Матн 3063	Calculus I	Project 1	Name:
	Prof. Paul Bailey	December 2, 2008	

Due Friday, Wednesday, October 15, 2008.

Write all solutions neatly, in complete sentences. The statement of the problem should always be copied onto a blank sheet of $8\frac{1}{2} \times 11$ computer paper, followed by the solution. Staple this sheet to the front of your solutions.

Definition 1. Let $D \subset \mathbb{R}$ be an interval and let $f : D \to \mathbb{R}$. Let $a \in D$. We say that f is *continuous* at a if for every $\epsilon > 0$ there exists $\delta > 0$ such that for every $x \in D$, we have

$$|x-a| < \delta \quad \Rightarrow \quad |f(x) - f(a)| < \epsilon.$$

Problem 1. Let

$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}; \\ 0 & \text{otherwise.} \end{cases}$

Apply the definition to show that f is continuous at 0.

Theorem 1. Intermediate Value Theorem (IVT) Let $f : [a,b] \to \mathbb{R}$ be continuous. If f(a)f(b) < 0, then there exists $c \in (a,b)$ such that f(c) = 0.

Problem 2. Let $f : [0,1] \to [0,1]$ be continuous. Apply the Intermediate Value Theorem to show that there exists $c \in [0,1]$ such that f(c) = c.

Definition 2. Let $A \subset \mathbb{R}$. We say that A is globally discrete if

there exists $\epsilon > 0$ such that for every $a \in A$, $(a - \epsilon, a + \epsilon) \cap A = \{a\}$.

We say that A is *locally discrete* if

for every $a \in A$ there exists $\epsilon > 0$ such that $(a - \epsilon, a + \epsilon) \cap A = \{a\}$.

We say that A is *indiscrete* if A is not locally discrete. We say that A is *bounded* if there exists $a, b \in \mathbb{R}$ such that $A \subset [a, b]$.

Problem 3. Which of the following sets are 1) bounded; 2) globally discrete; 3) locally discrete; 4) indiscrete? Describe why.

(a) $A = \mathbb{Q}$

(b) $B = \mathbb{Z}$

- (c) C = [2, 5]
- (d) $D = [2, 5] \cap \mathbb{Q}$
- (e) $E = [2, 5] \cap \mathbb{Z}$
- (f) $F = \{x \in \mathbb{R} \mid x = \frac{1}{n} \text{ for some } n \in \mathbb{N}\}$

Problem 4. Answer the following questions. Explain your reasoning.

- (a) Is every finite set bounded?
- (b) Is every globally discrete set locally discrete?
- (c) Is every finite set globally discrete?
- (d) Is every infinite set indiscrete?
- (e) Is every bounded infinite set indiscrete?