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1. INDUCTION AND THE WELL-ORDERING PRINCIPLE

First we establish a few properties of the integers which we need in order
to develop the Euclidean algorithm. We start with the natural numbers N =
{1,2,3,...}, and accept the Peano Axioms as a characterization of N. The pri-
mary axiom is stated below.

Proposition 1. Peano’s Axiom
Let S C N. If

(a) 1€ S, and

b)) neS=n+1€es,
then S = N.

From this, the Well-Ordering Principle follows.

Proposition 2. Well-Ordering Principle
Let X C N be a nonempty set of positive integers. Then X contains a smallest,
element; that is, there exists a € X such that for every x € X, a < .

Proof. Let X C N and assume that X has no smallest element; we show that
X =o. Let
S={neN|n<xforevery z € X}.

Clearly S N X = g; if we show that S =N, then X = @.

Since 1 is less than every natural number, 1 is less than every natural number
in X. Thus 1 € X.

Suppose that n € S. Then n < x for every x € X, son+1 < x for every z € X.
If n+ 1 were in X, it would be the smallest element of X; since X has no smallest
element, n + 1 ¢ x; thus n + 1 # z for every € X, whence n + 1 < x for every
x € X. It follows that n + 1 € S, and by Peano’s Axiom, S = N. O
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2. DIVISION ALGORITHM

Proposition 3. Division Algorithm for Integers
Let m,n € Z. There exist unique integers q,r € Z such that

n=qm-+r and 0<r<m.

Proof. Let X = {z € Z| z = n—km for some k € Z}. The subset of X consisting of
nonnegative integers is a subset of N, and by the Well-Ordering Principle, contains
a smallest member, say r. That is, r = n — gm for some q € Z, so n = gqm +r. We
know 0 < r. Also, r < m, for otherwise, r — m is positive, less than r, and in X.
For uniqueness, assume n = ¢ym + r1 and n = gom + ro, where q1,71,q2,72 € Z,
0<r <m,and 0 <ry <m. Then m(q1 — q2) =r1 —7r9; also —m < r; —ry < M.
Since m | (r1—72), we must have r1 —ry = 0. Thus r; = ro, which forces ¢; = g2. O

Definition 1. Let m,n € Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Exercise 1. Show that the relation | is a partial order on the set of positive integers.

Definition 2. Let m,n € Z. A greatest common divisor of m and n, denoted
ged(m, n), is a positive integer d such that

(1) d| mand d | n;

(2) If e | m and e | n, then e | d.

Proposition 4. Let m,n € Z. Then there exists a unique d € Z such that d =
ged(m,n), and there exist integers x,y € Z such that

d=xm + yn.

Proof. Let X ={z € Z | 2 = am + yn for some z,y € Z}. Then the subset of X
consisting of positive integers contains a smallest member, say d, where d = xm+yn
for some x,y € Z.

Now m = ¢gd + r for some ¢,r € Z with 0 < r < d. Then m = g(zm + yn) + r,
sor = (1—gqgzm)m—+ (qy)n € X. Since r < d and d is the smallest positive integer
in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k,l € Z. Then d =
xzke + yle = (zk + yl)e. Therefore e | d. This shows that d = ged(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies the
conditions of a ged. Then d | e and e | d. Thus d = ie and e = jd for some i, j € Z.
Then d = ijd, so ij = 1. Since ¢ and j are integers, then ¢ = £1. Since d and e are
both positive, we must have i = 1. Thus d = e. (I

Exercise 2. Let m,n € Z and suppose that there exist integers =,y € Z such that
am + yn = 1. Show that ged(m,n) = 1.

Exercise 3. Let m,n € N and suppose that m | n. Show that ged(m,n) = m.



3. EUCLIDEAN ALGORITHM

There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Proposition 5. Let m,n € Z, and let q,r € Z be the unique integers such that
n=qgm+r and 0 <r <m. Then ged(n,m) = ged(m,r).

Proof. Let di = ged(n,m) and do = ged(m,r). Since “divides” is a partial order
on the positive integers, it suffices to show that d; | d2 and ds | d;.

By definition of common divisor, we have integers w, z,y, z € Z such that dyw =
n, dix =m, doy = m, and doz = 7.

Then dyw = gdix 4+ r, so r = di(w — qx), and dy | r. Also dy | m, so dy | da by
definition of gcd.

On the other hand, n = gday + doz = da(qy + 2), so da | n. Also ds | m, so
dy | dy by definition of ged. O

Now let m,n € Z be arbitrary integers, and write n = mq+r, where 0 < r < m.
Let rg = n, r1 = m, ro = r, and ¢ = ¢. Then the equation becomes rg = r1q; +72.
Repeat the process by writing m = rgo+r3, which is the same as r; = roga+r3, with
0 < 75 < 7. Continue in this manner, so in the 7t" stage, we have r;_1 = rjq;+7i+1,
with 0 < 7;41 < ;. Since r; keeps getting smaller, it must eventually reach zero.

Let k be the smallest integer such that 7,41 = 0. By the above proposition and
induction,

ged(n,m) = ged(m,r) = -+ = ged(rg—1,7k).
But 7,—1 = rgqk + "k+1 = TkQr- Thus rg | 7k—1, so ged(rg—1,7%) = 7. There-
fore ged(n,m) = ri. This process for finding the ged is known as the Fuclidean
Algorithm.



In order to find the unique integers = and y such that xm 4 yn = ged(m, n), use
the equations derived above and work backward. Start with rp = 7o — re_1qk_1-
Substitute the previous equation ry_1 = rg_3 — Tr_2qr_o into this one to obtain

Th = Th—2 — (Th—3 — Th—2Qk—2)qk—1) = Th—2(qr—2qx—1 + 1) — Tk _3qx—1-
Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the ged:
210 = 165 - 1 4 45;
165 = 45 - 3 + 30;
45 =30-1+ 15;
e 30=15-240.
Therefore, ged(210,165) = 15. Now work backwards to find the coefficients:
e 15=45-30-1;
e 15=45— (165 —45-3) =45-4 — 165;
e 15=(210—-165)-4 — 165 =210-4 — 165 - 5.
Therefore, 15 = 210 - 4 + 165 - (—5).
Let’s briefly analyze the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger
number. Always attach z to m and y to n, to get d = xm+yn, where d = ged(m, n).
Now at the very end, the remainder is zero, so

n =mq+ 0.

Thus m = ged(n,m), that is, d = m. Writing d as a linear combination at this
stage, we have

d= (1)m+ (0)nm
sox=1andy=0.

Now we want to lift this to a previous equation of the form n = mq+r. Assume,
by way of induction, that we have already lifted it to the next equation; that is,
we have n’ = m/q’ +r’, where n’ = m, m’ = r, and we can express d as a linear
combination of m’ and n’, like this:

d=2a2'm' +y'n.
Then d = 2'r + 3y'm. Substitute in r = n — mgq to express d as a linear combination
of m and n; you get d = z'(n —mq) + y'm = (v — 2’g)m + 2'n. Set x =y’ — 2'q
and y = 2’ to obtain d = xm + yn.



4. FUNDAMENTAL THEOREM OF ARITHMETIC

Definition 3. An integer p > 2, is called prime if
a|p=a=1lora=p, wherea€N.

An integer n > 2 is called composite if it is not prime.

Proposition 6. Let p € Z, p > 2. Then p is prime if and only if
plab=pl|aorp|b,  wherea,beN.

Proof.

(=) Given that a | p = a = 1 or a = p, suppose that p | ab. Then there exists
k € N such that kp = ab. Suppose that p does not divide a; then ged(a,p) = 1.
Thus there exist z,y € Z such that za+yp = 1. Multiply by b to get zab+ ypb = b.
Substitute kp for ab to get (zk + yb)p =b. Thus p | b.

(<) Given that p | ab=-p | a or p | b, suppose that a | p. Then there exists k € N
such that ak = p. Sop|ak,sop|aorp|k. If p|a,then pl =a for some ! € N,
in which case alk = a and [k = 1, which implies that k =1 so a = p. If p| k, then
k = pm for some m € N, and apm = p, so am = 1 which implies that a = 1. [

Remark 1 (Euclid’s Statement). A composite number is measured by some prime.
Fuclid’s Proof. Infinite regression, similar to its use in the Euclidean algorithm. [

Proposition 7. Let n be a composite number. Then there exists a prime p such
that p | n.

Modern Proof. Since n is composite, there exist a,b € N such that 1 < a,b < n and
n = ab. By induction, there exists a prime p such that p | b. Thus p | n. |

Remark 2 (Euclid’s Statement). If a number be the least that is measured by
prime numbers, it will not be measured by any other prime number except those
originally measuring it.

Proposition 8 (Fundamental Theorem of Arithmetic). Let n € Z, n > 2. Then
there exist unique prime numbers p1 < --- < p, and positive inlegers ai,...,a,

such that .
n= Hp‘;
i=1

Proof. Let

X={meZ|m>2and m|n}
Let p = min(X). Clearly, p is prime. If n = p, we are done. Otherwise, n = pk
for some k € Z. By strong induction, there exist ¢ < --- < g5 and by, ..., bs such
that k£ = [[7_, qfi. If p=qi, set p =q, a1 =b; +1, and a; = b; for i > 1, and
r = s; otherwise set p1 = p, pi+1 = ¢, a1 = 1, and a;4+1 = b;, and r = s + 1. Now
n=ull_, pJ. O



5. INFINITUDE OF PRIMES

Remark 3. Let A be a set. We say that A infinite if there exists an injective
function N — A. We say that A is finite if there exists a surjective function
{1,...,n} — A, for some n € N.

Remark 4 (Euclid’s Statement). The prime numbers are more than any assigned
multitude of prime numbers.

Proposition 9. Let P = {n € Z | n is prime}. Then P is infinite.
Proof. Suppose that P is finite; then P = {p1,...,p,} for some primes p;. Set

n
i=1

Since n > p; for all i, n cannot be prime; thus n is composite. Therefore there
exists p € P such that p | n. This implies that p | 1, a contradiction. |
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