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Abstract. Sequences play an important role in modern mathematics, and one
of the first to investigate them was Leonardo Fibonacci in the twelfth century

A.D. We investigate the famous sequence which perpetuates his name.

1. Recursively Defined Sequences

Definition 1. Let X be a set. A sequence in X is a function a : N → X. We
normally write an to mean a(n), and the entire function is often denoted by (an)∞n=1,
or simply as (an).

Definition 2. Let (an) be a sequence in R, and let L ∈ R. We say that (an)
converges to L, or that L is the limit of (an), if

for every ε > 0 there exists N ∈ N such that n ≥ N ⇒ |an − L| < ε.

In this case we write lim an = L.

We assume familiarity with the standard properties, and focus on recursively
defined sequences. Suppose that we set a0 = C, a fixed constant value, select a
function f : R → R, and set an+1 = f(an) for every n. This uniquely defines a
sequence (an) of real numbers.

Now it is clear that if we obtain a new sequence (an+1) from (an) by shifting, the
limit (should it exist) does not change: lim an+1 = lim an. If (an) is a recursively
defined sequence such that an+1 = f(an) for some continuous function f , then
lim an+1 = f(lim an), so if L = lim an, we have L = f(L). We use this fact
to analyze recursively defined sequences (accept that the following sequences do
converge; proving this is typically harder than computing the limit of a recursively
defined sequence).

Example 1. Define a sequence (an) by a0 = 1 and an+1 = an

2 . Find lim an.

Solution. The first few terms of the sequence are a0 = 1, a1 = 1
2 , a2 = 1/2

2 = 1
4 ,

a3 = 1/4
2 = 1

8 , and so forth; we see that this sequence could have been given as
an = 1

2n . In fact, if L = lim an, then L = L
2 , so 2L = L, so L = 0. �

Example 2. Define a sequence (an) by a0 = 1 and an+1 = an+1
3 . Find lim an.

Solution. In this case, a0 = 1, a1 = 2
3 , a2 = 5

9 , a3 = 14
27 , a4 = 41

81 , and so forth. We
believe that an = (3n+1)/2

3n ; the sequence certainly seems to be approaching 1
2 . In

fact, with L = lim an, we have L = L+1
3 , so 3L = L + 1, so 2L = 1, and L = 1

2 . �
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Example 3. Define a sequence (an) by a0 = 1 and an+1 =
√

1 + an. Find lim an.

Solution. This sequence formalizes the repeated square root√
1 +

√
1 +

√
1 + . . ..

We have L =
√

1 + L, so L2 = 1 + L, and L2 − L − 1 = 0. Noting the limit must
be positive, the quadratic formula gives  L = 1+

√
5

2 . That is, L is the golden ratio
Φ. The sequence increases to this upper bound. �

Example 4. Define a sequence (an) by a1 = 1 and an+1 = 1 + 1
an

. Find lim an.

Solution. This sequence formalizes the repeated fraction

1 +
1

1 + 1
1+ 1

...

.

Let’s compute the first few terms of this sequence; we will see an interesting pattern.
• a1 = 1
• a2 = 1 + 1

1 = 1+1
1 = 2

• a3 = 1 + 1
2 = 2+1

2 = 3
2

• a4 = 1 + 2
3 = 3+2

3 = 5
3

• a5 = 1 + 3
5 = 5+3

5 = 8
5

• a6 = 1 + 5
8 = 8+5

8 = 13
8

We see that, in each case, we add the numerator and denominator and put it over
the previous numerator.

We compute that if L = lim an, then L = 1+ 1
L , so L2 = L+1, so L2−L−1 = 0,

and L = 1+
√

5
2 . Actually, the sequence jumps back and forth around Φ, with the

even terms less than Φ and the odd terms greater than Φ. �

2. Fibonacci Sequence

Definition 3. Define a sequence (Fn) by setting F1 = 1, F2 = 1, and

Fn+2 = Fn + Fn+1.

Then (Fn) is known as the Fibonacci sequence, after the 12th century mathematician
Fibonacci, who discovered the sequence while investigating the breeding of rabbits.

The first few terms of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, 21, 44, 65, 109, 174, 283, 475, . . .

Define a sequence (an) by a0 = 1 and an = Fn+1
Fn

. Then a1 = 1, a2 = 2, a3 = 3
2 ,

a4 = 5
3 ; look familiar? Now

an+1 =
Fn+2

Fn+1
=

Fn+1 + Fn

Fn+1
= 1 +

1
an

;

so as we have already seen,

lim
Fn+1

Fn
=

1 +
√

5
2

.

The golden ratio is also involved in the following generating function for the Fi-
bonacci sequence:
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Proposition 1.

Fn =
1√
5

((1 +
√

5
2

)n

−
(1−

√
5

2

)n)
.

Solution. The golden ratio is the positive solution to the equation x2 − x− 1 = 0;
the quadratic formula gives the roots as 1±

√
5

2 . Set

Φ =
1 +

√
5

2
and Ψ =

1−
√

5
2

.

then Φ and Ψ satisfy the above equation, which produces these identities:
• Φ + 1 = Φ2;
• Φ− 1 = 1

Φ ;
• Ψ + 1 = Φ2;
• Ψ− 1 = 1

Ψ ;
• Ψ = − 1

Φ = 1− Φ;
• Φ−Ψ =

√
5.

In light of this, what we wish to show can be rewritten as

Fn =
1√
5

(
Φn −Ψn

)
.

We have F1 = 1 and plugging 1 into the above expression produces

1√
5

(
Φ−Ψ

)
=
√

5√
5

= 1;

therefore the formula is true for n = 1.
By strong induction, assume that for n ≥ 3 we have

Fn−2 =
1√
5

(
Φn−2 −Ψn−2

)
;

Fn−1 =
1√
5

(
Φn−1 −Ψn−1

)
,

Then

Fn = Fn−2 + Fn−1

=
1√
5

(
Φn−2 −Ψn−2

)
+

1√
5

(
Φn−1 −Ψn−1

)
=

1√
5

(
(Φn−2 + Φn−1)− (Ψn−2 + Ψn−1)

)
=

1√
5

(
Φn−2(1 + Φ)−Ψn−2(1 + Ψ)

)
=

1√
5

(
Φn−2(Φ2)−Ψn−2(Ψ2)

)
=

1√
5

(
Φn −Ψn

)
.

This completes the proof. �
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3. Cauchy Sequences

We now supply a formal proof that the sequence of ratios of the Fibonacci
numbers is a Cauchy sequence, and so it does in fact converge.

Definition 4. Let (an) be a sequence of real numbers. We say that (an) is a
Cauchy sequence if for every ε > 0 there exists N ∈ N such that

m,n ≥ N ⇒ |am − an| < ε.

The proof of the next theorem may be found in books on real analysis.

Theorem 1. (Cauchy Convergence Criterion)
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proposition 2. Let (an) be a sequence satisfying

|an+1 − an| <
1
2n

for all n ∈ N. Then (an) is a Cauchy sequence.

Lemma 1. Let m,n ∈ N with 2 < m < n. Then
n∑

i=m+1

1
2i

<
1

2m
<

1
m

.

Proof of Lemma. We prove the first inequality by induction on k = n−m. If k = 1,
then our statement reads 1

2m+1 < 1
2m , which is true.

Suppose that our proposition is true for differences of size k − 1. Then
n∑

i=m+2

1
2i

<
1

2m+1
.

Adding 1
2m+1 to both sides gives

n∑
i=m+1

1
2i

<
2

2m+1
=

1
2m

.

For the second inequality, it suffices to show that for m > 2 we have m < 2m.
For m = 3, we have 3 < 4. By induction, m − 1 < 2m−1. Then m < 2m−1 + 1 <
2m−1 + 2m−1 = 2m. �

Proof of Proposition. Let ε > 0 and let N ∈ N be so large that 1
ε < N . Let

m,n > N ; assume that n > m. Then

|an − am| = |an − an−1 + an−1 − an−2 + · · ·+ am+1 − am|
≤ |an − an−1|+ · · ·+ |am+1 − am|

<
1

2n−1
+ · · ·+ 1

2m

<
1

2m−1

<
1

m− 1
≤ 1

N
< ε.

This shows that (an) is a Cauchy sequence. �
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Proposition 3. Define a sequence (an) by

an =
Fn+1

Fn
.

Then (an) is a Cauchy sequence which converges to 1+
√

5
2 .

Proof. To show that (an) is a Cauchy sequence, it suffices to show that

|an+1 − an| <
1

2n−1
.

To do this, we first show that FnFn+1 > 2n−1 for n ≥ 3. For n = 3, we have
F3F4 = 2 · 3 > 4. By induction, assume that Fn−1Fn > 2n−2. Clearly (Fn) is a
nondecreasing sequence, so

FnFn+1 = F 2
n + FnFn−1 ≥ 2FnFn−1 > 2n−1.

Next we show that |FnFn+2 − F 2
n+1| = 1 for n ≥ 1. For n = 1, we have

|F1F3 − F 2
2 | = 2− 1 = 1. By induction, assume that |Fn−1Fn+1 − F 2

n | = 1. Then

|FnFn+2 − F 2
n+1| = |Fn(Fn + Fn+1)− F 2

n+1|
= |F 2

n + FnFn+1 − F 2
n+1|

= |F 2
n − Fn+1(Fn+1 − Fn)|

= |F 2
n − Fn+1Fn−1|

= 1.

Now

|an+1 − an| =
∣∣∣Fn+2

Fn+1
− Fn+1

Fn

∣∣∣
=

∣∣∣Fn+2Fn − F 2
n+1

FnFn+1

∣∣∣
=

∣∣∣ 1
FnFn+1

∣∣∣
<

1
2n−1

.

Since (an) is a Cauchy sequence, it converges; let L = lim(an). Since an is
positive for all n, L ≥ 0. Now

an+1 =
Fn+2

Fn+1
=

Fn + Fn+1

Fn+1
= 1 +

Fn

Fn+1
= 1 +

1
an

.

Taking the limit of both sides of this equation, we have L = 1 + 1
L . Thus

L2 − L− 1 = 0.

The positive solution to this quadratic equation is

L =
1 +

√
5

2
.

�
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Proposition 4. Let b ∈ R, b ≥ 1, and define a sequence (Gn) by G1 = 1, G2 = 1,
and Gn+2 = Gn + bGn+1. Define a sequence (cn) by

cn =
Gn+1

Gn
.

Then (cn) is a Cauchy sequence.

Proof. To show that (cn) is a Cauchy sequence, it suffices to show that

|cn+1 − cn| <
b

2n−1
.

To do this, we first show that GnGn+1 > 2n−1 for n ≥ 3. For n = 3, we have
G3G4 = (b+1)(b2+b+1) > 4. By induction, assume that Gn−1Gn > 2n−2. Clearly
(Gn) is a nondecreasing sequence, so

GnGn+1 = bG2
n + GnGn−1 ≥ G2

n + GnGn−1 ≥ 2GnGn−1 > 2n−1.

Next we show that |GnGn+2 − G2
n+1| = b for n ≥ 1. For n = 1, we have

|G1G3 − G2
2| = b + 1 − 1 = b. By induction, assume that |Gn−1Gn+1 − G2

n| = b.
Then

|GnGn+2 −G2
n+1| = |Gn(Gn + bGn+1)−G2

n+1|
= |G2

n + bGnGn+1 −G2
n+1|

= |G2
n −Gn+1(Gn+1 − bGn)|

= |G2
n −Gn+1Gn−1|

= b.

Now

|cn+1 − cn| =
∣∣∣Gn+2

Gn+1
− Gn+1

Gn

∣∣∣
=

∣∣∣Gn+2Gn −G2
n+1

GnGn+1

∣∣∣
=

∣∣∣ b

GnGn+1

∣∣∣
<

b

2n−1
.

Thus (cn) is a Cauchy sequence. �
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