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Abstract. We discuss the relationships between the Golden Ratio, Con-
structibility, regular polygons, and regular solids.

1. The Golden Section

Let A and B be points in a plane. A section of AB is a point C in the interior of
AB. Consider the case where |AC| ≥ |CB|; here are various ratios of the lengths
of the segments that can be explored, for example |AB|

|AC| and |AC|
|BC| .

A golden section of AB is section C of AB which satisfies
|AB|
|AC|

=
|AC|
|BC|

.

In this case, the common value of these fractions is known as the golden ratio; this
clearly does not depend on the length of AB. Thus the golden ratio is a specific,
well-defined number which we denote by the Greek letter ϕ.

Let x = |AB|, y = |AC|, and z = |CB|. In the case of a golden section, x
y = y

z ,
so that xz = y2. Moreover, x = y + z, and substituting this into the previous
equation and rearranging, we obtain

y2 − zy − z2 = 0.

Then the quadratic formula gives

y =
z ±

√
z2 + 4z2

2
= z

1±
√

5
2

.

Since
√

5 > 1 and y cannot be negative, one of these solutions is spurious. In the
ratio y

z , the z’s cancel and we obtain

ϕ =
1 +

√
5

2
.

What percentage of a given line segment is a golden section?

y

x
=

1
φ

=
2√

5 + 1
=

2(
√

5− 1)
5− 1

=
√

5− 1
2

≈ 0.62;

also,
z

x
=

x− y

x
= 1− y

x
= 1−

√
5− 1
2

=
3−

√
5

2
≈ 0.38.
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2. Recreational Appearances of the Golden Ratio

We see that the golden ratio is the positive solution to the polynomial equation
x2 − x− 1. In particular,

ϕ2 = ϕ + 1.

Moreover, dividing this equation by ϕ and subtracting 1 from both sides yields
1
ϕ

= ϕ− 1.

So here we have a number whose square is obtained by adding 1, and whose inverse
is obtained by subtracting 1.

Consider the continued square root√
1 +

√
1 +

√
1 + . . ..

Assuming that this pattern is meaningful and represents a number, let x be that

number. Then clearly x > 0. Squaring x =
√

1 +
√

1 +
√

1 + . . . yields

x2 = 1 +
√

1 +
√

1 + . . . = 1 + x.

Thus x satisfies x2 − x− 1 = 0, so x = ϕ.
Consider the continued fraction

1 +
1

1 + 1
1+ 1

1+...

.

Again assume that this pattern represents some number x; we see that

x = 1 +
1

1 + 1
1+ 1

1+...

= 1 +
1
x

.

Multiplying both sides by x gives x2 = x + 1. Thus again we see that x = ϕ.
Let’s attempt to make this example more precise by restating it using the lan-

guage of sequences. We wish to construct a (hopefully convergent) sequence (an)n∈N
such that each an is a fraction representing an approximation of the above contin-
ued fraction, with increasing accuracy, so that the limit would be the inescapable
meaning of the above continued fraction. Let’s begin with 1 + 1

2 , and at each stage
replace 2 with 1 + 1

2 . We obtain

a1 = 1 +
1
2

=
3
2

a2 = 1 +
1

1 + 1
2

=
5
3

a3 = 1 +
1

1 + 1
1+ 1

2

=
8
5

a4 = 1 +
1

1 + 1
1+ 1

1+ 1
2

=
13
8

and so forth. Can you guess the value of a5? Does this relate to anything else you
have previously seen?



3

3. Construction of the Golden Section

We now describe how to construct a golden section of a given line segment. The
idea is to construct a right triangle such that one leg is twice as long as the other,
so that by the Pythagorean theorem, the hypotenuse will contain a square root of
5.

Proposition 1. A golden section is constructible.

Construction. We are given line segment AB; we construct a point Z between A

and B such that |AB|
|AZ| = |AZ|

|ZB| , or equivalently, such that |AZ| =
√

5−1
2 .

(a) Let D be the point of intersection of line AB and circle A−B which is not
B.

(b) Let E be the midpoint of DA.
(c) Let F be the point of intersection of circle A − B and the line through A

perpendicular to A.
(d) Let Z be the point of intersection of line AB and circle E − F which lies

on AB.
To see that this succeeds, scale our situation so that |AB| = 1. Then |DA| = 1,
so |EA| = 1

2 . Also, |FA| = 1, so by the Pythagorean Theorem, |EF | = |EZ| =√
12 + 1

4 =
√

5
2 . Thus |AZ| = |EZ| − |EA| =

√
5−1
2 . �

4. The Golden Rectangle

Consider a rectangle ABDC such that sides AB and CD are the longer sides,
with length x, and that sides AC and BD are shorter, with length y. Let E and
F lie on AB and CD, respectively, so that AEFC is a square. We call rectangle
ABDC a golden rectangle if rectangle ABDC is similar to rectangle FEBD.

Suppose that rectangle ABCD is golden, and let z = |EB|; then x = y + z. By
similarity, we have x

y = y
z , which leads to y2 − zy − z2 = 0. We see that E and

F cut AB and BD in a golden section, and x
y = ϕ. Thus a golden rectangle is

constructible as a rectangle build on a golden section.

Proposition 2. A golden rectangle is constructible.

Construction. We are given point A and B which form one side of the rectangle.
(a) Let C be a golden section of AB, with longer side AC.
(b) Let D be the point of intersection of circle A − C and the line through A

which is perpendicular to AB.
(c) Let E be the point of intersection of the line through B which is perpen-

dicular to B, and the line through D which is parallel to AB.
Then ABED is a golden rectangle. �
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5. The Golden Triangle

Consider an isosceles triangle 4ABC, where ∠ABC = ∠ACB. Let D be the
point of intersection of line AC and a bisector of angle ∠ABC. We call 4ABC a
golden triangle if 4ABC is similar to 4BDC.

Suppose that 4ABC is golden, and let x = |AB| = |AC| and y = |BC|. Then
4BDC is isosceles, and |BD| = |BC| = y. Also ∠BAC = ∠ABD, so 4DAB is
also an isosceles triangle, and |AD| = |BD| = y. Let z = |DC|; then x = y + z. By
similarity, we have x

y = y
z ; therefore, as before, x

y = ϕ.
We may compute the angles of a golden triangle as follows. Let α = ∠BAC and

β = ∠ABC = ∠ACB, so that β = 2α. Then 5α = 180◦, so α = 36◦ and β = 72◦.
This allows us to compute cos 72◦; construct a right triangle 4AEB by letting

E be the midpoint of BC. Then |BE| = y
2 , so

cos β =
y

2x
=

1
2ϕ

.

Since 1
ϕ = ϕ− 1, conclude that

cos 72◦ =
−1 +

√
5

4
.

This fact will help us in the construction of a golden triangle.

Proposition 3. A golden triangle is constructible.

Construction. We are given points A and D; we construct points B and C so that
4ABC is golden, with base AB.

(a) Let B be a golden section of AD, we longer side AB.
(b) Let C be the point of intersection of the circle A−D and the line through

B which is perpendicular to AD.
�
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6. Construction of a Regular Pentagon

We are given two points O and A, and we wish to construct a regular pentagon
inscribed in the circle O − A such that A is one of the vertices. If Z is a vertex
adjacent to A, then ∠AOZ = 360◦

5 = 72◦. Thus if we can construct on OA a section
Y such that |OY | = cos 72◦ = −1+

√
5

4 , we will be well on our way to construction of
the regular pentagon. We have seen that this is possible; we repeat the construction
here.

Proposition 4. A regular pentagon is constructible.

Construction. We are given point O and A with |OA| = r. For simplicity and
without loss of generality, assume that r = 1.

(a) Let B be the point of intersection of line OA and circle O−A which is not
A.

(b) Let C be the midpoint of BO.
(c) Let D be a point of intersection of the line through O which is perpendicular

to OA, and the circle O −A.
(d) Let E be the point of intersection of line OA and circle C −D.
(e) Let F be the midpoint of OE.
(f) Let Z be the point of intersection of circle O − A and the line through F

which is perpendicular to OA.
Then ∠AOZ = 72◦, so that AZ is the side of a regular pentagon inscribed in circle
O −A. The other sides are now attainable. �
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7. The Golden Pentagram

The diagonals of a regular pentagon are the line segments between non-adjacent
edges. There are five such diagonals; there union is known as the golden pentagram.
This star-shaped figure was used as the logo of the Pythagorean brotherhood.

Let A, B, C, D, and E be the vertices of a regular pentagon, labeled in coun-
terclockwise order. Label the points of intersection of the diagonals as follows:
F ∈ AC ∩BE, G ∈ BD ∩ CA, H ∈ CE ∩DB, I ∈ DA ∩ EC, and J ∈ EB ∩AD.

We wish to show that 4ACD is a golden triangle, and that polygon FGHIJ is
another regular pentagon.

Let α = ∠CAD, β = ∠ACD, γ = ∠BAC, and δ = ∠BAE.
By the formula for the angles of a regular polygon, we have

δ = 180◦(1− 2
n

) = 108◦.

Since pentagon ABCDE is regular, the Side-Angle-Side Theorem implies that

4ABC ∼= 4BCD ∼= 4CDE ∼= 4DEA ∼= 4EAB,

where the symbol ∼= means “is congruent to”; moreover, these are all isosceles
triangles. Thus γ = ∠ABE. This shows that 4FAB is similar to 4ABE, which
is isosceles; thus ∠AFB = δ, so 2γ + δ = 180◦, which gives

γ =
180◦ − δ

2
= 36◦.

Similarly, we have γ = ∠DAE, so ∠BAE = δ = 2γ + α, so

α = δ − 2γ = γ = 36◦.

Now AC = AD because4BAC ∼= 4EAD, so4ACD is isosceles. Thus α+2β =
180◦, so

β =
180◦ − α

2
= 72◦.

Thus 4CAD is a golden triangle.
Similarly, one finds other golden triangles in this diagram; we see that

4ACD ∼= 4BDC ∼= 4CEA ∼= 4DAB ∼= 4EBC.

We also see that

4ABG ∼= 4BCH ∼= 4CDI ∼= 4DEJ ∼= 4EAF,

and
4AFJ ∼= 4BGF ∼= 4CHG ∼= 4DIH ∼= 4EJI

are sets of congruent golden triangles. From this, polygon FGHIJ is a regular
pentagon.
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8. Incommensurability

Let A, B, C, and D be points in a plane. We say that AB and CD are com-
mensurable if there exists a line segment EF and positive integers m and n such
that

|AB| = mEF and |CD| = nEF ;

thus |AB|
|CD| = m

n . The Pythagoreans assumed in their proofs that any two line
segments as commensurable. Suppose that CD = 1; then this assumption amounts
to

|AB| = m

n
∈ Q,

that is, the length of any line segment is a rational number.
Thus for the Pythagoreans, it must have been quite a shock to realize that

not all constructible numbers are rational. This may have been discovered during
contemplation of the golden pentagram, and follows.

Continue notation from the previous section. Since 4ACD is golden, we have
|AC|/|CD| = ϕ. Now |CD| = |CI| and 4CDI is golden, so |CD|/|DI| = ϕ. But
then 4DIH is golden, so |IH|/|DH| = ϕ. At this point, we notice that HI is
an edge of the regular pentagon FGHIJ , and the diagonals of this pentagon have
length |DH|. If we inscribe another pentagram in this pentagon, we see that this
chain of equalities will continue forever.

Now if all line segments are commensurable, there exists a line segment MN
such that |AC| and |CD| are in integer multiples of |MN |. Now |AI| = |CD|, so
|AI| is also an integer multiple of |MN |. This shows that

|DI| = |AD| − |AI|
is also a multiple of |mn|. Repeating this argument shows that |HI| is an integer
multiple of |MN |, and this continues into the smaller pentagon.

We can continue this process, getting smaller and smaller pentagons with smaller
and smaller edges, but each edge will be an integral multiple of some line segment
MN of fixed length. Perhaps it was this contradiction which first demonstrated
the existence of irrational numbers.
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9. Regular Solids

Recall that a polygon is a plane figure bounded by line segments. A plane region
is convex if, given any to points in the interior, the line segment between these
points is contained in the interior.

Recall that a polyhedron is a space figure bounded by polygons. The bounding
polygons are called faces, the bounding line segments of these polygons are called
edges, and the endpoints of these line segments are called vertices. Again, a space
region is convex if, given any to points in the interior, the line segment between
these points is contained in the interior.

A polyhedron is regular if
(a) it is convex;
(b) its faces of congruent regular polygons;
(c) its vertices have the same number of attached edges.

Regular polyhedra are also known as regular solids, or as Platonic solids. We
wish to classify the regular solids.

First, we decide what the possibilities are, and then we describe the construction
of each possibility.

The key to deciding the possibilities is to realize that if multiple faces come
together are a vertex, there must be at least three faces, and the sum of the angles
which come together must be less than 360◦.

The following chart indicates the possibilities. The first column represents the
number of sides of the polygonal faces. By the formula angle = 180◦(1 − 2

n ), we
compute the internal angles of a regular n-gon. Then we see how many faces can
come together are a vertex.

Sides Angle/Vertex Faces/Vertex Total Angle Possible?
3 60◦ 3 180◦ Yes
3 60◦ 4 240◦ Yes
3 60◦ 5 300◦ Yes
3 60◦ ≥ 6 ≥ 360◦ No
4 90◦ 3 270◦ Yes
4 90◦ ≥ 4 ≥ 360◦ No
5 108◦ 3 324◦ Yes
5 108◦ ≥ 4 ≥ 432◦ No
≥ 6 ≥ 120◦ ≥ 3 ≥ 360◦ No

So we have five possibilities; there are at most five regular solids (up to similar-
ity). Next we demonstrate that each of the five possibilities exist.
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10. Construction of the Regular Solids

We wish to construct each regular solid using Euclidean tools (even through
we analyze the construction using analytic geometry). It suffices to construct the
vertices in R3 from the set Q = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3.

First start with 3 squares coming together at a vertex. This will form a a solid
with six sides which we may call a Hexahedron, but is usually known as a cube, The
cube is easily constructed from the set Q; for example, (1, 1, 0) is the intersection
of a line on the xy-plane perpendicular to the x-axis through (1, 0, 0), and a line
on the xy-plane perpendicular to the y-axis through (0, 1, 0). The complete vertex
set is

Cube = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Next construct a regular solid with 3 equilateral triangles coming together at
each vertex; this solid will have 4 faces, and is thus known as a regular tetrahedron.
We see tetrahedra embedded in the cube by drawing line segments diagonally across
the faces; this will create two sets of vertices of regular tetrahedra. One of these
sets is

Tetrahedron = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

This will produce regular faces if all of the edges have the same length. Computation
shows that indeed, the edges have length

√
2.

Now we wish to produce a regular solid with 4 equilateral triangles coming
together at each vertex; this solid will have 8 faces, and so it is known as a regular
octahedron. To construct a regular octahedron, take its vertices to be the set of
centers of the faces of the cube; this will give 6 vertices; take the cube to have sides
of length two to simplify the situation, and find that

Octahedron = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

The lengths of the edges of this solid are also
√

2.
We note that if we take the centers of the faces of an octahedron as vertices for

a solid, we obtain a cube; that is, the 8 vertices of the cube correspond to the 8
faces of the octahedron, just as the 6 vertices of the octahedron correspond to the
6 faces of the cube. We say that the cube and the octahedron are dual polyhedra.
Note that the dual of the tetrahedron is another tetrahedron; it is self-dual.

Next we construct a solid with five triangular faces coming together at each
vertex, which has twenty faces and as such is known as an icosahedron. To do this,
embed three golden rectangles with sides of length 1 and ϕ in R3 on the coordinate
planes so that the center of each rectangle is the origin.

Let α = 1
2 and let β = 1+

√
5

4 = ϕ
2 . Set

Icosahedron = {(0,±α,±β), (±α,±β, 0), (±β, 0,±α)},

this set contains 12 points, and produces a solid with 20 triangular faces. For
example, one of the faces has vertices A = (β, α, 0), B = (β,−α, 0), and C =
(α, 0, β)}. That |AB| = 1 is clear, and that |AC| = |BC| is also clear. To see that
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this is an equilateral triangle, we compute

|AC| =
√

(α− β)2 + (0− α)2 + (β − 0)2

=
√

2α2 + 2β2 − 2αβ

=

√
1
2

+
ϕ2

2
− ϕ

2

=

√
1 + (ϕ + 1)− ϕ

2
= 1.

Thus indeed, we have constructed a regular triangle, so we have a regular icosahe-
dron.

Finally, we consider the case of three regular pentagons coming together at a
vertex; this produces a polyhedron with twelve faces known as a dodecahedron.
We can obtain this as the dual of the icosahedron; that is, let the vertex set be the
set of centers of the faces of a regular icosahedron.

We investigate this vertex set. The center of an equilateral triangle in space
is obtained by averaging the coordinates of the vertices; that is, the center of the
equilateral triangle 4A1A2A3, where Ai = (xi, yi, zi), is(x1 + x2 + x3

3
,
y1 + y2 + y3

3
,
z1 + z2 + z3

3

)
.

In our case, we obtain two types of triangles: those who share a side with one of
the golden rectangles, and those whose vertices come from three different golden
rectangles. There are twelve of the former and eight of the latter.

The first twelve are easy to see: there are six sides of length 1 on the rectangles,
and two triangles sharing each such side. The eight others are obtained by notic-
ing that only certain combinations are possible. Here is a complete list, with all
coordinates multiplied by three, γ = α + 2β, and s1, s2, s3 ∈ {±1}.

Dodecahedron = {(±γ, 0,±β), (±β,±γ, 0), (0,±β,±γ),

(s1β, s2α, 0), (0, s2β, s3α), (s1α, 0, s3β)}.
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11. Exercises

Exercise 1. Consider the sequence (an) of real numbers defined by

a1 = 1 and an+1 =
√

1 + an.

Assuming that (an) converges, find limn→∞ an. To prove that (an) converges, show
that (an) is bounded and increasing.

Exercise 2. Consider the sequence (an) of real numbers defined by

a1 = 1 and an+1 =
1

1 + an
.

Assuming that (an) converges, find limn→∞ an.

Exercise 3. Consider a pyramid with four triangular sides and a square base. Let
h be the height of the pyramid. Let s be the height of a triangular side, let a be
half the length of its base, so that the area of the triangular side is sa. Show that
if h2 = sa, then the slope of the pyramid, s

a , is equal to the Golden Ratio.

Exercise 4. Consider the regular solids inscribed in a unit sphere.
(a) Find the lengths of the line segments for each solid.
(b) Find the area of a face of each solid.
(c) Find the angle between the faces of each solid.
(d) Find the radius of the inscribed sphere of each solid.
(e) Find the volume of each solid.
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