Math 1525	Calculus I	Project 2	Name:
	Prof. Paul Bailey	December 2, 2008	

Due Thursday, November 20, 2008.

Write all solutions neatly, in complete sentences. The statement of the problem should always be copied onto a blank sheet of $8\frac{1}{2} \times 11$ computer paper, followed by the solution. Staple this sheet to the front of your solutions.

Let $P, Q \in \mathbb{R}^2$. Denote the distance between P and Q by d(P, Q).

Let $A, B \subset \mathbb{R}^2$ be nonempty. The *distance* between A and B, denoted d(A, B), is the largest nonnegative real number such that

$$d(A,B) \le d(P,Q)$$
 for all $P \in A$ and $Q \in B$.

Example 1. Let $A = \{(1,2)\}$ and $B = \{(5,1)\}$. Then $d(A,B) = \sqrt{(5-1)^2 + (1-2)^2} = \sqrt{17}$.

Example 2. Let $A = \{(0, 4)\}$ and let B denote the x-axis. Then d(A, B) = 4.

Example 3. Let $A = \{(x, y) \in \mathbb{R}^2 \mid y = 2x + 1\}$ and $B = \{(x, y) \in \mathbb{R}^2 \mid y = 3x - 5\}$. Since A and B are nonparallel lines, they intersect, so d(A, B) = 0.

Example 4. Let $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ and $B = \{(x, y) \in \mathbb{R}^2 \mid (x - 6)^2 + y^2 = 4\}$. Then d(A, B) = 3.

Problem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Let $P \in \mathbb{R}^2$ be a point not on the graph of f. Let $A = \{P\}$ and $B = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\}$. Let Q be point on the graph of f such that d(A, B) = d(P, Q). Show that the line through Q tangent to the graph of f is perpendicular to the line through P and Q.

Problem 2. Let

$$A = \{(x, y) \mid y = 3x - 5\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 \mid y = 3x + 3\}.$

Find d(A, B).

Problem 3. Let

$$A = \{(x,y) \mid y = (x-2)^2 + (y-3)^2 = 4\} \text{ and } B = \{(x,y) \in \mathbb{R}^2 \mid (x+5)^2 + (y+5)^2 = 9\}$$

Find d(A, B).

Problem 4. Let $a \in \mathbb{R}$. Let

$$A = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$$
 and $B = \{(0, b)\}.$

The distance between A and B is a function of b. Find $\rho(b) = d(A, B)$.

Problem 5. Let $m \in \mathbb{R}$. Let

$$A = \{(x, y) \mid y = x^2 + 9\} \text{ and } B = \{(x, y) \in \mathbb{R}^2 \mid y = mx\}.$$

The distance between A and B is a function of the slope m. Find $\rho(m) = d(A, B)$ (Hint: express ρ in three cases).