Name:

Calculus I (Math 1525) PRACTICE Midterm Exam # 1

Professor Paul Bailey Thursday, March 13, 2008

The examination contains five problems which are worth 20 points each, plus a bonus problem worth an additional 20 points. The use of books, notes, or electronic computation devices is prohibited.

Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Bonus	Total Score

Problem 1. (True/False)

Circle the letter corresponding to the best answer.

Let $f : A \to B$ be a function, and let $a \in A$. Then $f(a) \in B$.

(T) True (F) False

Let $f : A \to B$ be a function, and suppose that $f(a) = b_1$ and $f(a) = b_2$. Then $b_1 = b_2$. (T) True (F) False

Let $f : A \to B$ be a function, and suppose that $f(a_1) = f(a_2)$. Then $a_1 = a_2$. (T) True (F) False

- If $f : \mathbb{R} \to \mathbb{R}$ is even, then f(0) = 0. (**T**) True (**F**) False
- If $f : [a, b] \to \mathbb{R}$ is continuous and f(a) = -f(b), then f(c) = 0 for some $c \in [a, b]$. (T) True (F) False

If f is a rational function, then f is continuous on its natural domain.

(T) True (F) False

If f is a continuous function, then f is differentiable.

(T) True (F) False

There exists a nonconstant function $f : \mathbb{R} \to \mathbb{R}$ which is both even and odd.

(T) True (F) False

There exists a linear function whose range is the set of positive real numbers.

(T) True (F) False

There exists a quadratic function whose derivative is constant.

(T) True (F) False

Problem 2. (Computation)

Compute the following values.

(a) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $B = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}$. Find $(A \cup B) \smallsetminus (A \cap B)$.

(b) Find $\cos \frac{5\pi}{12}$.

(c) Find
$$\lim_{\theta \to 0} \frac{\sin 7\theta}{12}$$
.

(d) Find
$$\lim_{h\to 0} \frac{\sqrt{x+5h}-\sqrt{x}}{h}$$
.

(e) Find the average rate of change of $f(t) = t^3 - 10t + 2$ on the interval [3,5].

Problem 3. (Continuity)

(a) Find $\delta > 0$ such that

$$0 < |x-4| < \delta \quad \Rightarrow \quad |\sqrt{x}-2| < \frac{1}{3}.$$

(b) Let $f(x) = \frac{1}{x^2}$, and let a = 1. Let $\epsilon \in \mathbb{R}$ with $0 < \epsilon < 1$. Find $\delta > 0$ such that $|x - a| < \delta \implies |f(x) - f(a)| < \epsilon$.

Problem 4. (Derivatives) Find $\frac{dy}{dx}$. (a) $y = \frac{x^2 - 1}{x^3 - 1}$

(b)
$$y = \sin(x^2 + x + 1)$$

(c)
$$y = x^2 \sqrt{1 + \tan^2 x}$$

(d)
$$y = \cos^2 x + \sin^2 x$$

(e) $y = \cos^2 x - \sin^2 x$

Problem 5. (Polynomials)

Let

$$f(x) = x^3 - 3x + 2.$$

(a) Find f'(x), and find the zeros of f'(x). Sketch the graph of f'(x); label all x-intercepts and y-intercepts.

_
-
 + + + + +
-
-
-
+

(b) Find the zeros of f. Sketch the graph of f; label all x-intercepts, y-intercepts, and points with horizontal tangents.

	_				
	_				
	-				
	-				
 ·	 	I	ı	I	
	-				
	66				
	-				

Theorem 1. (Intermediate Value Theorem)

Let $f:[a,b] \to \mathbb{R}$ be continuous. If f(a)f(b) < 0, then there exists $c \in (a,b)$ such that f(c) = 0.

Problem 6. (Bonus)

Prove that there exists $x \in \mathbb{R}$ such that $\cos x = x$.