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Abstract. We discuss the classical Greek notion of constructibility of geo-
metric objects. The reader is invited to obtain a ruler and compass to perform

the exercises and follow the constructions described in the proofs.

1. Construction with Straight-Edge and Compass

The drawings of the ancient Greek geometers were made using two instruments:
a straight-edge and a compass.

A straight-edge draws lines. With the straightedge, we are permitted to draw
a straight line of indefinite length through any two given distinct points. The
straight-edge is unmarked; it cannot measure distances.

A compass draws circles. With the compass, we are permitted to draw a circle
with any given point as the center and passing through any given second point. The
compass collapses if it is lifted; we are not a priori permitted to use it to measure
the distance between given points, and draw a circle around another given point of
the same radius.

The straight-edge and the compass have come to be known as Euclidean tools,
although the quest to construct points using them pre-dates Euclid by two centuries.

2. Construction of Points in a Plane

Let P denote the set of all points in a plane, and let Q ⊂ P .
A line in P is given by Q if there exist two points in Q which lie on P .
A circle in P is given by Q if the center of the circle is in Q, and there exists a

point in Q which lies on the circle.
A point A ∈ P is immediately constructible from Q if one of the following hold:
(a) A ∈ Q;
(b) A is the point of intersection of two lines which are given by Q;
(c) A is a point of intersection of a line and a circle which are given by Q;
(d) A is a point of intersection of two circles which are given by Q.
A point A ∈ P is eventually constructible from Q if there exist a finite sequence of

points A1, A2, . . . , An such that A = An and for j = 1, . . . , n, Aj+1 is immediately
constructible from Q ∪ {A1, . . . , Aj}.
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3. Standard Constructions

Let P denote a plane. For A,B ∈ P , define the following:
• AB is the line in P through A and B;
• AB is the line segment between A and B;
• |AB| is the distance between A and B;
• A−B is the circle through B with center A.

Also, if C,D ∈ P , then AB ‖ CD represents the statement that line AB is parallel
to line CD, and AB ⊥ CD represents the statement that line AB is perpendicular
to line CD.

Let Q be a set of points in the plane. We say that a line segment is constructible
from Q if its endpoints are constructible from Q

Proposition 1. Given points A and B, it is possible to construct the midpoint Z
of AB.

Construction. We are given A and B.
(a) Let C and D be the points of intersection of circle A−B and circle B−A.
(b) Let Z be the intersection of line AB and line CD.

Then Z is the midpoint of AB. �

Proposition 2. Given points A and B, it is possible to construct a point Z such
that AB ⊥ BZ.

Construction. We are given A and B.
(a) Let C be the point of intersection of line AB and circle B−A which is not

A.
(b) Let Z be one of the points of intersection of circle A−C and circle C −A.

Then AB ⊥ BZ. �

Proposition 3. Given noncolinear points A, B, and C, it is possible to construct
a point Z on the line AB such that AB ⊥ CZ.

Construction. We are given A, B, and C. If CB ⊥ AB, let Z = C. Otherwise,
construct Z as follows.

(a) Let D be the point of intersection of line AB and circle C−B which is not
B.

(b) Let Z be the midpoint of BD.
Then AB ⊥ CZ. �

Proposition 4. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that AB ‖ CZ.

Construction. We are given A, B, and C.
(a) Let D be the point of intersection of line AB and the line through C which

is perpendicular to line AB.
(a) Let Z be the point of intersection of the line through A which is perpen-

dicular to line AB and the line through C which is perpendicular to line
CD.

Then AB ‖ CZ. �
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4. Transference of Distance

Suppose we are given points A, B, and C. A modern compass is capable of
holding its shape when lifted from the page, so that the distance between A and
B can be measured using the modern compass, and then the compass is set down
on C to draw a circle with center C and radius |AB|. We may call this process
transference of distance. The Euclidean compass is not a priori capable of this feat;
however, we can prove that this construction is possible. We do this by constructing
a parallelogram ABCZ, so that |AB| = |CZ|.

Proposition 5. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that polygon ABCZ is a parallelogram.

Construction. We have points A, B, and C.
(a) Let Z be the point of intersection of the line through C parallel to AB, and

the line through A parallel to BC.
�

5. The Three Greek Problems

As the Greeks investigated what could be accomplished with their Euclidean
tools, three interesting unsolved problems arose.

Problem 1 (Duplication of the Cube). Given a cube, construct a cube with double
the volume.

Problem 2 (Trisection of an Angle). Given an angle, construct an angle one third
as large.

Problem 3 (Quadrature of the Circle). Given a circle, construct a square with the
same area.

We now attempt to make the statements of these problems precise, using modern
notation.

6. Construction of Squares

A square is constructible if its vertices are constructible.
Quadrature is the process of constructing a square whose area is equal to the

area of a given plane region. A plane region with area x is called quadrable if it is
possible to construct a square with area x. By the Proposition 2, this is equivalent
to the the ability to construct a line segment of length

√
x.

The ancient Egyptians estimated areas of certain regions; for example they es-
timated that the square on 8/9 of the diameter of a circle is its quadrature. The
area x of the circle with radius r would then be approximately

x ≈
(8

9
(2r)

)2

=
256
81

r2;

this produces π ≈ 3.16049.
The ancient Greeks concentrated on discovering which regions were precisely

quadrable, via construction with Euclidean tools.
The third Greek problem asks if a given circle is quadrable.
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7. Construction of Angles

Let P denote a plane. For A,B,C ∈ P , define the following:
• ∠ABC is the angle between the line segments AB and BC.

We say that an angle α is constructible from Q ⊂ P if it is possible to construct
points A, B, and C from Q such that α = ∠ABC.

To say that an angle α is given; means that we are given points A, B, and C such
that α = ∠ABC. A bisector of this angle is a line BD such that ∠ABD = ∠DBC;
then necessarily ∠ABD = α

2 .

Proposition 6. Given an angle ∠ABC, it is possible to construct a point Z such
that ∠ABZ = ∠ZBC = ∠ABC

2 .

Construction. We are given A, B, and C, with B as the vertex of the angle.
(a) Let D be the point of intersection of BC and B − C.
(a) Let Z be the midpoint of CD.

Then ∠ABZ = ∠ZBC. �

Thus every given angle is bisectable; the second Greek problem asks if every given
angle is trisectable.

8. Construction of Points in Space

Let S denote the set of all points in three dimensional space, and let A,B ∈ S.
Although the line through A and B is well defined, there are many circles in space
whose center is A which pass through B. We do not wish to say that all such circles
are constructible.

We say that a plane P ⊂ S is constructible from a set Q ⊂ S if there exist three
noncolinear points in Q which lie on P . Now circles are constructible from Q if we
may construct the plane on which they lie. This gives meaning to the notion of
constructibility of a point in space.

A cube is constructible if it is possible to construct its vertices in space.
The first Greek problem asks if, given a cube in space, it is possible to construct

a cube in space whose volume is double that of the given cube. This is equivalent
to asking if, given a line segment whose length is that of a side of the original cube,
it is possible to construct a line segment whose length is that of a cube with double
the volume.
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9. Construction of Real Numbers

Let P be a plane and let Q ⊂ P . Let x ∈ R. We say that x is constructible from
Q if a line segment whose length is |x| is constructible from Q. Moreover, we say
simply that x is a constructible real number if x is constructible from {A,B} for
some A,B ∈ P with |AB| = 1. Since we may consider a point to be a line segment
of length 0, we consider 0 to be a constructible number.

Proposition 7. Let x, y ∈ R be constructible. Then x + y is constructible.

Construction. Since x and y are constructible, it is possible to construct line seg-
ments of length |x| and |y|. By Proposition ??, it is possible to construct a circle
of radius |y| centered at any given point.

(a) Let A and B be points such that |AB| = |x|.
Case 1 First assume that x and y have the same sign.
(b) Let Z be the point of intersection of line AB and the circle centered at B

of radius y such that B lies on AZ.
Now AZ is a line segment of length |x|+ |y| = |x + y|.

Case 2 Next assume that x and y have different signs, and without loss of
generality assume that |x| ≥ |y|.

(b) Let Z be the point of intersection of line AB and the circle centered at B
of radius y such that Z lies on AB.

Now AZ is a line segment of length |x| − |y| = |x + y|. �

Proposition 8. Let x ∈ R be constructible. Then −x is constructible.

Reason. This follows immediately from the definition. �
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Proposition 9. Let x, y ∈ R be constructible. Then xy is constructible.

Construction. Since 1, x and y are constructible, it is possible to construct line
segments of length 1, |x|, and |y|. Without loss of generality, we may assume that
x and y are positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be a point of intersection of the line through A which is perpendicular

to line AB and a circle centered at A of radius 1.
(c) Let D be the point of intersection line through AC and the circle centered

at C of radius y such that C does not lie on AD.
(d) Let Z be the intersection of line BC and the line through D which is parallel

to AB.
Set z = |DZ|; then 4CAB is similar to 4CDZ, so 1

x = y
z , whence z = xy. �

Proposition 10. Let x ∈ R r {0} be constructible. Then 1
x is constructible.

Construction. Since 1 and x are constructible, it is possible to construct line seg-
ments of length 1 and |x|. Without loss of generality, assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at A

of radius 1 such that A is not on BC.
(c) Let D be a point of intersection of the line through A which is perpendicular

to line AB and the circle centered at A of radius 1.
(d) Let Z be the point of intersection of line AD and the line through C which

is parallel to line BD.
Set z = |AZ|; then 4ZAC is similar to 4DAB, so z

1 = 1
x , that is, z = 1

x . �

A subset F ⊂ R with at least two elements is a field if it is closed under the
operations of addition, subtraction, multiplication, and division. We have seen that
the set of all constructible real numbers is a field. In particular, all rational numbers
are constructible. Are there any others?
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We show that the set of constructible numbers is closed under square roots; to
do this, we need a couple of lemmas. Let’s assume the geometric facts that the sum
of angles in a triangle is 180◦, and that the base angles of an equilateral triangle
are equal.

Lemma 1 (Thales’ Theorem). An angle inscribed in a semicircle is right.

Proof. Consider a semicircle with center O and diameter BC, and let A be an
arbitrary point on the semicircle; we wish to show that ∠BAC is right. Now
|OA| = |OB| = |OC|, so 4BOA and 4COA are isosceles triangles. Let α =
∠OBA = ∠OAB and β = ∠OCA = ∠OAC; then ∠BAC = α + β. Adding the
angles 4ABC we obtain

180◦ = ∠OBA + ∠OCA + ∠BAC = α + β + (α + β) = 2(α + β).

Therefore, ∠BAC = α + β = 90◦. �

Lemma 2. Let ∠ACB be right, and let D ∈ AB such that AB ⊥ CD.
Then 4ACB ∼ 4ADC ∼ 4CDB.

Proof. Two triangles are similar if and only if they have two equal angles. Since
∠ACB = ∠ADC = ∠CDB = 90◦, ∠DAC is shared by two of the triangles, and
∠DBC is shared by two of the triangles, the result follows. �

Proposition 11. Let x ∈ R be a constructible number. Then
√
|x| is constructible.

Construction. Since 1 and x are constructible, it is possible to construct line seg-
ments of length 1 and |x|. We may assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at B

of radius 1 such that B is on AC.
(c) Let D be the midpoint of AC.
(d) Let Z be a point of intersection of the line through B which is perpendicular

to line AB and the circle D −A.
Let z = |BZ|. Now ∠ZBA = ∠ZBC = 90◦; moreover, ∠AZC is right by Thales
theorem. Therefore 4ZBC is similar to 4ABZ. Thus z

x = 1
z , whence z2 = x, so

z =
√

x. �
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10. Hippocrates Quadrature of the Lune

Proposition 12. Any given rectangle is quadrable.

Construction. Let BCDE form a rectangle. Construct a square as follows:
(a) Let F be the point of intersection of line BE and circle E −D such that

E ∈ BF .
(b) Let G be the midpoint of BF .
(c) Let H be the point of intersection of line DE and circle G − F such that

E ∈ DH.
(d) Let K be the point of intersection of line BE and circle E −H such that

F ∈ EK.
(e) Let L be the point of intersection of the line through H parallel to BE and

the line through K perpendicular to BE.
Then polygon EHLK is a square whose sides have length a = |HE|. Let c =
|BG| = |GH| and b = |GE|. Since 4GEH is right, we have a2 + b2 = c2. Now

area(BCDE) = |BE| × |ED|
= |BE| × |EF |
= (c + b)(c− b)

= c2 − b2 = a2

= area(EHLK).

�

Let P denote a plane. For A,B,C ∈ P , define the following:
• 4ABC is the triangle whose vertices are A, B, and C.

Proposition 13. A given triangle is quadrable.

Construction. Let BCD form a triangle.
(a) Let E be the point of intersection of line BC and the line through D which

is perpendicular to BC.
(b) Let F be the midpoint of DE.
(c) Let G be the point of intersection of the line through F which is parallel

to BC and the line through B which is perpendicular to BC.
(d) Let H be the point of intersection of line GF and the line through C which

is perpendicular to BC.
Then BCHG form a rectangle whose area is equal to the area of 4BCD. �
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A lune is a plane region obtained by taking the complement of one disk with
respect to another, where the bounding circles of the disks intersect in two points.

We now produce Hippocrates’ lune. The construction uses three ingredients:
(1) the Pythagorean Theorem;
(2) an angle inscribed in a semicircle is right;
(3) the areas of two circles are to each other as the squares on their diameters.

Proposition 14. Let A and B be points in a plane and let O be the midpoint of
AB. Let C be one of the points of intersection of circle O−A and the line through
O which is perpendicular to line AB. Let D be the midpoint of AC. Let E be the
point of intersection of line OD and circle O −A such that D ∈ OE. Let F be the
point of intersection of line OD and circle D − A such that F ∈ DF . Then lune
AECF is quadrable.

Construction. Our goal is to show that area(luneAECF ) = area(4AOC). Note
that ∠ACB is a right angle, since it is inscribed in a semicircle. Triangles 4AOC
and 4BOC are congruent by SAS; thus |AC| = |BC|. Apply the Pythagorean
Theorem to get

|AB|2 = |AC|2 + |BC|2 = 2|AC|2.
Now

area(semicircle AFC)
area(semicircle ACB)

=
|AC|2

|AB|2
=

|AC|2

2|AC|2
=

1
2
.

A quadrant is half of a semicircle, so clearly

area(quadrant ACO) =
1
2
area(semicircle ACB).

Thus
area(semicircle AFC) = area(quadrant ACO).

Therefore

area(luneAECF ) = area(semicircle AFC)− area(region AECD)

= area(quadrant ACO)− area(region AECD)

= area(4ACO).

�
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11. Construction of Regular Polygons

A polygon is regular if each edge has identical length and the angles at each
vertex are equal. For each positive integer n with n ≥ 3, there is exactly one
regular polygon with n edges, up to similarity; is is called a regular n-gon.

Let us first determine the angles in a regular n-gon. It can be inscribed in a
circle, and so has a specific center. Divide the n-gon into n isosceles triangles, each
with adjacent vertices on the n-gon, with the third vertex being the center. Note
that the base angles bisect the angles of the n-gon. Now the sum of the angles of
the triangles which come together at the center is 360◦. Thus the base angles add
to 180◦n− 360◦. There are 2n congruent base angles, so each has size

180◦n− 360◦

2n
= 90◦

(
1− 2

n

)
.

The angles of the n-gon consist of two base angles, so each angle of the n-gon is

180◦
(
1− 2

n

)
.

We may canonically inscribe a regular polygon with n edges in the unit circle of
the cartesian plane; its set of vertices is

{(cos α, sinα) ∈ R2 | α =
2πk

n
for k = 0, 1, . . . , n− 1}.

This is a convenient way for us to view a regular polygon: for example, the length of
one side is the distance from (1, 0) to (cos α, sinα), where α = 2π

n . By the distance
formula,

length(edge) =
√

(cos α− 1)2 + (sinα− 0)2

=
√

cos2 α + sin2 α + 1− 2 cos α

=
√

2− 2 cos α.

The ancient Greeks, however, had no coordinate system; they attempted to con-
struct regular polygons using straight-edge and compass.

If a line segment of length r is given, we see that constructibility of a regular
n-gon is equivalent to the constructibility of the real number r cos 360◦

n . We reserve
the right to use this existence criterion later, but we begin with actual constructions.
All of our constructions proceed from a line segment of length r, and are inscribed
in a circle of radius r.

Let O and A be given point with |OA| = r. If we can construct a point Z such
to ∠AOZ = 360◦

n , then we can complete the construction of the other vertices by
intersecting circles centered at a previously constructed vertex of radius |AZ| with
circle O −A. Thus, it suffices to construct such a point Z.
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Proposition 15. A regular triangle is constructible from {O,A}.

Proof. We are given O and A.
(a) Let B be the point of intersection of line OA and circle O−A which is not

A.
(b) Let C be the midpoint of OB.
(c) Let Z be a point of intersection of the line through C which is perpendicular

to line OA and circle O −A such that ∠AOZ ≤ 180◦.
Now ∠AOZ = 120◦. �

Proposition 16. A square is constructible from {O,A}.

Proof. We are given O and A.
(a) Let Z be the point of intersection of the line through O which is perpen-

dicular to line OA and circle O −A such that ∠AOZ ≤ 180◦.
Now ∠AOZ = 90◦. �

Proposition 17. If a regular n-gon is constructible, then so is a regular 2n-gon.

Construction. We are given O and A.
(a) Let B be a point on the circle O −A such that ∠AOB = 360◦

n .
(b) Let C be the midpoint of AB.
(c) Let Z be the intersection of line OC and circle O − A such that Z lies on

AB.
Now ∠AOZ = 360◦

2n . �

Thus we may construct regular triangles, quadrilaterals, and hexagons. We
would like to know if a regular pentagon is constructible. Investigating this brings
us to the world of the golden ratio.
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12. Exercises

For each construction, provide a drawing produced with an actual straight-edge
and compass, together with a list of steps sufficient to reproduce the drawing (as in
the propositions of the text). If you apply the propositions to construct a midpoint
or perpendicular, use a marked ruler or protractor to obtain a more accurate picture.

Exercise 1. For each subset Q of a plane P , find all points that are immediately
constructible from Q.

(a) Q consists of two points
(b) Q consists of the vertices of an equilateral triangle
(c) Q consists of the vertices of an isosceles triangle

Exercise 2. Reproduce the drawings which correspond to the construction instruc-
tions for the following propositions.

(a) Proposition 1 (midpoints)
(b) Proposition 3 (perpendiculars)
(c) Proposition 5 (transference of distance)
(d) Proposition 10 (products of constructible lengths)
(e) Proposition 11 (quotients of constructible lengths)
(f) Proposition 12 (square roots of constructible lengths)
(g) Proposition 13 (quadrature of a rectangle)
(h) Proposition 14 (quadrature of a triangle)
(i) Proposition 15 (quadrature of a lune)

Exercise 3. Given circle A−B, construct an equilateral triangle inscribed in the
circle with one vertex at B.

Exercise 4. Given circle A−B, construct a regular hexagon inscribed in the circle
with one vertex at B.

Exercise 5. Given three noncollinear points, construct the center of the unique
circle which contains the three points.

Exercise 6. Given two points, construct a line segment of length
√

3.

Exercise 7. Given two points, construct a line segment of length
√

2.

Exercise 8. Given two points, construct an angle of 45◦.

Exercise 9. Given two points, construct an angle of 75◦.

Exercise 10. Given a circle, construct a concentric circle with quadruple the area.

Exercise 11. Given a circle, construct a concentric circle with triple the area.

Exercise 12. Given a circle, construct a concentric circle with double the area.
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