the
third, and the second is the mother of the third. We call this set a relation./

In general, given n sets A1, A2, ..., An, we consider the set of all ordered n-tuples
with first entry from A1, second entry from A2, etc., up to the nth entry from An.
This is the cartesian product of the sets:

A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai is in the set Ai.

A relation on these sets is a subset of A1 × · · · × An; it is a set of ordered
tuples whose ith entry is from the set Ai. The sets A1, dots, An may be called the
attributes of the relation.

8

Relations are sometimes classified as one-to-one, one-to-many, many-to one, or
many-to-many. We give familiar examples of these:

(a) (husband,wife) is one-to-one
(b) (father,child) is one-to-many
(c) (child,mother) is many-to-one
(c) (brother,sister) is many-to-many

A functional relation is a relation in which the value of second entry is completely
determined by the value of the first. These relations are one-to-one or many-to-
one. For example, if we know who the child is, we should be able to determine the
mother.

7.2. Relational Databases. In a relational database, the data is viewed as being
organized into relations.

For example, let A be the set of all names, B = {M,F}, and C is the set of all
dates. A relation on A×B ×C would be a collection of ordered tuples of the form
(name,sex,birthdate). The relation describes what is stored; a particular tuple in
the relation corresponds to a record in the database. The sets A, B, and C which
constitute the relation correspond to the attributes, or fields, of the database.

Since it is common to list the tuples in rows and line up the attributes in columns,
the relation itself is often referred to as a table. In fact, there are three common
sets of words describing this aspect of a relational database:

Math Model Relation Tuples Attributes
Programmer File Records Fields
User Table Rows Columns

A relational database consists of multiple tables. The tables are linked by the
fact that the same attribute may exist in more than one table.

A key is a group of one or more attributes which uniquely identifies a row in a
table. By storing a key in one table, that table may point to an entry in another
table.

9

7.3. Algebra of Tables. Algebra regards the process of taking two things and
using them to produce a third, as in adding or multiplying numbers.

There are various operations which can be performed on tables in a relational
database, taking two tables an producing a third. These operations are set-
theoretical in nature.

Two tables T1 and T2 are union-compatible if they have the same columns. The
first three operations require that the tables T1 and T2 be union compatible.

(a) Union: The union of two tables T1 and T2 is formed by taking all the
rows from either table and putting them into one table. Duplicate rows are
discarded.

(b) Intersection: The intersection of table T1 and table T2 consists of the rows
which are in both T1 and T2.

(c) Difference: The difference between table T1 and table T2 is a table whose
rows are those of T1 which are not in T2.

We given an example.
T1 = T2 =
Name Sex Eyes Name Sex Eyes
--------------------- ---------------------
John M Blue Tim M Brown
Mary F Brown John M Blue
Fred M Hazel Sue F Blue

T1 union T2 = T1 intersect T2 =
Name Sex Eyes Name Sex Eyes
--------------------- ---------------------
John M Blue John M Blue
Mary F Brown
Fred M Hazel T1 difference T2 =
Tim M Brown Name Sex Eyes
Sue F Blue ---------------------

Mary F Blue
Fred M Hazel

Other tables are built by creating new tables with columns from both tables.

10

(d) Product: The product of T1 and T2 is the table which has all of the columns
of T1 and T2, and whose rows are every combination of the rows of T1 with
the rows of T2.

T1 = T2 =
Name Sex Eyes Dept Course
--------------------- ---------------------
John M Blue MATH 1023
Mary F Brown ENGL 1113
Fred M Hazel

T1 product T2 =
Name Sex Eyes Dept Course

John M Blue MATH 1023
John M Blue ENGL 1113
Mary F Brown MATH 1023
Mary F Brown ENGL 1113
Fred M Hazel MATH 1023
Fred M Hazel ENGL 1113

We can build the tables we want by taking subtables of the product.
(e) Projection: chooses a subset of the columns
(f) Selection: chooses a subset of the rows
(g) Join: a combination of product, selection, and projection; typically, the

joined table contains tuples such that the value of a column in table T1

equals the value of a corresponding table in T2.
More specifically, the natural join of T1 and T2 along a common column C has

as columns all the columns of T1 and of T2, with C not repeated, and has as rows
every combination of rows from T1 and T2 which have a common value in column
C.
T1 = T2 =
Student Course Course CourseName
--------------------------- ---------------------------
Fred MATH1023 MATH1023 College Algebra
Tom ENGL1113 ENGL1113 Composition I
Mary ENGL1113 HIST1013 History of Civ
Mary MATH1023
Sue PSYC2003

T1 join T2 at Course =
Student Course CourseName

Fred MATH1023 College Algebra
Tom ENGL1113 Composition I
Mary ENGL1113 Composition I
Mary MATH1023 College Algebra

Department of Mathematics & Computer Science, Southern Arkansas University

E-mail address: plbailey@saumag.edu

