
CONICS

PAUL L. BAILEY

Abstract. We discuss four types of conics; the circle, the parabola, the ellipse,

and the hyperbola. In each case, we derive an equation for the conic in standard

position, and demonstrate a reflective principle for that conic.

1. Circles

Definition 1. A circle is the set of points in a plane whose distance to a given
point, called the center, is equal to a given distance, called the radius.

Proposition 1. Consider the circle centered at (0, 0) with radius r. The equation
of the circle is

x2 + y2 = r2.

Proof. Let (x, y) be an arbitrary point on the circle; then its distance to the center
is r. By the distance formula,√

(x− 0)2 + (y − 0)2 = r,

so
x2 + y2 = r2.
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2. Parabolas

Definition 2. A parabola is the set of points in a plane whose distance to a given
point, called the focus, is equal to its distance to a given line, called the directrix.

The midpoint between the focus and the directrix is called the vertex. The line
through the focus and the vertex is called the axis.

Proposition 2. Consider the parabola with vertex (0, 0) and focus (0, p). The axis
is x = 0, the directrix is y = −p, and the equation the parabola is

x2 = 4py.

Proof. The line through (0, 0) and (0, p) is x = 0. The directrix is perpendicular
to this, and the distance from (0, p) to the directrix is 2p. Thus the directrix is
y = −p.

Let (x, y) be an arbitrary point on the parabola. Then the distance from (x, y)
to (0, p) equals the distance from (x, y) to the line y = −p. This latter distance is
the distance between (x, y) and the point (x,−p). Thus√

(x− 0)2 + (y − p)2 =
√

(x− x)2 + (y − (−p))2.

Squaring both sides gives

x2 + (y − p)2 = (y + p)2.

Expanding gives
x2 + y2 − 2py + p2 = y2 + 2py + p2;

therefore
x2 = 4py.
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Proposition 3. Consider a parabola with vertex V and focus F . Let A be the axis
and let P be a point on the parabola. Let L0 be the line through P tangent to the
parabola, Let L0 be the line parallel to A through P , L1 the line through P parallel
to A, and L2 the line through F and P . Then the angle between L0 and L1 equals
the angle between L0 and L2.

Proof. We may rotate and translate the parabola so that the focus is on the positive
y-axis and the vertex is at the origin. Thus we assume that the focus is F = (0, p)
and the equation of the parabola is 4py = x2. The axis A is the line x = 0.

Viewing the parabola as the graph of a function, its equation in functional form
is f(x) = x2

4p . Calculus gives us that the slope of the line tangent to the graph of
f(x) at the point (x, f(x)) is f ′(x) = x

2p .
Let P = (a, b) be an arbitrary point on the parabola. Then a2 = 4bp, and the

slope of the tangent line L0 at (a, b) is a
2p . The slope of the line L2 through (a, b)

and (0, p) is b−p
a .

Let α be the angle between L0 and L1, and let β be the angle between L0 and
L2. We wish to show that α = β; since these angles are acute, it suffices to show
that they have the same cosine. We use vectors to do this.

A vector in the direction of L0 is ~v = 〈2p, a〉. A vector in the direction of L1 is
~j = 〈0, 1〉. The cosine of the angle between them is

cos α =
~v ·~j
|~v||~j|

=
a√

a2 + 4p2
.

A vector in the direction of L2 is ~w = 〈a, b−p〉. The cosine of the angle between
~v and ~w is

cos β =
~v · ~w

|v||w|

=
2ap + ab− ap√

a2 + 4p2
√

a2 + (p− b)2

=
a(b + p)√

a2 + 4p2
√

4bp + (p− b)2

=
a(b + p)√

a2 + 4p2
√

(p + b)2

=
a√

a2 + 4p2

= cos α

Thus α = β. �

Remark 1. This says that if a beam of light enters a circular paraboloid parallel
to the axis, it will bounce off the surface and hit the focus.
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3. Ellipses

Definition 3. An ellipse is the set of points in a plane such that the sum of the
distances from the point to two given points, called foci, is a constant, called the
common sum.

The midpoint between the foci is called the center. The line through the foci is
called the major axis. The line perpendicular to the major axis through the center
is called the minor axis. The points of intersection of the major axis with the ellipse
are called vertices. The points of intersection of the minor axis with the ellipse are
called covertices.

Proposition 4. Consider the ellipse with foci (±c, 0), where c > 0, and common
sum s. Then the center is (0, 0), the major axis is y = 0, the minor axis is x = 0,
the vertices are (±a, 0), the covertices are (0,±b), and the equation of the ellipse is

x2

a2
+

y2

b2
= 1,

where
2a = s and c2 = a2 − b2 .

Proof. The midpoint between the foci is clearly (0, 0), so this is the center. More-
over, the line through (±c, 0) is the x-axis, so its equation is y = 0, and the
perpendicular line through the origin is the y-axis, which is x = 0.

Suppose that the equation of the ellipse is as stated. If (x, y) is on the intersection
of the locus of this equation with the line y = 0, then x2

a2 = 1, so x = ±a; thus the
vertices are (±a, 0). Similarly, the covertices are (0,±b).

Now from the definition of an ellipse, the distance from (a, 0) to (c, 0) plus the
distance from (a, 0) to (−c, 0) equals s, that is,

s = (a− c) + (a + c) = 2a.

Moreover, the distance from (0, b) to (c, 0) plus the distance from (0, b) to (−c, 0)
equals s. Thus

s =
√

(c− 0)2 + (0− b)2 +
√

(−c− 0)2 + (0− b)2 = 2
√

c2 + b2.

Since s = 2a, this gives a =
√

c2 + b2, so a2 = c2 + b2, which we rewrite as
c2 = a2 − b2. It remains to derive the equation of the ellipse from the definition.
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Let (x, y) be an arbitrary point on the ellipse; from the definition, we have√
(x− c)2 + (y − 0)2 +

√
(x− (−c))2 + (y − 0)2 = s.

Subtracting
√

(x + c)2 + y2 from both sides and squaring gives

(x− c)2 + y2 = s2 + (x + c)2 + y2 − 2s
√

(x + c)2 + y2.

Rearranging this gives

2s
√

(x + c)2 + y2 = s2 + (x + c)2 − (x− c)2 = s2 + 4cx.

Dividing by 2s and squaring again produces

x2 + 2cx + c2 + y2 =
s2

4
+ 2cx +

4c2x2

s2
.

Cancelling 2cx and using that s2 = −2a2 and c2 = a2 − b2 leads us to

x2 + a2 − b2 + y2 = a2 +
(a2 − b2)x2

a2
= a2 + x2 − b2x2

a2
.

Adding b2x2

a2 − x2 − a2 + b2 to both sides gives

b2x2

a2
+ y2 = b2.

Finally, dividing by b2 gives
x2

a2
+

y2

b2
= 1.

�

Proposition 5. Consider an ellipse with foci F1 and F2. Let P be a point on the
ellipse and let L0 be the line through P tangent to the ellipse. Let L1 be the line
through F1 and P and let L2 be the line through F2 and P . Then the angle between
L0 and L1 equals the angle between L0 and L2.

Remark 2. This says that a wave emitted from one focus bounces off the surface
and is transmitted to the other focus.
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4. Hyperbolas

Definition 4. An hyperbola is the set of points in a plane such that the difference
of the distances from the point to two given points, called foci, is a constant, called
the common difference.

The midpoint between the foci is called the center. The line through the foci
is called the major axis. The line perpendicular to the major axis through the
center is called the minor axis. The points of intersection of the major axis with
the hyperbola are called vertices. The points on the minor axis whose distance to
the center is the square root of the difference of the squares of the distances from
the center to to vertices and foci are called covertices.

Proposition 6. Consider the hyperbola with foci (±c, 0), where c > 0, and common
difference d. Then the center is (0, 0), the major axis is y = 0, the minor axis is
x = 0, the vertices are (±a, 0), the covertices are (0,±b), and the equation of the
ellipse is

x2

a2
− y2

b2
= 1,

where
2a = d and c2 = a2 + b2 .

Proposition 7. Consider the hyperbola with equation

x2

a2
− y2

b2
= 1.

The graph of this equation is asymptotic to the lines y = ± b
ax.

Proof. Solving for y gives

y = ±b

√
x2

a2
− 1 = ± b

a

√
x2 − a2.

As x →∞,
√

x2 − a2 →
√

x2 → x, so y → ± b
ax. �

Proposition 8. Consider a hyperbola with foci F1 and F2. Let P be a point on
the hyperbola and let L0 be the line through P tangent to the hyperbola. Let L1 be
the line through F1 and P and let L2 be the line through F2 and P . Then the angle
between L0 and L1 equals the angle between L0 and L2.

Remark 3. This is essentially the same statement we had for an ellipse, but because
of the different shape of the hyperbola, we interpret it differently. It says that a
wave emitted from a point outside the hyperbola directed at one focus bounces off
the surface and is transmitted to the other focus.
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5. Eccentricity

5.1. Goal. We wish to view all conic sections as a continuously varying family of
curves, defined by a single equation which contains variables x and y, as well as
parameters, which are constants which we allow to vary. That the family varies
continuously means that small changes in the parameters cause small changes in
the curves.

To simplify the ideas and the computations, we wish to fix the center of the
conic sections to be the origin. Unfortunately, this precludes including parabolas
in the family, and instead produces the degenerate case of two parallel lines where
one would suspect a parabola to belong.

5.2. A Family Parameterized by Time. We begin by considering the equation

x2

a2
+ t

y2

a2
= 1.

For a fixed a and t, this is a conic section. With |t| = a2

b2 , the standard equations
of both ellipses and hyperbolas centered at the origin can be put in this form.

The parameter a represents the size of the curve, and we will now vary t and
leave a fixed. Think of the parameter t as time, so that as time passes, the equation
produces curves in a moving picture. All of the curves have x-intercepts at (±a, 0).

For t = 1, the equation is
x2

a2
+

y2

a2
= 1,

which is the equation of a circle of radius a centered at the origin.
For t > 1, as t increases, the curve flattens into an ellipse. For example, at t = 4,

the equation is
x2

a2
+

y2

(a/2)2
= 1,

whose y-intercepts are (0,±a
2 ). As t approaches ∞, the curve approaches the

horizontal line segment [−a, a] on the x-axis.
For 0 < t < 1, as t decreases from 1 to 0, the curve stretches vertically into an

ellipse whose focal axis is the y-axis. For example, at t = 1
4 , the equation is

x2

a2
+

y2

(2a)2
= 1,

whose y-intercepts are (0,±2a). As t approaches 0, the ellipse becomes indefinitely
tall.

For t = 0, the equation is

x2

a2
= 1, or x = ±a.

The graph of this equation is a pair of vertical lines.
For t < 0, the y2 term is negative and we obtain the equation of a hyperbola.

For example, at t = −1, the equation is

x2

a2
− y2

a2
= 1,

which is a hyperbola centered at the origin with horizontal focal axis and asymptotes
y = ±x. More generally, if m > 0 and t = −m2, the asymptotes have slope 1

m .
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5.3. Eccentricity. The eccentricity of an ellipse or a hyperbola is

e =
c

a
=

distance between foci
distance between vertices

.

Thus c = ae.
For an ellipse, we can compute b2 in terms of a and e as

c2 = a2 − b2 ⇒ b2 = a2 − c2 = a2 − a2e2 = a2(1− e2).

For a hyperbola, we have

c2 = b2 + a2 ⇒ b2 = c2 − a2 = a2e2 − a2 = −a2(1− e2),

so −b2 = a2(1− e2).
In either case, the equation of the conic centered at the origin with size a and

eccentricity e is
x2

a2
+

y2

a2(1− e2)
= 1.

5.4. Generalized Parabolas. Select a point P and line L not containing P . Let
Q be another point on the plane, and let d(Q, P ) be the distance from Q to P , and
let d(Q,L) be the distance from Q to L. Then, by definition, Q is on the parabola
with focus P and directrix L if and only if d(Q,P ) = d(Q,L). Dividing both sides
by d(Q,L) gives d(Q,P )

d(Q,L) = 1.
We generalize this as follows.
Select any point P , a line L not containing p, and a positive real number e.

Consider the locus of the equation

d(Q,P )
d(Q,L)

= e.

We call P the focus, L the directrix, and e the eccentricity, of this locus. If e = 1,
this is a parabola. What type of locus does this equation create if e 6= 1? To
understand this, let us change the scale and shift. We will rescale back at the end.

Let a = ed(P,L)
|e2−1| ; this is the size of the locus. Shrink the plane by a factor of a;

for simplicity consider P , Q, and L in this shrunken plane without relabeling them.
The distance between the focus and the directrix is now

d(P,L) =
|e2 − 1|

e
= |e− 1

e
|.

By a rigid motion of the plane, assume that P = (e, 0) and L : x = e. Then

d(Q, p)
d(Q,L)

= 1 ⇔ d(Q, P )2 = e2d(Q,L)2

⇔ (x− e)2 + y2 = e2(x− 1
e
)2

⇔ x2 − 2ex + e2 + y2 = e2x2 − 2ex + 1

⇔ (1− e2)x2 + y2 = 1− e2

⇔ x2 +
y2

1− e2
= 1.
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To scale back to the original size, we need to stretch the plane by a factor of a.
This is done by making the substitutions

x 
x

a
and y  

y

a
,

which produces the following equation, which is an alternate form of the equation
of the locus of the generalized parabola with focus (ae, 0) and directrix x = a

e :

x2

a2
+

y2

a2(1− e2)
= 1.

This is exactly the equation we had for ellipses and hyperbolas parameterized by a
and e!

If 0 < e < 1, this is the equation of an ellipse; set b2 = a2(1 − e2). Then
c2 = a2 − b2 = a2(1− (1− e2)) = a2e2, so c = ae, and e = c

a is the eccentricity.
If e > 1, this is the equation of a hyperbola; set b2 = a2(e2−1), so c2 = a2 +b2 =

a2(e2 − 1 + 1) = a2e2, and again, e = c
a .

5.5. Conclusion. We have shown how ellipses and hyperbolas are generalizations
of parabolas, that their foci act as generalizations of a parabolic focus, that they
also have directrices, and that they are parameterized by their eccentricities in this
generalization.
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6. Rotation

The matrix of rotation by θ is

Rθ =
[
cos θ − sin θ
sin θ cos θ

]
.

The inverse matrix is

R=−θ =
[

cos θ sin θ
− sin θ cos θ

]
.

Let the (u, v) plane be the (x, y) plane rotated by θ degrees. Then

Rθ

[
u
v

]
=

[
u
y

]
and R−θ

[
x
y

]
=

[
u
v

]
.

This produces the equations

x = u cos θ − v sin θ

y = u sin θ + v cos θ(1)

and

u = x cos θ + y sin θ

v = y cos θ − x sin θ.(2)

To shorten notation, set α = sin θ and β = cos θ. Then we have

x = βu− αv and y = αu + βv.

It is convenient to expand these as follows.

x2 = β2u2 − 2αβuv + α2v2;

y2 = α2u2 + 2αβuv + β2v2;

xy = αβu2 − αβv2 + (β2 − α2)uv.

Given
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

we may eliminate the B term by a linear change of variable as in equations (1),
where

cot 2θ =
A− C

B
.

Let a = A− C and b = B, and set c =
√

a2 + b2. Then

sin 2θ =
b

c
and cos 2θ =

a

c
.

Using a half-angle formula,

sin θ =

√
1− a

c

2
=

√
c− a

2c
and cos θ =

√
1 + a

c

2
=

√
c + a

2c
.

Thus

α2 =
c− a

2c
and β2 =

c + a

c
.
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