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1. Introduction

Our ultimate goal is to apply the techniques of calculus to higher dimensions. We
begin by discussing what mathematical concepts describe these higher dimensions.

Around 300 B.C. in ancient Greece, Euclid set down the fundamental laws of
synthetic geometry. Geometric figures such as triangles and circles resided on
an abstract notion of plane, which stretched indefinitely in two dimensions; the
Greeks also analysed solids such as regular tetrahedra, which resided in space which
stretched indefinitely in three dimensions.

The ancient Greeks had very little algebra, so their mathematics was performed
using pictures; no coordinate system which gave positions to points was used as an
aid in their calculations. We shall refer to the uncoordinatized spaces of synthetic
geometry as affine spaces. The word affine is used in mathematics to indicate lack
of a specific preferred origin.

The notion of coordinate system arose in the analytic geometry of Fermat and
Descartes after the European Renaissance (circa 1630). This technique connected
the algebra which was florishing at the time to the ancient Greek geometric notions.
We refer to coordinatized lines, planes, and spaces as cartesian spaces; these are
composed of ordered n-tuples of real numbers.

Since affine spaces and cartesian spaces have essentially the same geometric
properties, we refer to either of these types of spaces as euclidean spaces.

Just as coordinatizing affine space yields a powerful technique in the under-
standing of geometric objects, so geometric intuition and the theorems of synthetic
geometry aid in the analysis of sets of n-tuples of real numbers.

The concept of vector will be the most prominent tool in our quest to use differn-
tial calculus in higher dimensional spaces. Vectors may be defined and manipulated
entirely in the geometric realm or entirely algebraically.

Our goal is to define “vector” and various vector operations both geometrically
and algebraically and to show that these definitions are in agreement. Specifically,
we will construct a correspondence

{equivalence classes of arrows in affine space} ←→ {points in cartesian space}

which respects vector operations; for example, the geometric sum of two equivalence
classes of arrows will correspond to the algebraic sum of the corresponding points.

In order to make the above ideas precise, we will use the language of sets.
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2. Basic Set Concepts

A set is an aggregate of elements; the elements are said to be contained in the set.
A set is determined by the elements it contains. That is, two sets are considered
equal if and only if they contain the same elements.

If A is a set and x is an element contained in A, this relationship is denoted
x ∈ A. If y is not in A, we may write y /∈ A.

If A and B are sets and all of the elements in B are also contained in A, we say
that B is a subset of A or that B is included in A and write B ⊂ A.

A set containing no elements is called the empty set and is denoted ∅. Since a
set is determined by its elements, there is only one empty set. Note that the empty
set is a subset of any set.

Let A and B be subsets of some “universal set” U and define the following set
operations:

Intersection: A ∩B = {x ∈ U | x ∈ A and x ∈ B}
Union: A ∪B = {x ∈ U | x ∈ A or x ∈ B}

Complement: ArB = {x ∈ U | x ∈ A and x /∈ B}

A picture corresponds to each of these. Such picture are called Venn diagrams.

Example 1. Let A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 5}. Then A ∩ B = {1, 3, 5},
A ∪B = {1, 2, 3, 4, 5, 7, 9}, ArB = {7, 9}, and B rA = {2, 4}. �

Example 2. Let C = [1, 5] ∪ (10, 16) and let N be the set of counting numbers.
How many elements are in C ∩ N?

Solution. The set C ∩ N is the set of natural numbers between 1 and 5 inclusive
and between 10 and 16 exclusive. Thus C ∩ N = {1, 2, 3, 4, 5, 11, 12, 13, 14, 15}.
Therefore C ∩ N has 10 elements. �

Example 3. Use Venn diagrams to find an alternate expression for each of the
following:

(a) (A ∪B) ∩ (A ∪ C) [= A ∪ (B ∩ C)];
(b) (ArB) ∪ (B rA) [= (A ∪B) r (A ∩B)].

The concepts of intersection and complement arise naturally in single variable
calculus. If g(x) and h(x) are real-valued functions of a real variable and R is the
set of real numbers, then

dom(
g(x)

h(x)
) = (dom(g(x)) ∩ dom(h(x))) r {x ∈ R | h(x) = 0}.

Example 4. The domain of the function

f(x) =

√
4− x2

log x3

is ([−2, 2] ∩ (0,∞)) r {1} = (0, 1) ∪ (1, 2]. �
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3. Standard Sets of Numbers

The following sets of numbers are standard:

Natural Numbers: N = {1, 2, 3, . . . }
Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Rational Numbers: Q = {p
q
| p, q ∈ Z}

Real Numbers: R = {Dedekind cuts in Q}
Complex Numbers: C = {a+ ib | a, b ∈ R and i2 = −1}

Thus N ⊂ Z ⊂ Q ⊂ R ⊂ C.
The following standard notation gives subsets of the real numbers, called inter-

vals:

[a, b] = {x ∈ R | a ≤ x ≤ b} (finite open)

(a, b) = {x ∈ R | a < x < b} (finite open)

[a, b) = {x ∈ R | a ≤ x < b}
(a, b] = {x ∈ R | a < x ≤ b}

(−∞, b] = {x ∈ R | x ≤ b} (infinite closed)

(−∞, b) = {x ∈ R | x < b} (infinite open)

[a,∞) = {x ∈ R | a ≤ x} (infinite closed)

(a,∞) = {x ∈ R | a < x} (infinite open)

We define a subset of the real numbers to be open if and only if it is the union
of open intervals. A subset of the real numbers is called closed if and only if its
complement is open.

The rest of this section is intended to loosely describe why we use the real
numbers in geometry as opposed to others sets of numbers. Don’t be concerned if
it seems confusing, but read it to see if it gives you a feel for the idea of continuum.

The first three of these sets have an algebraic nature. The natural numbers
allow us to count, add, and multiply. The integers were developed from the natural
numbers to allow subtraction. The rational numbers were developed from the
integers to allow division.

In the definition of rational numbers, the notation p
q indicates the equivalence

class of the rational number represented by p
q . Here we say that two fractions a

b

and c
d are equivalent if ad = bc; we wish these two fractions to represent the same

rational number. We will use the idea of equivalence in our definition of vectors.
The real numbers were developed for geometric and analytic reasons; they are

an ordered continuum. Here continuum means that all sequences which become
indefinitely close in their tails converge to a number in the set. Note that this is
not true for the rational numbers; the sequence

{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1414213, . . . }

consists of rational numbers but converges to
√

2, which is not a rational number.
The rational number line has “holes” where the irrational numbers belong, and for
this reason it does not model the synthetic notion of an affine line as well as the
real numbers.
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Dedekind cuts are separations of the rational numbers into two ordered sets such
that everything in one of the sets is less than everything in the other, and such that
the set of larger numbers never contains a smallest number. Thus if we “cut” at a
rational, we put that in the set of smaller numbers, and if we “cut” at a “hole”, we
have detected an irrational number. The set of such “cuts” has no “holes”.

The complex numbers were developed from the real numbers so that all polyno-
mials may be factored. However, the complex numbers cannot be ordered in a way
that preserves their algebraic properties; for this reason, we primarily use the real
numbers for analytic geometry, keeping in mind that these other sets of numbers
serve useful purposes which we shall exploit whenever it is advantageous.

4. Cartesian Product

Let a, b, c, d ∈ U . An ordered pair (a, b) is defined by the property

(a, b) = (c, d)⇔ a = c and b = d.

The cartesian product of the sets A and B is defined by A×B = {(a, b) | a ∈ A, b ∈
B}.

Similarly, we have ordered triples (a,b,c) and the cartesian product of three sets
A × B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}. We continue with ordered n-tuples
and the cartesian product of n sets. If A is a set, the cartesian product of A with
itself n times is denoted An. For example, A2 = A×A and A3 = A×A×A. The
entries of an ordered n-tuple in such a cartesian product are called coordinates.

Proposition 1. Let A, B, C, and D be sets. Then (A×B)∩ (C×D) = (A∩C)×
(B ∩D). Similar statements are true for higher cartesian products.

Example 5. Let A = [1, 3] × [2, 4) × (3, 5). How many elements are in the set
A ∩ Z3?

Solution. We have B = [1, 3] ∩ Z = {1, 2, 3}, C = [2, 4) ∩ Z = {2, 3}, and D =
(3, 5) ∩ Z = {5}. Then

A× Z3 = B × C ×D = {(1, 2, 5), (1, 3, 5), (2, 2, 5), (2, 3, 5), (3, 2, 5), (3, 3, 5)},
a set with 6 elements. �

If the set A is ordered, such as the case where A = R, we may graph ordered
pairs and sets of order pairs by drawing perpendicular lines, called axes, which are
“ruled-off”. Each line represents a copy of the real numbers, and an ordered pair is
plotted as the appropriate point. By convention, the horizontal axis is designated
x and represents the first coordinate, and the vertical axis is designated y and
represents the second coordinate. For example, the graph of the set [0, 1]× [1, 2] is
a square which touches the y-axis and is lifted 1 unit above the x-axis. Note that
the graph of a function f is the graph of the set {(x, y) ∈ R2 | y = f(x)}.

We may also graph ordered triples of real numbers on a flat piece of paper,
using perspective to give the illusion of depth. In this case, tradition demands that
the first coordinate of an ordered triple is labeled x, the second y, and the third
z; and that the positive z-axis points north, the positive y-axis points east, and
the positive x-axis points southwest so that it appears to emanate from the page.
Points and sets are plotted against this coordinate system in the natural way.

Example 6. Let A = [1, 3]× [2, 4)× (3, 5). Graph the set A ∩ Z3.



5

Solution. We have seen that

A ∩ Z3 = {(1, 2, 5), (1, 3, 5), (2, 2, 5), (2, 3, 5), (3, 2, 5), (3, 3, 5)}.
Graph these points. �

Example 7. Draw the box with diagonal vertices P (1, 1, 2) and Q(4,−1, 4).

Solution. First we find the other six vertices. These are (4, 1, 2), (4,−1, 2),
(1,−1, 2), (1,−1, 4), (4, 1, 4), and (1, 1, 4). Graph these and draw the edges which
move parallel to a coordinate axis. �

5. Distance

We wish to define the distance between to points in Rn in such a way that it will
agree with our geometric intuition into the pictures produced by our graphs. Here
we use the Pythagorian Theorem.

Let P = (x1, y1, z1) and Q = (x2, y2, z2). Then

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

In particular, we call the distance between a point and the origin the norm of the
point. Thus if P = (x, y, z),

|P | =
√
x2 + y2 + z2.

Other names for this quantity include modulus, magnitude, absolute value, or length
of the point.

Example 8. The distance between (2, 5,−1) and (−4, 3, 8) is

d =
√

(−4− 2)2 + (3− 5)2 + (8− (−1))2 =
√

36 + 4 + 9 =
√

49 = 7.

�
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6. Equations

We may consider subsets of Rn such that the coordinates of the points in the
subset are related in some specified way. The common way of doing this is to
consider equations with the coordinates as variables. The set of all points which,
when their coordinates are plugged into the equation cause the equality to be true,
is called the solution set, or locus of the equation.

Consider the solution set in R3 of the equation z = 0. This is the set of points
of the form (x, y, 0). This set is immediately identified with R2 in the natural way.
This set is called the xy-plane. Similarly, the solution sets of x = 0 and y = 0 are
called the yz-plane and the xz-plane, respectively. Together, these sets are called
coordinate planes.

Example 9. Find the locus of the equation xyz = 0.

Solution. If xyz = 0, either x = 0, y = 0, or z = 0. Thus the solution set is the
union of the solution sets for these latter equation; that is, the locus of the equation
xyz = 0 is the union of the coordinate planes. �

Example 10. Find an equation whose solution set is the union of the coordinate
axes.

Solution. The x-axis is the set of points where y = 0 and z = 0. We can acheive
the x-axis as the solution set of y2 + z2 = 0. Thus we can see that the solution set
of

(x2 + y2)(x2 + z2)(y2 + z2) = 0

is the union of the coordinate axes. �

Now consider sets of points which simultaneously satisfy all of the equations in
a collection of equations. Such sets are merely the intersection of the solution sets.
For example, the solution set of {x = 0, y = 0} is the z-axis.

If one of the variables is missing from an equation, its locus in R3 is a curtain
(or cylinder), because the third variable can be anything.

Example 11. The locus in R2 of the equation y = 2x+ 1 is a line, but in R3 it is
a plane. The locus in R3 of the equation z = sin y is a rippled “plane”; any point
of the form (x, y, sin y) is in the locus.

Let P0 = (x0, y0, z0) be some fixed point in R3 and let r ∈ R. Consider the
equation d(P, P0) = r, where P = (x, y, z) is a variable point. The solution set of
this equation is exactly the set of all points in R3 whose distance from P0 is equal to
r. This set is called the sphere of radius r centered at P0. Since distance is always
positive, we may square both sides of the equation and obtain a new equation with
the same solution set. Thus the equation of a sphere is

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2.

Example 12. Find the radius and center of the sphere given by x2 + y2 + z2 +
6x− 16 = 0.

Solution. Complete the square. The locus of the above equation is the same as the
locus of x2 + 6x+ 9 +y2 + z2 = 16 + 9, i.e., (x+ 3)2 +y2 + z2 = 25. Thus the center
is (−3, 0, 0) and the radius is 5. �
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7. Coordinatization

In order to apply the techniques of analytic geometry to synthetic geometry or
to a real-life problem, we must impose a coordinate system on affine space.

To do this in three dimensions, we first select a point in affine space and calling
it the origin. We then select three perpendicular lines that intersect at the origin as
the axes. We must also select, on each axis, one of the two directions as the positive
direction. By convention, this is done in such a way that the ordered system of
axes constitute a right-handed orientation. We use the “right-hand rule”: with your
right hand, make a fist, let your thumb point up and your point your index finger
out, parallel to your arm. Let your middle finger stick out perpendicular to your
index finger. Then your axes should be oriented such that the index finger points
in the positive x direction, your middle finger points in the positive y direction, and
your thumb points in the positive z direction.

Now the coordinates of a point are given by the signed distance of that point to
the corresponding coordinate plane. No two points occupy the exact same location,
so each point has its own unique coordinates. This process is called a coordinatiza-
tion of affine space.

Coordinatizing an affine space gives us a cartesian space. These spaces have
essentially the same properties. The reason for the distinction is to help us keep in
mind that we may often select the coordinate system which best suits our needs in
a particular problem.

8. Equivalence Classes

Since vectors will be defined as equivalence classes of arrows, here is a brief
description of this idea.

The elements of a set may themselves be sets. For example, the set of all major
league baseball teams may be considered to be composed of sets of players, each
player the set of molecules which comprise him, each molecule a set of subatomic
particles, et cetera.

Two sets A and B are called disjoint if A ∩ B = ∅. A partition of a set X
is a collection C of subsets of X such that the sets in C are mutually disjoint
and the union of the sets in C is X. Each member of C is called and equivalence
class. A member of an equivalence class is called a representative of that class.
The relationship between two members of the same class is called an equivalence
relation.

A familiar example of this is the set of rational numbers. Let A = Z×Z, the set
of ordered pairs of integers. We think of the ordered pair (a, b) as representing the
faction a

b . We define an equivalence relation on A by

(a, b) ∼ (c, d)⇔ ad = bc.

Thus (1, 2) ∼ (2, 4), etc. This is how the rational numbers are constructed.

9. Affine Space

We consider four types of affine space: the point, line, plane, and space of
synthetic geometry, corresponding to the dimensions 0, 1, 2, and 3 respectively.
The phrase “Affine space of dimension n” means the set of points in n dimensional
space of synthetic geometry. Affine spaces come equipt with the notions of distance
and angle.
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Let P , Q, and R be three points in affine space. We will use the following
notation:

• PQ is the line through P and Q;
• P̄Q is the line segment between P and Q;
• |PQ| is the distance between P and Q;
• ∠PQR is the angle between the line segments P̄Q and Q̄R;
• 4PQR is the triangle with sides P̄Q, Q̄R, and R̄P .

10. Arrows and Vectors

An arrow in affine space is a directed line segment; that is, it is a line segment
with one of the ends specified as the “beginning” and the other specified as the
“end”. The beginning point is called the tail of the arrow and the ending point is
called the tip of the arrow.

If P and Q are points in affine space, the arrow from P to Q is denoted P̂Q. If
P = Q, the arrow P̂Q = P̂P is called the zero arrow at P .

The set of all arrows in affine n-space is denoted An.
An arrow is determined by

(1) position, which is determined by its tail;
(2) magnitude, which is the distance between the tip and the tail;
(3) direction, which is the direction of the ray from the tail to the tip, and is

determined by the line through the points and side of the line on which the
tip lies relative to the tail.

Note that the zero arrows have no direction.
Suppose that two nonzero arrows lie on the same line. We say that they have

the same orientation if they point in the same direction; otherwise they have the
opposite orientation.

Notice that for every arrow R̂S and for every point P , there is another arrow
P̂Q whose tail is at P which has the same magnitude and direction as R̂S.

We wish to consider only the magnitude and direction attributes of arrows, and
ignore the position. This allows use to “slide” arrows around in affine space, and
consider them to start at the tail or at the tip of some other arrow. To do this, we
call two arrows equivalent if they have the same direction and magnitude.

A vector is an equivalence class under this equivalence relation. That is, a vector
is unpositioned direction and length. Suppose that P , Q, R, and S are points in
affine space. Suppose additionally that the direction and length of P̂Q is the same
as the direction and length of R̂S. Then P̂Q and R̂S are said to represent the same

vector, and this vector may be denoted ~PQ or ~RS.
The set of all vectors in affine n-space is denoted Vn.
The length of a vector is the length of any arrow that represents it. If ~v is a

vector, its length is denoted |~v|. Notice that there is exactly one equivalence class
of arrows which contains all of the zero arrows. This equivalence class is called the
zero vector.

Now suppose that we have coordinatized affine space. Then each vector has
exactly one representative which is an arrow whose tail is at the origin. Such an
arrow is said to be in standard position. The tip of this arrow is a point in Rn.
Each vector corresponds to exactly one point in Rn in this way.
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If P ∈ Rn, then ~OP is called the position vector of P . If P = (x, y, z), the
position vector of P is denoted 〈x, y, z〉.

We will work primarily with vectors in coordinatized space. Will will denote the
set of vectors in n-dimensional cartesian space by Rn. Note that Rn is essentially
the same set as Rn; the difference is merely a matter of whether we are thinking of
ordered n-tuples as points or as equivalence classes of arrows. In fact, unlike the
case of Vn and Rn, where the correspondence depends on the coordinate system
chosen, there is only one natural way to create the correspondence between Rn and
Rn. Thus we consider these sets as “identified” and flip between these contexts
without further comment.

We may denote elements of Vn (or Rn) as ~v. To each vector in coordinatized
space, there exists a corresponding line through the origin and a corresponding line
segment. In this case, v̄ means the line segment corresponding to the vector ~v. We
say that two vectors ~v and ~w are parallel and write ~v‖~w if the corresponding lines

are identical, and we say that ~a and ~b are perpendicular, or orthogonal, and write

~a ⊥ ~b if the corresponding lines are perpendicular.

Proposition 2. Let 〈x, y, z〉 ∈ R3. Then |〈x, y, z〉| =
√
x2 + y2 + z2.

Proof. The length of the vector is the length of the line segment from (0, 0, 0) to

(x, y, z). We have seen that this quantity is
√
x2 + y2 + z2. �

11. Vector Operations

We will define four operations involving vectors. Each will be defined geomet-
rically on vectors in affine space and algebraically on vectors in cartesian space.
Initially we will put squares around the vector operations, but after we have shown
that the definitions yield the same result in cartesian space, we will drop the squares.

12. Vector Addition

We define geometric vector addition as follows. Let ~v, ~w ∈ Vn. Let ~PQ be a
representative for ~v and select the representative for ~w whose tail is Q. This will

be of the form ~QR. Define ~v � ~w = ~PR. This is the diagonal of a parallelogram.
The negative of a vector ~v is the vector −~v such that ~v � (−~v) = ~0, the zero

vector. By construction, we see that the negative of a vector represented by ~PQ is

the vector represented by ~QP . This is the vector of the same length in the opposite
direction.

The above definition is geometric and does not rely on a coordinate system.
However, when our affine space is coordinatized, we wish to have a simple method
for computing the vector sum of two vectors.

With this in mind, we define the algebraic vector sum of two vectors ~v =
〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉 in cartesian space by

~v + ~w = 〈v1 + w1, v2 + w2, v3 + w3〉.

Proposition 3. Let ~v, ~w ∈ R3. Then ~v � ~w = ~v + ~w.

Proof. Let ~v = 〈v1, v2〉 and ~w = 〈w1, w2〉. Consider the parallelogram spanned by
~v and ~w. The oriented diagonal of this parallelogram is the vector sum of ~v and ~w.
But the tip of this diagonal is 〈v1 + w1, v2 + w2〉.
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The picture is this: Let O = (0, 0), V = (v1, v2), W = (w1, w2), S = (v1 +
w1, v2 + w2), P = (w1, 0), and Q = (v1 + w1, v2). Then 4OPQ ∼= 4V QS by
angle-side-angle. �

Since � and + yield the same results in Rn, we will use the notation + for both
ideas from now on.

Suppose we want a vector that proceeds from the tip of ~OP to the tip of ~OQ.
This is merely the vector from P to Q. We want a vector such that when it is added

to P , its tip is at Q. We notice that ~OP + ~PQ = ~OQ. Thus ~PQ = ~OQ − ~OP .
Thus if P = (x1, y1, z1) and Q = (x2, y2, z2), then the vector from P to Q is
〈x2 − x1, y2 − y1, z2 − z1〉.

Now if we add a vector ~v to itself, we get a vector in the same direction which
is twice as long as ~v. It is convenient to write ~v + ~v = 2~v. We now generalize this
concept.

We define multiplication of a scalar times a vector as follows. Let t ∈ R; we call
t a scalar. Let ~v ∈ Vn be a vector. Define t~v to be the vector whose length is t|~v|.
in the direction of ~v if t > 0 and in the direction of −~v if t < 0.

Proposition 4. Let ~v = 〈v1, v2, v3〉. Then t~v = 〈tv1, tv2, tv3〉.

Proof. The point (tv1, tv2, tv3) is on the same line through the origin as the point
(v1, v2, v3). If t > 0, then (tv1, tv2, tv3) is on the side side of the origin as the point
(v1, v2, v3); otherwise, it is on the opposite side. Thus the direction of 〈tv1, tv2, tv3〉
is as required. Its length is

√
t2v2

1 + t2v2
2 + t2v2

3 = t
√
v2

1 + v2
2 + v2

3 , also as required.
�

Proposition 5. Let ~v = 〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉. The following are
equivalent:

i. ~v‖~w;
ii. ~v = k ~w for some constant k ∈ R;
iii. v1

w1
= v2

w2
= v3

w3
= k for some constant k ∈ R.

Example 13. Let ~v = 〈4, 4, 7〉 and ~w = 〈2, 3, 6〉. Find a vector in the direction of
~w with the length of ~v.

Solution. We have |~v| = 9 and |~w| = 7. The unit vector in the direction of ~w is 1
7 ~w.

Thus 9
7 ~w is the vector we seek. �

Proposition 6. Properties of Vector Addition

Let ~a,~b,~c ∈ Vn and let d, e ∈ R. Then

(a) ~a+~b = ~b+ ~a;

(b) ~a+ (~b+ ~c) = (~a+~b) + ~c;

(c) ~a+~0 = ~a;

(d) ~a+ (−1~a) = ~0;

(e) d(~a+~b) = d~a+ d~b;
(f) (d+ e)~a = d~a+ e~a;
(g) (de)~a = d(e~a);
(h) |d~a| = |d||~a|;
(i) 1~a = ~a.
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Proof. Impose a coordinate system, assigning components to the vectors. Then
these properties follow from properties of real numbers at the component level. For
example, let ~a = 〈a1, a2〉. Then

|d~a| = |〈da1, da2〉| =
√
d2a2

1 + d2a2
2 = |d|

√
a2

1 + a2
2 = |d||~a|.

�

Example 14. Let ~v = 〈4, 4, 7〉 and ~w = 〈2, 3, 6〉. Find |3~v − 2~w|.

Solution. We have 3~v − 2~w = 〈12, 12, 21〉 − 〈4, 6, 12〉 = 〈8, 6, 9〉. The length of this

vector is
√

64 + 36 + 81 =
√

181. �

A linear combination of a set of vectors {~v1, . . . , ~vn} is a vector of the form
a1 ~v1 + · · ·+ an ~vn, where ai ∈ R.

The span of a set of vectors is the set of all linear combinations of the vectors.
A pair of noncolinear vectors in R3 span a plane and a trio of noncoplanar vectors
in R3 span all of space.

Let ~v ∈ Vn. Suppose that ~w and ~x are not on the same line. If ~v = t1 ~w + t2~x,
then t1 is called the component of ~v in the ~w direction and t2 is the component in
the ~x direction.

A unit vector is a vector of length 1. If we wish to consider “pure direction” as
opposed to direction and length, we use unit vectors.

To obtain a unit vector pointing in the same direction as a given vector, we
merely divide by its length. Thus a unit vector in the direction of ~v is

~u =
~v

|~v|
.

For each coordinate axes in R2 and R3, we give a special name to the unit vector

on that axis which points in the positive direction. These are called ~i, ~j, and ~k
respectively; together they are called the standard basis vectors. Thus for a vector

~v = 〈x, y, z〉, we have that ~v = x~i+ y~j + z~k. Thus x is the component of ~v in the ~i
direction, and so forth.

Any point in R3 may be written as a linear combination of these standard basis
vectors; that is, they span R3.

13. Projection and Dot Product

Suppose we have a flat object A in affine space such as a line or a plane, and we
have another set of points X in affine space. We may project X onto A as follows.
Since A is flat, each point in X has exactly one point in A to which it is closest. For
x ∈ X, let projA(x) be that closest point. Then let projA(X) = {projA(x) | x ∈ X}.

Let ~v = ~OP , ~w = ~OQ ∈ Vn. Let ŌP be the line segment from O to P and let
OQ be the line through O and Q. Note that projOQ(ŌP ) is a line segment. The

scalar projection of ~v onto ~w is the signed length of the line segment projOQ(ŌP ),

and is denoted proj~w(~v). If projŌQ(ŌP ) = {O}, the sign is negative; otherwise it
is positive. Thus the component of ~v in the ~w direction is proj~w(~v).

The vector projection of ~v onto ~w is the vector of length proj~w(~v) in the same
direction as ~w; that is, proj~w(~v) ~w

|~w| .

The geometric dot product of two vectors ~v and ~w is defined to be

~v � ~w = |~w|proj~w(~v).
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Thus the dot product is a real number, not a vector.
Note that if u is a unit vector, then

~v � ~u = proj~u(~v).

For this reason, when we need to project onto vectors, we like to project onto unit
vectors. In this case, the component of ~v in the ~u direction is ~v � ~u.

Now notice that for ~v = 〈x, y, z〉,
• ~v �~i = proj~i(~v) = x;

• ~v �~j = proj~j(~v) = y;

• ~v � ~k = proj~k(~v) = z.

If ~v and ~w are vectors, we define the angle between them to be the angle between
corresponding line segments of representatives with the same tails. This quantity
is between 0 and π radians and is denoted ∠(~v, ~w).

Proposition 7. Let ~v, ~w ∈ Vn. Then

~v � ~w = |v||w| cos θ,

where θ is the angle between ~v and ~w.

Proof. The line segment corresponding to the vector ~v projects onto the line seg-
ment corresponding to the vector ~w as the side of a right triangle with v̄ as the
hypotenuse. Thus ~v � ~w = |~w|proj~w(~v) = |~w||~v| cos θ. �

Corollary 1. Dot product is commutative, that is, ~v � ~w = ~w � ~v.

Corollary 2. For vectors ~v, ~w ∈ Vn, we have

|w|proj~w(~v) = |v|proj~v(~w).

Proposition 8. Let ~v, ~w ∈ V3. Then ~v ⊥ ~w if and only if ~v · ~w = 0.

Proof. If θ ∈ [0, π], then cos θ = 0 if and only if θ = π/2. �

We now wish to find a method of easily computing dot products. To this end, we
define the algebraic dot product of two vectors ~v = 〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉
in coordinatized space by ~v· ~w = v1w1+v2w2+v3w3. We will show that ~v� ~w = ~v· ~w,
giving us a convenent formula for the computation of dot product, which leads to
formulas for the computation of angles and projections. First we need to state some
properties of the algebraic dot product.

Proposition 9. Properties of Dot Product Let ~a,~b,~c ∈ Rn and d ∈ R. Then

(a) ~a · ~a = |~a|2;

(b) ~a ·~b = ~b · ~a;

(c) ~a · (~b+ ~c) = (~a ·~b) + (~a · ~c);
(d) (d~a) ·~b = ~a · (d~b) = d(~a ·~b);

(e) ~a ·~0 = 0.

Proof. Let ~a = 〈a1, a2, a3〉, ~b = 〈b1, b2, b3〉, and ~c = 〈c1, c2, c3〉.
(a) ~a · ~a = a2

1 + a2
2 + a2

3

(b) ~a ·~b = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = ~b · ~a
et cetera. �

Proposition 10. Let ~v, ~w ∈ R3. Then ~v � ~w = ~v · ~w.
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Lemma 1. Law of Cosines For a triangle with angles A,B,C and corresponding
opposite sides of length a, b, c, we have

c2 = a2 + b2 − 2ab cos(C).

Proof. (Of Lemma for B and C acute angles - other cases similar). Drop a per-
pendicular from the angle A to the opposite side. Call this distance h. Let m be
the distance from C to the perpendicular. Then a − m is the distance from B
to the perpendicular. Thus (a −m)2 + h2 = c2 and m2 + h2 = b2. Substituting
h2 = b2 −m2 into the first of these yields a2 − 2am + b2 = c2. But m = b cos(C),
proving the result. �

Proof. (Of proposition). The line segments corresponding to the vectors ~v, ~w, and
~w − ~v form the sides of a triangle. If θ is the angle between ~v and ~w, then θ is
opposite the side ~w − ~v. By the Law of Cosines we have

|~w − ~v|2 = |~v|2 + |~w|2 − 2|~v||~w| cos(θ).

Multiplying out the right side via properties (1) through (4) above yields

|~w − ~v|2 = (~w − ~v) · (~w − ~v)

= (~w · ~w)− 2(~v · ~w) + (~v · ~v)

= |~w|2 + |~v|2 − 2(~v · ~w).

Putting this into the first equation and simplifying yields

~v · ~w = |~v||~w| cos(θ) = ~v � ~w.

�

Thus the geometric and algebraic dot products are the same, and we no longer
make any distinction between them.

Corollary 3. If θ is the angle between the nonzero vectors ~v and ~w, then

cos θ =
~v · ~w
|~v||~w|

.

Example 15. Let ~v = 〈5, 2, 1〉 and ~w = 〈3, 2, 3〉. Find the scalar and vector
projections of ~v onto ~w, and find the angle between them.

Solution. We know that ~v · ~w = |~w|proj~w(~v). Thus

proj~w(~v) =
~v · ~w
|~w|

=
15 + 4 + 3√

9 + 4 + 9
=

22√
22

=
√

22.

Thus the scalar projection is the length of ~w, so vector projection is ~w itself. This
says that ~v and ~w form a right triangle.

We also know that cos∠(~v, ~w) = ~v·~w
|~v||~w| =

√
22√
29

, so the angle is approximately 29.4

degrees. �

Example 16. Let ~v = 〈5, 2, 1〉 and ~w = 〈3, 2, 3〉. Verify that these vectors form a
right triangle.

Solution. Let ~x = ~w−~v = 〈−2, 0, 2〉. Then ~x · ~w = −6+0+6 = 0, so ~x is orthogonal
to ~w. �
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14. Cross Product

It will be essential for us to be able to construct a vector which is perpendicular
to the plane determined by two other vectors. Towards this end, we introduce a
new product which produces such a vector. This product is defined only for vectors
in R3.

The geometric cross product of two vectors ~v and ~w is denoted ~v � ~w and if
~x = ~v � ~w, it is defined by the properties:

(1) ~x ⊥ ~v and ~x ⊥ ~w so that ~x is perpendicular to the plane spanned by ~v and
~w;

(2) the length of ~x is equal to the area of the parallelogram spanned by ~v and
~w;

(3) ~x is oriented by the right hand rule.

These three properties determine a unique vector.

Proposition 11. Let ~v, ~w ∈ V3. Then |~v � ~w| = |~v||~w| sin θ, where θ is the angle
between ~v and ~w.

Proof. The area of the parallelogram determined by ~v and ~w is given by area equals
base times height. If we let |~v| be the base, then the height is simply |~w| sin θ. �

Proposition 12. Let ~v, ~w ∈ V3. Then ~v‖~w if and only if ~v × ~w = ~0.

Proof. If θ ∈ [0, π], then sin θ = 0 if and only if θ = 0 or θ = π. �

Proposition 13.

(a) ~i�~j = ~k;

(b) ~j � ~k =~i;

(c) ~k �~i = ~j.

As before, we will define an algebraic method for computing the cross product.
Thus we define the algebraic cross product of two vectors ~v = 〈v1, v2, v3〉 and

~w = 〈w1, w2, w3〉 in cartesian 3-space by

~v × ~w = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉.
We remember this formula via a symbolic determinant. The determinant of a

2× 2 matrix is

det

[
a b
c d

]
= ad− bc.

The determinant of a 3× 3 matrix is

det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 = a1det

[
b2 b3
c2 c3

]
+ a2det

[
b1 b3
c1 c3

]
+ a3det

[
b1 b2
c1 c2

]
.

Thus

~v × ~w = det

 ~i ~j ~k
v1 v2 v3

w1 w2 w3

 .
Proposition 14. Let ~v, ~w ∈ R3. Then ~v � ~w = ~v × ~w.
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Proof. Let ~v = 〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉.
(1) To see that ~v × ~w ⊥ ~v, we use the dot product.

(~v × ~w) · ~v = (v2w3 − v3w2)v1 + (v3w1 − v1w3)v2 + (v1w2 − v2w1)v3

= v2w3v1 − v3w2v1 + v3w1v2 − v1w3v2 + v1w2v3 − v2w1v3

= 0.

Similarly, (~v × ~w) · ~w = 0 so ~v × ~w ⊥ ~w.
(2) We wish to show that |~v × ~w| = |~v||~w| sin(θ), where θ is the angle between

~v and ~w.
Consider

|~v × ~w|2 = (v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

= v2
2w

2
3 − 2v2v3w2w3 + v2

3w
2
2

+ v2
3w

2
1 − 2v1v3w1w3 + v2

1w
2
3

+ v2
1w

2
2 − 2v1v2w1w2 + v2

2w
2
1.

Also,

(|~v||~w| sin(θ))2 = |~v|2|~w|2 sin2(θ)

= |~v|2|~w|2(1− cos2(θ))

= |~v|2|~w|2 − |~v|2|~w|2 cos2(θ)

= |~v|2|~w|2 − (~v · ~w)2

= (v2
1 + v2

2 + v2
3)(w2

1 + w2
2 + w2

3)

− (v1w1 + v2w2 + v3w3)2

= v2
2w

2
3 − 2v2v3w2w3 + v2

3w
2
2

+ v2
3w

2
1 − 2v1v3w1w3 + v2

1w
2
3

+ v2
1w

2
2 − 2v1v2w1w2 + v2

2w
2
1.

These last quantities are the same; taking square roots and noting that√
sin(θ) = sin(θ) since θ ∈ [0, π] yields the result.

(3) The orientation of ~v× ~w is actually determined by the orientation given to
the coordinate axes. The proof of this requires more advanced techniques
than we currently have. The basic idea is the ~v × ~w changes continuously
as the lengths of ~v and ~w and the angle between them change. Thus if can
move ~v to ~i and ~w to ~j without getting a zero vector as the cross product,
the orientation of ~v × ~w must be the same as that of ~i × ~j, which is right
handed.

�

Example 17. Find the area of the triangle with vertices P (2, 4, 1), Q(1, 2, 3), and
R(5, 0, 1).

Solution. Treat P as a “translated origin”. Let ~v = Q− P = 〈−1,−2, 2〉 and ~w =
R−P = 〈3,−4, 0〉. The area of the triangle is half of the area of the parallelogram
spanned by ~v and ~w, which we find via the cross product:

~v × ~w = (0− 8)~i− (0− 6)~j + (4− (−6))~k = 〈−8, 6, 10〉.
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Thus the area of the triangle is half to the length of this vector:

area =
1

2

√
64 + 36 + 100 = 5

√
2.

�

Proposition 15. Properties of Cross Product Let ~a,~b,~c ∈ Vn and d ∈ R.
Then

(a) ~a×~b = ~b× ~a;

(b) (d~a)×~b = ~a× (d~b) = d(~a×~b);
(c) ~a× (~b+ ~c) = (~a×~b) + (~a× ~c);

(d) (~a+~b)× ~c = (~a× ~c) + (~b× ~c);
(e) ~a · (~b× ~c) = (~a×~b) · ~c;
(f) ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c;
(g) ~a×~0 = ~0.

Proof. Write each vector in terms of their components and use the algebraic defi-
nition of cross product. �

Example 18. Let ~v = 〈2, 5, 1〉 and ~w = 〈3, 1, 2〉. Find a vector which is perpen-
dicular to both 22~v + 29~w and 83~v − 8~w.

Solution. These vectors are linear combinations of ~v and ~w, and an therefore on
the plane spanned by ~v and ~w. It suffices to find a vector which is perpendicular
to this plane. We do this by crossing ~v and ~w:

~v × ~w = (10− 5)~i− (4− 3)~j + (2− 15)~k = 〈5,−1,−13〉.
�

Proposition 16. Let ~a,~b,~c ∈ V3. Then ~a · (~b × ~c) is a scalar quantity which is
equal to the signed volume of the parallelepiped determined by the three vectors. The
magnitude of this quantity is the volume and the sign detects whether the vectors

have a right or left handed orientation in the order presented. We call ~a · (~b × ~c)
the scalar triple product.

Proof. The volume is equal to the base times the height. If ~x = ~b × ~c, the height
is simply the projection of ~a onto this vector, proj~x(~a) = ~a · ~x/|~x|. But the area of
the base is |~x|, so the base times the height is ~a · ~x. �

The triple scalar product can the computed as a determinant.

~a · (~b× ~c) = det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .
Example 19. Do the points O(0, 0, 0), P (1, 2, 3), Q(2, 3, 1), and R(3, 1, 2) lie on
the same plane?

Solution. We treat P , Q, and R as vectors starting at the origin, and note that
the four points lie on the same plane if and only if the volume of the parallelepiped
spanned by these vectors is zero. The triple scalar product is

P · (Q×R) = (6− 1)1− (4− 3)2 + (2− 9)3 = 5− 2− 21 = 18 6= 0;

so no, they don’t lie on the same plane. �
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Example 20. Prove that the maximum volume of a parallelepiped with sides of
length one is a cube.

Solution. First, draw a picture and give everything in the picture a name. Let

~a,~b,~c ∈ V3. Let ~x = ~b× ~c. Let θ be the angle between ~b and ~c. Let φ be the angle
between ~a and ~x. Note that θ, φ ∈ [0, π].

The volume of a parallelepiped is base times height. The area of the base is the
length of the cross product; since we have unit vectors, this is sin θ. The height is
the projection of ~a onto ~x; since ~a has unit length, this is cosφ. Thus the volume
is sin θ cosφ.

To maximize this product, maximize each of the factors; sin θ is largest when

θ = π/2 and cosφ is largest when φ = 0. Thus the volume is maximized when ~b ⊥ ~c
and ~a‖~x, which means that ~a ⊥ ~b and ~a ⊥ ~c. This is a cube. �
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15. Summary

• Given a “real-life” problem the geometry of the situation lies initially in
affine space and we may impose the coordinate system which is most con-
venient. This is the reason for the distinction between affine space and
cartesian space.
• Arrows have position, direction, and magnitude. The set of arrows is labeled
An. Vectors have only direction and magnitude. The set of vectors is
labeled Vn. Two arrows with the same magnitude and direction “represent”
the same vector. We think of vectors as arrows which we can “slide around”,
to be placed at any convenient tail.
• The set of vectors labeled with coordinates is Rn. There is no geometric

difference between Vn and Rn. The reason for the distinction is that there
is more than one way to impose coordinates on Vn; every rotation of an
axis system gives a different correspondence

Vn ↔ Rn.

• The coordinates of a vector in Rn are the coordinates of its tip when its
tail is at the origin. This gives a natural correspondence

Rn ↔ Rn.

• The operations of vector addition, scalar multiplication, dot product, and
cross product are defined geometrically in Vn and algebraically in Rn ↔
Rn. The correspondence Vn ↔ Rn respects these operations. Thus we
may think of vectors as equivalence classes of arrows or as points, and flip
between these ways of thinking at will.
• The dot product of two vectors is the length of the projection of one onto

the other, adjusted by the length of the other.
• The cross product of two vectors is perpendicular to both of them, with

length equal the area of the parallelogram determined by them, oriented by
the right hand rule.
• Many formulas relating dot and cross products to projections, angles, and

so forth can be derived from the above interpretations using pictures and
simple geometric facts, and then computed with the algebraic definitions.
• The purpose of describing vectors in this way is to build up geometric

intuition which will be helpful in solving problems using vector calculus.
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16. Exercises

Exercise 1. Let A, B, and C be any sets. Determine which of the following
statements is true, using Venn diagrams if necessary:

(a) A ⊂ B ⇒ A ∩B = A
(b) A ⊂ B ⇒ B rA = B
(c) Ar (B ∪ C) = (ArB) ∪ (Ar C)
(d) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Exercise 2. Let R be the set of real numbers. For a, b ∈ R, let [a, b] = {x ∈ R |
a ≤ x ≤ b} be the closed interval between a and b. Let Z = {. . . ,−2,−1, 0, 1, 2, . . . }
be the set of integers. Note that Z ⊂ R. How many elements are contained in the
following sets?

(a) ([−2, 3] ∪ [5, 9]) ∩ Z
(b) ([

√
2, π] ∪ (33, 25]) ∩ Z

(c) ([1, 5]× (3, 6)) ∩ (Z× Z)

Exercise 3. Graph the box whose diagnonal vertices are the points (0, 0, 0) and
(1, 4, 2). Label each vertex of the box.

Exercise 4. LetA = [0, 1], B = [1, 2), and C = (3, 4]. Graph the setA×A×(B∪C).

Exercise 5. Describe (and sketch if possible) the graph of the following equations:

(a) z = 2
(b) (x2 + y2)z = 0
(c) x2 + y2 + z2 = 0
(d) x2 + y2 + z2 + 4 = 0

Exercise 6. Find the center and the radius of the sphere which is the solution set
of the equation

x2 + y2 + z2 = 4x+ 9y + 36z.

Graph the sphere.

Exercise 7. Consider the line seqment from P1(x1, y1, z1) to P2(x2, y2, z2). Con-
vince yourself that its midpoint is(x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
.

Exercise 8. Find an equation of a sphere if one of its diameters has endpoints
(2, 1, 4) and (4, 3, 10).

Exercise 9. Something to think about regarding calculators:

(a) Is the product of a rational number and an irrational number ever rational?

(b) If your answer to a problem contains
√

2 and/or π, does this tell you any-
thing about the geometry of the problem?

Exercise 10.
E&P § 12.3 # 1*,5*,9,15,23,37
E&P § 13.1 # 1,3
(* = skip the perpendicular part for now)

Exercise 11. Let ~v = 〈1, 2, 3〉 and ~w = 〈3, 2, 1〉. Find the following, avoiding
calculation where possible:
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(a) |~v|
(b) |~w|
(c) ~a = ~v + ~w

(d) ~b = ~v − ~w
(e) |~a|
(f) |~b|
(g) ~c = 3~a+ 3~b
(h) |~c|

Exercise 12. Let ~a = 〈1, 2, 3〉, ~b = 〈−2, 0,−3〉, and ~c = 〈1,−2, 0〉.
(a) Draw each of these vectors emanating from the origin.

(b) Now draw ~a eminating from the origin, ~b with its tail at the tip of ~a, and

~c with its tail at the tip of ~b.

(c) Find ~a+~b+ ~c. Does your result agree with your picture?

Exercise 13. (Challenge) The spheres x2 + y2 + z2 = 144 and (x − 3)2 + (y −
4)2 + (z − 12)2 = 25 intersect in a circle. Find the center of the circle. (Hint: Let
P = (3, 4, 12), Q be a point of intersection of the spheres, and R be the center
point. Use the trigonometric properties of pythagorian triples and quadruples to
analyse the situation. Note that the line through Q and R is perpendicular to the
line connecting the centers of the spheres.)

Exercise 14.
E&P § 12.3 # 17,19,24,31
E&P § 13.1 # 11,15,47,51,52

Exercise 15. Show that the vector

~v = ~b− ~a ·
~b

|a|2
~a

is orthogonal to ~a.

Exercise 16. Let ~v, ~w ∈ R2. Give a geometric interpretation of and prove the
following formulae:

(a) Cauchy Schwarz Inequality:

|~v · ~w| ≤ |~v||~w|
(b) Triangle Inequality:

|~v + ~w| ≤ |~v|+ |~w|
(c) Parallelogram Law:

|~v + ~w|2 + |~v − ~w|2 = 2|~v|2 + 2|~w|2

(Hint for (b) and (c): Use the Cauchy Schwarz Inequality, the distributivity of dot
over sum, and the fact that |~v + ~w|2 = (~v + ~w) · (~v + ~w).)
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Exercise 17. (Challenge) Let f be the real valued function defined by

f(t) =
proj〈1,1〉(〈t, t2〉)

t2
.

Interpret limt→∞ f(t) geometrically. (Hint: For several values of t, draw the vectors

〈t, t2〉 and 〈t,t
2〉

t2 . Consider the limit of the slope of the function t2 as t approaches
infinity.)

Exercise 18.
E&P § 13.2 # 1,3,7,11,26

Exercise 19. Find the volume of the parallelepiped determined by the vectors

~a = 〈1, 2, 3〉, ~b = 〈2, 3, 1〉, and ~c = 〈−1, 0, z〉. Find z such that these vectors are
coplanar.

Exercise 20. Do the points P (0, 1, 2), Q(3, 7, 5), R(−1, 0, 1), and S(6, 2, 8) lie on
the same plane? Can one change this answer by changing the y-coordinate of Q?
What does this tell you?

Exercise 21. The following identities are true. Examine them for geometric con-
tent.

(a) (~a−~b)× (~a+~b) = 2(~a×~b);
(b) ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c;
(c) ~a× (~b× ~c) +~b× (~c× ~a) + ~c× (~a×~b) = 0.

(Hint: first consider the case of standard basis vectors; then consider the case of
arbitrary unit vectors; then try to generalize to arbitrary vectors.)

Exercise 22. Let f(t) be a real valued function given by

f(t) = |~i× 〈cos t, sin t, 0〉|.
Find f and interpret it geometrically, thinking of t as time and noting that as t
changes, 〈cos t, sin t, 0〉 sweeps out a unit circle in the xy-plane.

Department of Mathematics, University of California, Irvine
E-mail address: pbailey@math.uci.edu


