
Math 4123 History of Mathematics Problem Set 3 Solutions
Prof. Paul Bailey December 1, 2008

Due Date: Friday, December 5,2008.
Write your solutions neatly on separate pieces of paper and attach this sheet to the front.
Problem 4 may require some ingenuity, but is a fascinating result.

Problem 1. (Fibonacci)
Recall that the Fibonacci sequence (Fn) is defined by F1 = 1, F2 = 1, and Fn+2 = Fn + Fn+1, and that
limn→∞

Fn+1
Fn

= φ, where φ = 1+
√

5
2 .

Let b ∈ R with b ≥ 1 and define a sequence (Gn) by G1 = 1, G2 = 1, and Gn+2 = Gn + bGn+1.
Let c ∈ R with c ≥ φ. Find b such that limn→∞

Gn+1
Gn

= c.

Solution. Let cn = Gn+1
Gn

. Then

cn+1 =
Gn+2

Gn+1
=

bGn+1 + Gn

Gn+1
= b +

1
cn

.

Now (cn) is a Cauchy sequence, so it converges; let L = lim cn. Since cn > 0 for all n, L ≥ 0. Then L = b+ 1
L ,

so
L2 − bL− 1− 0.

Thus

L =
b +

√
b2 + 4
2

.

If L = c, then 2c = b +
√

b2 + 4, so (2c− b)2 = b2 + 4, so 4c2 − 4bc + b2 = b2 + 4, so

b =
c2 − 1

c
.

Problem 2. (Tartaglia)
Recall that Tartaglia viewed the cube x3 as (t− u)3 to find solutions to cubic equations.

Let f(x) = x3 + 3x2 + 6x− 8. Find the real zero of f using Tartaglia’s cube plus cosa method.

Solution. First we depress the cubic: let y = x + 1; then

f(x) = f(y−1) = (y−1)3+3(y−1)2+6(y−1)−8 = y3−3y2+3y−1+3y2−6y+3+6y−6−8 = y3+3y−12.

We now solve y3 + 3y = 12. Set 3tu = 3 and t3 − u3 = 12, so that u = 1
t , and t3 − 1

t3 = 12. Thus

t6 − 12t3 − 1 = 0.

By the quadratic formula,

t3 =
12 +

√
144 + 4
2

= 6 +
√

37.

Now u3 = t3 − 12 = −6 +
√

37. Thus

y = t− u =
3
√

6 +
√

37 +
3
√

6−
√

37.

Finally,

x =
3
√

6 +
√

37 +
3
√

6−
√

37− 1.



Problem 3. (Descartes)
Recall that Descartes used the concept of expanding circles and the ability to compute the number of real
solutions to quadratic equations to find tangents.

Find the distance between the curve x = y2 and the point (3, 0) using Descartes’ discriminant method.

Solution. A circle of radius r centered at (3, 0) has equation (x − 3)2 + y2 = r2. The shortest distance to
the curve is the radius of a tangential circle, which occurs when then circle intersects the curve in exactly
one point.

Intersecting the curve and the circle gives (x−3)2+x = r2, so x2−5x+(9−r2) = 0, so x = 5±
√

25−4(9−r2)

2 .
This has exactly one solution when 25 = 4(9− r2), or r2 = 9− 25

4 = 11
4 . Thus the distance is

r =
√

11
2

.

Problem 4. (Napier)
Recall that Napier desired to find a function to convert multiplication into addition. We may use techniques
of Calculus unavailable to him to see that he had very little choice. The modern definition is

log x =
∫ x

1

dt

t
and logb(x) =

log x

log b
.

Let f : (0,∞) → R be a differentiable function which is not constantly zero and satisfies

f(ab) = f(a) + f(b) for all a, b ∈ (0,∞).

Show that there exists b ∈ R such that f(x) = logb(x).

Solution. First, note that f(1) = f(1 · 1) = f(1) + f(1); thus f(1) = 0.
Fix t ∈ (0,∞); we have f(tx) = f(t) + f(x). Differentiating with respect to x gives tf ′(tx) = f ′(x). In

particular, if x = 1, we have tf ′(t) = f ′(1), so f ′(t) = f ′(1)
t . This is true for all t ∈ R, so∫ x

1

f ′(t) dt =
∫ x

1

f ′(1)
t

dt.

By the Fundamental Theorem of Calculus,

f(x)− f(1) = f ′(1)
∫ x

1

dt

t
= f ′(1) log x.

Since f(1) = 0, f(x) = f ′(1) log x.
Suppose f ′(1) = 0; then tf ′(t) = 0, so f ′(t) = 0 for all t ∈ (0,∞), so f is constant. But f(1) = 0, so

f(x) = 0; this contradicts that f is nonzero. Thus f ′(1) 6= 0.
Let b = e

1
f′(1) . Then f ′(1) = 1

log b , and f(x) = log x
log b ; that is,

f(x) = logb x where b = e
1

f′(1) .


