LINES AND PLANES

PAUL L. BAILEY

1. Lines

With the correspondence between points in \mathbb{R}^n and vectors in \mathcal{R}^n now firmly established, we now blur this distinction and jump between these contexts with impunity.

A line in \mathbb{R}^3 is determined by a point on the line and the direction of the line. The direction may be specified by a *direction vector*.

Let $P_0 = (x_0, y_0, z_0)$ be a given point and let $\vec{v} = \langle v_1, v_2, v_3 \rangle$ be a vector. If we start at P_0 and move in the direction \vec{v} for a period of time t at a rate given by $|\vec{v}|$, we arrive at the point

$$P = P_0 + t\vec{v}.$$

If we let t range throughout the real numbers, then the set of points satisfying this equation form a line. This is called the *vector equation* of the line.

If we label P = (x, y, z), then

$$(x, y, z) = (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3).$$

This gives us three equations

$$x = x_0 + tv_1, \qquad y = y_0 + tv_2, \qquad z = z_0 + tv_3.$$

These are called the *parametric equations* of the line. The variable t is called the *parameter*.

Example 1. Find the vector and parametric equations of the line which passes through the points Q(1,3,2) and R(5,-2,3).

Solution. Let \vec{v} be the vector from Q to R. Thus $\vec{v} = R - Q = \langle 4, -5, 1 \rangle$. This is the direction of the line we seek. Letting Q be a point on the line, we have that a point P is on the line if $P = Q + t\vec{v} = \langle 1 + 4t, 3 - 5t, 2 + t \rangle$. Thus the parametric equations of the line become x = 1 + 4t, y = 3 - 5t, and z = 2 + t.

If v_1 , v_2 , and v_3 are nonzero, we may eliminate the parameter t by simply solving the parametric equations for t and setting all the results equal to each other. This yields

$$\frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3}.$$

These are called the *symmetric* equations of the line.

In this form, the symmetric equations point out that the locus of $P = P_0 + t\vec{v}$ is somewhat independent of t; we could replace t by 2t or t^3 and achieve the same line. Also the symmetric equations yield the following relationships:

$$\frac{y - y_0}{x - x_0} = \frac{v_1}{v_2}; \qquad \frac{z - z_0}{x - x_0} = \frac{v_1}{v_3}; \qquad \frac{z - z_0}{y - y_0} = \frac{v_2}{v_3}.$$

Date: June 28, 1995.

These are the equations may be recognized as the equations of the *projected lines*; that is, the line in \mathbb{R}^3 may be projected each of the coordinate planes, producing a line there whose equation is retreived from the symetric equations in this way.

Example 2. Find the slope-intercept form of the equation of the line which is the projection of the line $\langle 1 + 4t, 3 - 5t, 2 + t \rangle$ onto the *xy*-plane.

Solution. We merely eliminate the third coordinate. Thus the vector equation of the line is $\langle 1+4t, 3-5t \rangle$. Eliminating t yields $\frac{x-1}{4} = \frac{y-3}{-5}$. Thus $y-3 = -\frac{5}{4}(x-1)$, so $y = -\frac{5}{4}x + \frac{7}{4}$.

Given two lines in \mathbb{R}^3 , exactly one of the following holds:

- They intersect in exactly one point.
- Their direction vectors are parallel, in which case we call them *parallel lines*.
- They do not lie on the same plane, in which case we call them *skew lines*.

That two distinct intersecting lines on the same plane intersect in exactly one point is a result of Euclid's controversial fifth postulate. The only other claim being made here is the following intuitively clear proposition.

Proposition 1. Two distinct lines have parallel direction vectors if and only if they lie on the same plane but do not intersect.

Example 3. Determine whether or not the lines $\langle 2 + t, 3 + 2t, 4 + 3t \rangle$ and $\langle -3 + 2t, 3 - t, -1 + t \rangle$ are parallel, intersecting, or skew.

Solution. The direction vectors of the lines are $\langle 1, 2, 3 \rangle$ and $\langle 2, -1, 1 \rangle$, which are not parallel; thus the lines are not parallel. Two see if they intersect, let us call the parameter of the second line s instead of t. Thus the second line becomes $\langle -3 + 2s, 3 - s, -1 + s \rangle$.

The question becomes whether or not there are real numbers s and t such that 2+t=-3+2s, 3+2t=3-s, and 4+3t=-1+s. We assume that there is such an s and t and try to find them. Adding the last two equations gives 7+5t=2 so 5t=-5 and t=-1. If t=-1, then the last equation gives 4-3=-1+s so s=2. Now plug t=-1 and s=2 into our lines and see that they give the same point, (1,1,1). Thus the lines intersect there.

2. Planes

A plane in \mathbb{R}^3 is determined by a point on the plane and a perpendicular direction. A vector which is perpendicular to a plane is called a *normal vector*.

Let $P_0 = (x_0, y_0, z_0)$ be a given point and let $\vec{n} = \langle n_1, n_2, n_3 \rangle$ be a vector. Suppose P = (x, y, z) is a point on the plane which passes through P_0 and is perpendicular to \vec{n} . Then the arrow from P_0 to P is on the plane, and the vector $P - P_0$ is perpendicular to the normal vector \vec{n} . Thus

$$(P - P_0) \cdot \vec{n} = 0.$$

The set of all P which satisfy this equation constitute the plane; this is called the *vector equation* of the plane.

Writing this in coordinates gives $(x - x_0, y - y_0, z - z_0) \cdot (n_1, n_2, n_3) = 0$ so

$$n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0.$$

$$n_1x + n_2y + n_3z = n_1x_0 + n_2y_0 + n_3z_0$$

On the other hand, the locus of an equation

ax + by + cz = d

is a plane with normal vector $\langle a, b, c \rangle$. This is called the *standard form* of the equation of a plane.

Example 4. Find the equation of the plane which passes through the point P(2, 4, 1) with normal vector equal to the position vector.

Solution. We have that $\vec{n} = \langle 2, 4, 1 \rangle$. The equation of the plane, then, is 2(x-2) + 4(y-4) + (z-1) = 0, which simplifies to 2x + 4y + z = 21.

If the plane is presented in the standard form ax + by + cz = d and a, b, c, d are positive, the plane is particularly easy to graph. Simply find the axis intercepts by setting two of the variables to zero.

$$x - \text{intercept} = \frac{d}{a}$$
 $y - \text{intercept} = \frac{d}{b}$ $z = \text{intercept} = \frac{d}{a}$

Plot these points and connect the dots to obtain a nice picture of the plane.

Example 5. Find the equation of the plane which passes through the points P(3,0,0), Q(0,2,0), and R(0,0,5).

Solution. The plane is of the form ax + by + cz = d. Let $d = 3 \cdot 2 \cdot 5 = 30$. We know that $3 = \frac{d}{a} = \frac{30}{a}$, so a = 10. Similarly, b = 15 and c = 6. Thus our plane is 10x + 15y + 6z = 30.

Example 6. Find the equation of the plane which passes through the points P(2, 1, 3), Q(1, 5, 3), and R(3, 2, 5).

Solution. The vectors $\vec{v} = Q - P = \langle -1, 4, 0 \rangle$ and $\vec{w} = R - P = \langle 1, 1, 2 \rangle$ lie on the plane. Thus their cross product is perpendicular to it, so we may use this as a normal vector.

$$\vec{n} = \vec{v} \times \vec{w} = \langle 6, 2, -5 \rangle$$

Then use P as a point on the plane, which gives the equation 6(x-2) + 2(y-1) - 2(y5(z-3) = 0, which simplifies to 6x + 2y - 5z = 6.

Given two planes, exactly one of the following holds:

- Their normal vectors are parallel, in which case they are said to be *parallel* planes.
- They intersect in a line.

The angle between two planes is the angle between their normal vectors.

Example 7. Let $\vec{v} = \langle 1, 2, 2 \rangle$ and $\vec{w} = \langle 2, 0, 1 \rangle$. Let Y be the plane spanned by \vec{v} and \vec{j} and let Z be the plane spanned by \vec{w} and \vec{k} . Find the line which is $Y \cap Z$ and the angle between Y and Z.

Solution. Outline:

- (1) Find the normal vectors using cross product;
- (2) Cross the normals to find the direction vector of the line;
- (3) Find a point on the line to produce the equation of the line;
- (4) Dot the normals to find the angle between them.

Example 8. Let T be the plane given by 5x + 3y + z = 4 and let P = (6, 2, 7). Find the distance from P to T.

Solution Method 1. Find the line through P in the direction of the normal vector of the plane. This line intersects the plane at a point Q. Then find the distance between P and Q.

Solution Method 2. Find any point Q on the plane. Let $\vec{v} = P - Q$. Find the unit normal \vec{n} to the plane. Project \vec{v} onto \vec{n} .

We find Q by plugging in arbitrary x and y and solving for z. It is easiest to use x = 0 and y = 0, which gives that Q = (0, 0, 4) is on the plane.

Now find the unit normal vector of the plane. A normal vector is (5,3,1), so the

unit normal is $\vec{n} = \frac{\langle 5,2,1 \rangle}{\sqrt{35}}$. Project the vector $\vec{v} = P - Q = \langle 6,2,3 \rangle$ onto the unit normal. This will give the distance.

$$\operatorname{proj}_{\vec{n}}(\vec{v}) = \vec{n} \cdot \vec{v} = \frac{30 + 4 + 3}{\sqrt{35}} = \frac{37}{\sqrt{35}}.$$

3. Exercises

Exercise 1.

E&P § 13.3 # 1,5,7,11,15,17,23,31,33

Exercise 2. Find an equation for the plane consisting of all points that are equidistant from the two points (1, 1, 0) and (0, 1, 1).

Exercise 3. Let A be the plane given by x + 2y + 3z = 6 and B be the plane given by 3x + 2y + z = 6.

Let $L = A \cap B$ be the line of intersection of A and B. Let P = (1, 1, 1) and note that $P \in L$.

Find the equation of the plane which is perpendicular to L and passes through the point P, expressed in the form ax + by + cz = d.

Exercise 4. (*Challenge*) The volume of a tetrahedron is $V = \frac{1}{3}Ah$, where A is the area of the triangular base and h is the height. Let P = (1, 2, 1). Some planes through P, together with the coordinate planes, determine a tetrahedron.

Let Q = (4,3,4) and let $\vec{v} = \langle -2,1,0 \rangle$. Suppose there is a moving plane at P whose normal vector \vec{n} at time t is a vector from P to the point $Q + t\vec{v}$. Find the minimum volume of a tetrahedron bounded by the coordinate planes and the plane through P with normal vector $\vec{n} = Q + t\vec{v} - P$. (Hint: find V as a function of t by considering the axis intercepts of the plane determined by \vec{n} for a fixed but arbitrary t.)

Exercise 5. (*Challenge*) Let S be the solution set of the equation $x^2 + y^2 + z^2 = 4$ Let P = (0, 0, 1). Find a vector \vec{n} such that the plane through P with normal vector \vec{n} intersects S in a circle of radius 1.

Department of Mathematics, University of California, Irvine $E\text{-}mail\ address:\ pbailey@math.uci.edu$