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1. Induction and the Well-Ordering Principle

First we establish a few properties of the integers which we need in order
to develop the Euclidean algorithm. We start with the natural numbers N =
{1, 2, 3, . . . }, and accept the Peano Axioms as a characterization of N. The pri-
mary axiom is stated below.

Proposition 1. Peano’s Axiom
Let S ⊂ N. If

(a) 1 ∈ S, and
(b) n ∈ S ⇒ n + 1 ∈ S,

then S = N.

From this, the Well-Ordering Principle follows.

Proposition 2. Well-Ordering Principle
Let X ⊂ N be a nonempty set of positive integers. Then X contains a smallest,
element; that is, there exists a ∈ X such that for every x ∈ X, a ≤ x.

Proof. Let X ⊂ N and assume that X has no smallest element; we show that
X = ∅. Let

S = {n ∈ N | n < x for every x ∈ X}.
Clearly S ∩X = ∅; if we show that S = N, then X = ∅.

Since 1 is less than every natural number, 1 is less than every natural number
in X. Thus 1 ∈ X.

Suppose that n ∈ S. Then n < x for every x ∈ X, so n + 1 ≤ x for every x ∈ X.
If n + 1 were in X, it would be the smallest element of X; since X has no smallest
element, n + 1 /∈ x; thus n + 1 6= x for every x ∈ X, whence n + 1 < x for every
x ∈ X. It follows that n + 1 ∈ S, and by Peano’s Axiom, S = N. �
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2. Division Algorithm

Proposition 3. Division Algorithm for Integers
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < m.

Proof. Let X = {z ∈ Z | z = n−km for some k ∈ Z}. The subset of X consisting of
nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n− qm for some q ∈ Z, so n = qm + r. We
know 0 ≤ r. Also, r < m, for otherwise, r −m is positive, less than r, and in X.

For uniqueness, assume n = q1m + r1 and n = q2m + r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1 − q2) = r1 − r2; also −m < r1 − r2 < m.
Since m | (r1−r2), we must have r1−r2 = 0. Thus r1 = r2, which forces q1 = q2. �

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Exercise 1. Show that the relation | is a partial order on the set of positive integers.

Definition 2. Let m,n ∈ Z. A greatest common divisor of m and n, denoted
gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) If e | m and e | n, then e | d.

Proposition 4. Let m,n ∈ Z. Then there exists a unique d ∈ Z such that d =
gcd(m,n), and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x, y ∈ Z.

Now m = qd + r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm + yn) + r,
so r = (1− qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then d =
xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some i, j ∈ Z.
Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since d and e are
both positive, we must have i = 1. Thus d = e. �

Exercise 2. Let m,n ∈ Z and suppose that there exist integers x, y ∈ Z such that
xm + yn = 1. Show that gcd(m,n) = 1.

Exercise 3. Let m,n ∈ N and suppose that m | n. Show that gcd(m,n) = m.
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3. Euclidean Algorithm

There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Proposition 5. Let m,n ∈ Z, and let q, r ∈ Z be the unique integers such that
n = qm + r and 0 ≤ r < m. Then gcd(n, m) = gcd(m, r).

Proof. Let d1 = gcd(n, m) and d2 = gcd(m, r). Since “divides” is a partial order
on the positive integers, it suffices to show that d1 | d2 and d2 | d1.

By definition of common divisor, we have integers w, x, y, z ∈ Z such that d1w =
n, d1x = m, d2y = m, and d2z = r.

Then d1w = qd1x + r, so r = d1(w − qx), and d1 | r. Also d1 | m, so d1 | d2 by
definition of gcd.

On the other hand, n = qd2y + d2z = d2(qy + z), so d2 | n. Also d2 | m, so
d2 | d1 by definition of gcd. �

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where 0 ≤ r < m.
Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes r0 = r1q1 + r2.
Repeat the process by writing m = rq2+r3, which is the same as r1 = r2q2+r3, with
0 ≤ r3 < r2. Continue in this manner, so in the ith stage, we have ri−1 = riqi+ri+1,
with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition and
induction,

gcd(n, m) = gcd(m, r) = · · · = gcd(rk−1, rk).
But rk−1 = rkqk + rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. There-
fore gcd(n, m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.
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In order to find the unique integers x and y such that xm + yn = gcd(m,n), use
the equations derived above and work backward. Start with rk = rk−2− rk−1qk−1.
Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1) = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the gcd:
• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).
Let’s briefly analyze the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger

number. Always attach x to m and y to n, to get d = xm+yn, where d = gcd(m,n).
Now at the very end, the remainder is zero, so

n = mq + 0.

Thus m = gcd(n, m), that is, d = m. Writing d as a linear combination at this
stage, we have

d = (1)m + (0)nm

so x = 1 and y = 0.
Now we want to lift this to a previous equation of the form n = mq+r. Assume,

by way of induction, that we have already lifted it to the next equation; that is,
we have n′ = m′q′ + r′, where n′ = m, m′ = r, and we can express d as a linear
combination of m′ and n′, like this:

d = x′m′ + y′n′.

Then d = x′r + y′m. Substitute in r = n−mq to express d as a linear combination
of m and n; you get d = x′(n −mq) + y′m = (y′ − x′q)m + x′n. Set x = y′ − x′q
and y = x′ to obtain d = xm + yn.
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4. Fundamental Theorem of Arithmetic

Definition 3. An integer p ≥ 2, is called prime if

a | p ⇒ a = 1 or a = p, where a ∈ N.

An integer n ≥ 2 is called composite if it is not prime.

Proposition 6. Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab ⇒ p | a or p | b, where a, b ∈ N.

Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb = b.
Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab ⇒ p | a or p | b, suppose that a | p. Then there exists k ∈ N
such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some l ∈ N,
in which case alk = a and lk = 1, which implies that k = 1 so a = p. If p | k, then
k = pm for some m ∈ N, and apm = p, so am = 1 which implies that a = 1. �

Remark 1 (Euclid’s Statement). A composite number is measured by some prime.

Euclid’s Proof. Infinite regression, similar to its use in the Euclidean algorithm. �

Proposition 7. Let n be a composite number. Then there exists a prime p such
that p | n.

Modern Proof. Since n is composite, there exist a, b ∈ N such that 1 < a, b < n and
n = ab. By induction, there exists a prime p such that p | b. Thus p | n. �

Remark 2 (Euclid’s Statement). If a number be the least that is measured by
prime numbers, it will not be measured by any other prime number except those
originally measuring it.

Proposition 8 (Fundamental Theorem of Arithmetic). Let n ∈ Z, n ≥ 2. Then
there exist unique prime numbers p1 < · · · < pr and positive integers a1, . . . , ar

such that

n =
r∏

i=1

pai
i .

Proof. Let
X = {m ∈ Z | m ≥ 2 and m | n}

Let p = min(X). Clearly, p is prime. If n = p, we are done. Otherwise, n = pk
for some k ∈ Z. By strong induction, there exist q1 < · · · < qs and b1, . . . , bs such
that k =

∏s
i=1 qbi

i . If p = q1, set pi = qi, a1 = b1 + 1, and ai = bi for i > 1, and
r = s; otherwise set p1 = p, pi+1 = qi, a1 = 1, and ai+1 = bi, and r = s + 1. Now
n = u

∏r
i=1 pai

i . �
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5. Infinitude of Primes

Remark 3. Let A be a set. We say that A infinite if there exists an injective
function N → A. We say that A is finite if there exists a surjective function
{1, . . . , n} → A, for some n ∈ N.

Remark 4 (Euclid’s Statement). The prime numbers are more than any assigned
multitude of prime numbers.

Proposition 9. Let P = {n ∈ Z | n is prime}. Then P is infinite.

Proof. Suppose that P is finite; then P = {p1, . . . , pn} for some primes pi. Set

n = 1 +
n∏

i=1

pi.

Since n > pi for all i, n cannot be prime; thus n is composite. Therefore there
exists p ∈ P such that p | n. This implies that p | 1, a contradiction. �

Department of Mathematics and CSci, Southern Arkansas University

E-mail address: plbailey@saumag.edu


