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1. Sets and Functions

1.1. Sets. A set is a collection of objects. The objects in a set are called elements
of that set. The notation a ∈ A means “a is an element of the set A”. The notation
a /∈ A means “a is not an element of A”. We also use the standard notation whereby
⇒ means “implies” and the notation ⇔ means “if and only if”.

Two sets are equal if and only if they contain the same elements;

A = B ⇔ (x ∈ A ⇔ x ∈ B).

that is, a set is completely determined by the elements it contains. There is no
concept of order or multiplicity when specifying a set:

{1, 1, 2, 2, 3, 4, 4, 5} = {1, 2, 3, 4, 5} and {2, 5, 3, 1, 4} = {1, 2, 3, 4, 5}.
Set builder notation allows us to specify sets. The notation

{x | (some condition on x)}
denotes the set of all elements x for which the condition is true.

1.2. Subsets and Set Operations. We say that B is a subset of A, and write
B ⊂ A, if every element of B is an element of A:

A ⊂ B ⇔ (x ∈ B ⇒ x ∈ A).

The union of A and B is the set of elements which are in either A or B:

A ∪B = {x | x ∈ A or x ∈ B}.
The intersection of A and B is the set of elements which are in both A and B:

A ∩B = {x | x ∈ A and x ∈ B}.
The complement of B with respect to A is the set of elements in B but not in A:

A r B = {x | x ∈ A and x /∈ B}.
A universal set is a set U which contains all the elements under consideration in

a given context. When a universal set is understood, the complement of B is

Bc = U r B.

The set operations of union, intersection, and complement correspond to the
logical operations of OR, AND, and NOT, respectively.

The empty set, denoted ∅, is the set which contains no elements.
We say that A and B are disjoint if A ∩B = ∅.
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1.3. Cartesian Product. An ordered pair consists of two elements in a specified
order. The ordered pair containing the elements a and b with a first and b second
is denoted (a, b).

Let A and B be sets. The cartesian product of A and B is the set

A×B = {(a, b) | a ∈ A and b ∈ B}.

1.4. Functions. A function from a set A to a set B is an assignment of each
element of A to a unique element of B. The notation f : A → B mean “f is a
function from A to B”.

Let f : A → B. If a ∈ A, the unique element of B to which a is assigned is
denoted f(a). We call A the domain of f , and we call B the codomain of f . The
function f is completely described by the subset of A×B given by

{(a, b) ∈ A×B | b = f(a)}.
If C ⊂ A, the image of C under f is the subset of the codomain B which consists

of all the elements of B to which f assigns some element from C:

f(C) = {b ∈ B | b = f(c) for some c ∈ C}.
The range of f is f(A), the image of the domain A.

If D ⊂ B, the preimage of D under f is the subset of the domain A which
consists of all the elements of A which are assigned by f to an element in D:

f−1(D) = {a ∈ A | f(a) ∈ D}.

1.5. Collections. A collection is a set whose elements are themselves sets.
The power set of a set X is the collection of all subsets of a given set:

P(X) = {sets A | A ⊂ X}.
Let X be a nonempty set. A partition of X is a collection of nonempty subsets

of X, known as blocks, such that every element of X is in exactly one block.

2. Probability Spaces

2.1. Probability Spaces. A study of probability is on firm ground when it uses
the concepts of sets and functions to precisely define its terms. Thus measurement
of probabilities takes place in a formal mathematical object known as a probability
space.

Definition 1. A finite probability space consists of a finite set S together with a
function

p : S → [0, 1] satisfying
∑
s∈S

p(s) = 1.

Let E denote the set of all subsets of S. Then p determines a function

P : E → [0, 1] given by P (E) =
∑
s∈E

p(s).

The elements of S are called outcomes. The members of E are called events. The
function P is called a probability measure. The number P (E) is called probability
of event E.
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Proposition 1. Let S be a finite probability space. Let A,B ⊂ S. Then

(a) P (∅) = 0;
(b) P (Ac) = 1− P (A);
(c) A ⊂ B ⇒ P (A) ≤ P (B);
(d) P (A ∪B) = P (A) + P (B)− P (A ∩B);

Corollary 1. Boole’s Inequality
Let S be a finite probability space. Let A,B ⊂ S. Then

P (A ∪B) ≤ P (A) + P (B).

Definition 2. Let S be a finite set. The uniform probability space on S defined by
the function

p : S → [0, 1] given by p(s) =
1
|S|

.

Then the probability measure on the collection E of all subsets of S is

P : E → [0, 1] given by P (E) =
|E|
|S|

.

Example 1. Let S = {H,T}. This corresponds to flipping a coin.

Example 2. Let S = {1, 2, 3, 4, 5, 6}. This corresponds to rolling a fair die.

Example 3. Let S = R × U , where R = {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A} is the
set of ranks and U = {S, H,D,C} is the set of suits. This corresponds to drawing
one card from a deck of 52 cards.

2.2. Disjointness. We consider the conditions under which the probability of ei-
ther of two events occurring is the sum of the probabilities of the events.

Definition 3. Let S be a finite probability space. Let A,B ⊂ S.
We say that A and B are disjoint (or mutually exclusive) if

A ∩B = ∅.

Proposition 2. Let S be a finite probability space. Let A,B ⊂ S be disjoint. Then

P (A ∪B) = P (A) + P (B).

Proposition 3. Let S be a finite probability space. Let {A1, . . . , An} be a partition
of S. Let E ⊂ S. Then

P (E) =
n∑

i=1

P (E ∩Ai).

Suppose the E = A ∪B ∪ C. Then

P (E) = P (A) + P (B) + P (C)−P (A∩B)−P (A∩C)−P (B ∩C) + P (A∩B ∩C).

Also,

P (E) = P (A) + P (B ∩Ac) + P (C ∩Ac ∩Bc).
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2.3. Independence. We consider the conditions under which the probability of
both of two events occurring is the product of the probabilities of the events.

Definition 4. Let S be a finite probability space. Let A,B ⊂ S.
We say that A and B are independent if

P (A ∩B) = P (A)P (B).

Example 4. Let S be a set of 52 cards. Let A be the set of spades and let B be
the set of aces. Then

P (A ∩B) =
1
52

=
1
4

1
13

= P (A)P (B).

Thus A and B are independent events.

2.4. Conditioning. We consider the computation of the probability of an event
occurring given that some other event occurred.

Definition 5. Let S be a finite probability space. Let A,B ⊂ S with P (B) > 0.
Define the conditional probability of A with respect to B to be

P (A|B) =
P (A ∩B)

P (B)
.

Glorious Conditioning Theorem 1. Multiplication Rule
Let S be a finite probability space and let A,B ⊂ S with P (B) > 0. Then

P (A ∩B) = P (A|B)P (B).

Glorious Conditioning Theorem 2. Total Probabilities Rule
Let S be a finite probability space and let A ⊂ S. Let {B1, . . . , Bn} be a partition
of S, with P (Bi) > 0 for i = 1, . . . , n. Then

P (A) =
n∑

i=1

P (A ∩Bi) =
n∑

i=1

P (A|Bi)P (Bi).

Glorious Conditioning Theorem 3. Bayes Rule
Let S be a finite probability space and let A ⊂ S. Let {B1, . . . , Bn} be a partition
of S, with P (Bi) > 0 for i = 1, . . . , n. Then

P (Bj |A) =
A ∩Bj

A

=
P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

.
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Definition 6. Let S be a finite probability space and let n be a positive integer.
Let T be the set of all sequences of length n in S. Define

pT : T → [0, 1] by p(s1, . . . , sn) =
n∏

i=1

p(si).

Let ET be the collection of subsets of T , which may be viewed as the collection of
sequences of events from S. The probability measure on T is

PT : ET → [0, 1] given by PT (E1, . . . , En) =
n∏

i=1

p(Ei).

We call T the sequential probability space of length n over S.

3. Random Variables

3.1. Random Variables. The mathematical concept that links probability and
statistics is that of a random variable.

Definition 7. Let (S, E, P ) be a probability space. A function X : S → R is called
a random variable if X−1((−∞, a]) ∈ E for all a ∈ R.

Proposition 4. Let (S, E, P ) be a probability space and let X : S → R be a random
variable.

(a) if I ⊂ R is an interval, then X−1(I) ∈ E;
(b) if x ∈ X, then X−1(x) ∈ E.

Proof. Let I = (a,∞); then X−1(I) = (X−1((−∞, a]))c ∈ E.
Let I = (a, b]. Then X−1(I) = X−1((−∞, b]) ∩X−1((a,∞)) ∈ E.
Now {b} = ∩∞n=1(b − 1

n , b], so X−1(b) = ∩∞n=1X
−1((b − 1

n , b]) ∈ E. The other
forms of intervals are now easily obtained. �

Definition 8. Let X : S → R be a random variable.
We say that X is discrete if X(S) is countable.

Definition 9. Let X : S → R be a discrete random variable. The density of X is
a function

fX : R → [0, 1] given by fX(x) = P (X−1(x)).

Proposition 5. Dirty Trick Theorem
Let X : S → R be a discrete random variable. Then∑

x∈img(X)

fX(x) = 1.
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3.2. Expectation. Expectation measures the most likely value of a random vari-
able, not in the sense of the mode average, but rather in the sense of the mean
average.

Definition 10. Let X : S → R be a discrete random variable. The expectation of
X is a real number

E(X) =
∑

x∈img(X)

xfX(x).

Proposition 6. Let (S, P(S), P ) be a uniform probability space, and let X : S → R
be a random variable. Then

E(X) =
1
|S|

∑
s∈S

X(s).

Proof. We have

E(X) =
∑

x∈img(X)

xfX(x)

=
∑

x∈img(X)

x
|X−1(x)|
|S|

=
1
|S|

∑
x∈img(X)

x
∑

s∈X−1(x)

1

=
1
|S|

∑
x∈img(X)

∑
s∈X−1(x)

x

=
1
|S|

∑
x∈img(X)

∑
s∈X−1(x)

X(s)

=
1
|S|

∑
s∈S

X(s)

�

That is, the expectation of a random variable on a finite uniform probability
space is the average value of the random variable.

Definition 11. Let S be a finite probability space with N = |S| and let X : S → R
be a random variable.

The mean of X is

µ(X) =
∑
s∈S

xP (X = x).

That is, the mean of a random variable on a uniform probability space equals its
expectation.

The standard deviation of X is

σ(X) =
√∑

s∈S

(x− µ(X))2P (X = x).
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3.3. Distributions. Distributions describe how the values of a random variable
are scattered across the real line.

We now describe the seven great discrete distributions:
(1) Uniform Distribution
(2) Binomial Distribution
(3) Poisson Distribution
(4) Geometric Distribution
(5) Hypergeometric Distribution
(6) Wilcoxon Distribution
(7) Survey Distribution

Great Discrete Distribution 1. Uniform Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

|S| = |E|
N .

Let X : S → {1, . . . , N} be a bijective function. Then X is a discrete random
variable. We say that X has a uniform distribution.

The image of X is {1, . . . , N}.
The density of X is

fX(x) =

{
1
N if x = img(X);
0 otherwise.

The expectation of X is

E(X) =
N + 1

2
.
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Great Discrete Distribution 2. Binomial Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

|S| = |E|
N .

Let R ⊂ S with |R| = r and let p = P (R) = r
N .

Define a discrete random variable Y : S → R by

Y (s) =

{
1 if s ∈ R;
0 if s /∈ R.

We say that Y is the bernoulli random variable associated to the event R.
The density of Y is

fY (x) =


p if x = 1;
1− p if x = 0;
0 otherwise.

Let n be a positive integer. Let T = ×n
i=1S, the cartesian product of S with

itself n times. Then |T | = Nn. Form the uniform probability space (T,P(T ), Q),
where for F ⊂ T we have Q(F ) = |Q|

|T | = |F |
Nn .

Define a discrete random variable X : T → R by

X(s1, . . . , sn) =
n∑

i=1

Y (si).

We say that X has a binomial distribution.
The image of X is

img(X) = {0, 1, 2, . . . , n}.
The density of X is

fX(x) =
(

n

x

)
px(1− p)n−x.

The expectation of X is
E(X) = np.

Great Discrete Distribution 3. Poisson Distribution
Let T be an infinite probability space and let X : T → R be a random variable
whose density function satisfying the following.

The image of X is
img(X) = {0, 1, 2, 3, . . . }.

The density of X is

fX(x) =
{

e−λ λx

x! for x ∈ img(X); 0 otherwise.

We say that X has a Poisson distribution.
The expectation of X is

E(X) = λ.
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Great Discrete Distribution 4. Geometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

|S| = |E|
N .

Let R ⊂ S with |R| = r and let p = P (R) = r
N . Let Y : S → R be the bernoulli

random variable associated to R, so that

Y (s) =

{
1 if s ∈ R;
0 if s /∈ R.

Let T be the set of all sequences in S, so that

T = {σ : N → S}.
We wish to put a probability measure on T ; however, T is an uncountable set. Let
E be the sigma algebra generated by the sets

En(τ) = {σ ∈ T | σ(i) = τ(i) for all i > n}.
Define Q(En(τ)) = 1

Nn .
Define a discrete random variable X : T → R by

X(σ) =

{
min{i ∈ N | Y (σ(i)) = 1} if this set is nonempty;
0 otherwise.

We say that X has a geometric distribution.
The range of X is

img(X) = {0, 1, 2, . . . }.
The density of X is

fX(x) =

{
p(1− p)x−1 if x ∈ {1, 2, . . . };
0 otherwise.

The expectation of X is

E(X) =
1
p
.

Okay Discrete Distribution 4. Truncated Geometric Distribution
Let S, R, and Y be as above.

Let T be the cartesian product of S with itself n times. Define a discrete random
variable X : T → R by

X(s1, . . . , sn) =

{
min{i ≤ n | Y (si) = 1} if this set is nonempty;
0 otherwise.

We say that X has a truncated geometric distribution.
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Great Discrete Distribution 5. Hypergeometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

N .
Let R ⊂ S with |R| = r and let p = P (R) = r

N . Let Y : S → R be the bernoulli
random variable associated to R, so that

Y (s) =

{
1 if s ∈ R;
0 if s /∈ R.

The expectation of Y is
E(Y ) = p.

Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
|T | = |F |

(N
n) .

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

Then X(A) = |A ∩R|.
The image of X is

img(X) = {0, 1, . . . , n}.
The density of X is

fX(x) =


(r

x)(N−r
n−x)

(N
n) if x ∈ img(X);

0 otherwise.

The expectation of X is
E(X) =

nr

N
= np.

Obtain this as follows. For a ∈ S, the number of sets in T containing a is
(
N−1
n−1

)
.

Thus

E(X) =
1
|T |

∑
A∈T

X(A)

=
1
|T |

∑
A∈T

∑
a∈A

Y (a)

=
1
|T |

∑
a∈R

|{A ∈ T | a ∈ A}|

=
1
|T |

∑
a∈R

(
N − 1
n− 1

)

=

(
N−1
n−1

)
r(

N
n

)
=

nr

N
.
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Great Discrete Distribution 6. Wilcoxon Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

N .
Let Y : S → {1, 2, . . . , N} be a bijective random variable.
The expectation of Y is

E(Y ) =
1
N

N∑
i=1

i =
1
N
· N(N + 1)

2
=

N + 1
2

.

Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
(N

n) .

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

We say that X has a Wilcoxon distribution.
The image of X is

img(X) = {n(n + 1)
2

,
n(n + 1)

2
+ 1, . . . ,

N(N + 1)
2

− (N − n)(N − n + 1)
2

}.

The density of X is difficult to describe.
The expectation of X is

E(X) =
n(N + 1)

2
.
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Great Discrete Distribution 7. Sample Survey Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

N .
Let Y : S → R be a discrete random variable.
Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
(N

n) .

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

We say that X has a sample survey distribution.
The image of X is determined by the image of Y .
The density of X is difficult to describe.
The expectation of X is

E(X) = nE(Y ).
Obtain this as follows.

E(X) =
1
|T |

∑
A∈T

X(A)

=
1
|T |

∑
A∈T

∑
a∈A

Y (a)

=
1
|T |

∑
a∈S

|{A ∈ T | a ∈ A}| · Y (a)

=
1
|T |

∑
a∈S

(
N − 1
n− 1

)
Y (a)

=

(
N−1
n−1

)(
N
n

) ∑
a∈S

Y (a)

=
n

N

∑
a∈S

Y (a)

= nE(Y ).
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4. Random Vectors

Definition 12. Let (S, E, P ) be a probability space. A function ~X : S → Rn is
called a random vector if ~X−1((−∞, a]n) ∈ E for every a ∈ R.

Proposition 7. Let ~X : S → Rn be a random variable.
(a) If B ⊂ R is an box, then X−1(B) ∈ E.
(b) If ~x ∈ Rn, then ~X−1(x) ∈ E.

Remark 1. Let {A1, . . . , An} be a collection of sets and let A = ×n
i=1 be their

cartesian product. Define a function πi : A → Ai by πi(a1, . . . , an) = ai. This
function is called projection on the ith component.

Let f : B → A be a function. Define a function fi : B → Ai by fi = πi ◦
f . This function is called the ith component function of f . We see that f(b) =
(f1(b), . . . , fn(b)).

Let ~a = (a1, . . . , an) ∈ A. Then f−1(~a) = ∩n
i=1f

−1
i (ai).

Let A = A1 ×A2. Let f : B → A. Let ~a = (a1, a2). Then
(a) f−1(~a) = f−1

1 (a1) ∩ f−1
2 (a2);

(b) f−1
1 (a1) = ∪a2∈img(f2)f

−1
2 (a2).

Proposition 8. Let ~X : S → Rn and let Xi : S → R be the ith component function
of ~X. Then Xi is a random variable.

Definition 13. Let ~X : S → Rn be a random vector.
We say that ~X is discrete if ~X(S) is countable.

Definition 14. Let ~X : S → Rn be a discrete random vector. The joint density of
~X is a function

f ~X : R → [0, 1] given by f ~X(~x) = P (X−1(~x)).

Proposition 9. Dirty Trick Theorem Revisited
Let ~X : S → Rn be a discrete random vector. Then∑

~x∈img( ~X)

f ~X(~x) = 1.

Let [X = x] denote the preimage of x under the random variable X.

Proposition 10. Let ~X : S → Rn be a discrete random vector. Let x ∈ img( ~X).
Then f ~X(x) = P (∩n

i=1[Xi = xi]).

Proposition 11. Let ~X : S → R2 be a discrete random vector. Let X, Y : S → R
be the components of ~X. Then

fX1(x) =
∑

y∈img(Y )

f ~X(x, y).
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Multinomial Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

|S| = |E|
N .

Let R1, . . . , Rn be disjoint events.
Let R0 = S r ∪n

i=1Ri, so that {R0, R1, . . . , Rn} form a partition of S.
Let Y0, Y1, . . . , Yn : S → R be the corresponding Bernoulli random variables.
Let pi = P (Ri).
Let n be a positive integer. Let T = ×n

i=1S, the cartesian product of S with
itself n times. Then |T | = Nn. Form the uniform probability space (T,P(T ), Q),
where for F ⊂ T we have Q(F ) = |Q|

|T | = |F |
Nn .

Define discrete random vectors Xi : T → R by

X(s1, . . . , sn) =
n∑

i=1

Y (si).

Define a discrete random vector ~X : T → Rn by ~X = (X1, . . . , Xn).
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Multivariate Hypergeometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space
(S, P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|

N .
Let R1, . . . , Rn be disjoint events.
Let R0 = S r ∪n

i=1Ri, so that {R0, R1, . . . , Rn} form a partition of S.
Let Y0, Y1, . . . , Yn : S → R be the corresponding Bernoulli random variables.
Let pi = P (Ri).
Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
|T | = |F |

(N
n) .

Define random variables Xi : T → R by

Xi(A) =
∑
a∈A

Yi(a).

Then Xi(A) = |A ∩R|.
The image of X is

img(X) = {0, 1, . . . , n}.
The density of X is

fX(x) =


(r

x)(N−r
n−x)

(N
n) if x ∈ img(X);

0 otherwise.

The expectation of X is
E(X) =

nr

N
= np.

Obtain this as follows. For a ∈ S, the number of sets in T containing a is
(
N−1
n−1

)
.

Thus

E(X) =
1
|T |

∑
A∈T

X(A)

=
1
|T |

∑
A∈T

∑
a∈A

Y (a)

=
1
|T |

∑
a∈R

|{A ∈ T | a ∈ A}|

=
1
|T |

∑
a∈R

(
N − 1
n− 1

)

=

(
N−1
n−1

)
r(

N
n

)
=

nr

N
.
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Example 5. An urn contains 2 red balls, three white balls, and four blue balls.
One selects four balls at random from the urn without replacement. Let X1 denote
the number of red balls in the sample, let X2 denote the number of white balls
in the sample, and let X3 denote the number of blue balls in the sample. Let
~X = (X1, X2, X3).

(a) Find the range of (X, Y, Z).
(b) Find the value of the joint density of (X, Y, Z) at each point in the range.
(c) Find the joint marginal density of (X, Y ), (X, Z), and (Y, Z).
(d) Find the three univariate marginal densities.
(e) Find the density of X + Z.
(f) Find the expectations of X, Y , Z, 2X + 3Y .

Solution. Let S be the set of balls in the urn, together with the uniform probability
structure.

The range is

{(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.
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