
LINES AND PLANES

PAUL L. BAILEY

1. Lines

With the correspondence between points in Rn and vectors in Rn now firmly
established, we now blur this distinction and jump between these contexts with
impunity.

A line in R3 is determined by a point on the line and the direction of the line.
The direction may be specified by a direction vector.

Let P0 = (x0, y0, z0) be a given point and let ~v = 〈v1, v2, v3〉 be a vector. If we
start at P0 and move in the direction ~v for a period of time t at a rate given by |~v|,
we arrive at the point

P = P0 + t~v.

If we let t range throughout the real numbers, then the set of points satisfying this
equation form a line. This is called the vector equation of the line.

If we label P = (x, y, z), then

(x, y, z) = (x0 + tv1, y0 + tv2, z0 + tv3).

This gives us three equations

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3.

These are called the parametric equations of the line. The variable t is called the
parameter.

Example 1. Find the vector and parametric equations of the line which passes
through the points Q(1, 3, 2) and R(5,−2, 3).

Solution. Let ~v be the vector from Q to R. Thus ~v = R − Q = 〈4,−5, 1〉. This is
the direction of the line we seek. Letting Q be a point on the line, we have that a
point P is on the line if P = Q + t~v = 〈1 + 4t, 3− 5t, 2 + t〉. Thus the parametric
equations of the line become x = 1 + 4t, y = 3− 5t, and z = 2 + t. �

If v1, v2, and v3 are nonzero, we may eliminate the parameter t by simply solving
the parametric equations for t and setting all the results equal to each other. This
yields

x− x0

v1
=

y − y0
v2

=
z − z0
v3

.

These are called the symmetric equations of the line.
In this form, the symmetric equations point out that the locus of P = P0 + t~v

is somewhat independent of t; we could replace t by 2t or t3 and achieve the same
line. Also the symmetric equations yield the following relationships:

y − y0
x− x0

=
v1
v2

;
z − z0
x− x0

=
v1
v3

;
z − z0
y − y0

=
v2
v3

.
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These are the equations may be recognized as the equations of the projected lines;
that is, the line in R3 may be projected each of the coordinate planes, producing a
line there whose equation is retreived from the symetric equations in this way.

Example 2. Find the slope-intercept form of the equation of the line which is the
projection of the line 〈1 + 4t, 3− 5t, 2 + t〉 onto the xy-plane.

Solution. We merely eliminate the third coordinate. Thus the vector equation of
the line is 〈1+4t, 3−5t〉. Eliminating t yields x−1

4 = y−3
−5 . Thus y−3 = − 5

4 (x−1),

so y = − 5
4x + 7

4 . �

Given two lines in R3, exactly one of the following holds:

• They intersect in exactly one point.
• Their direction vectors are parallel, in which case we call them parallel lines.
• They do not lie on the same plane, in which case we call them skew lines.

That two distinct intersecting lines on the same plane intersect in exactly one
point is a result of Euclid’s controversial fifth postulate. The only other claim being
made here is the following intuitively clear proposition.

Proposition 1. Two distinct lines have parallel direction vectors if and only if they
lie on the same plane but do not intersect.

Example 3. Determine whether or not the lines 〈2 + t, 3 + 2t, 4 + 3t〉 and 〈−3 +
2t, 3− t,−1 + t〉 are parallel, intersecting, or skew.

Solution. The direction vectors of the lines are 〈1, 2, 3〉 and 〈2,−1, 1〉, which are
not parallel; thus the lines are not parallel. Two see if they intersect, let us call
the parameter of the second line s instead of t. Thus the second line becomes
〈−3 + 2s, 3− s,−1 + s〉.

The question becomes whether or not there are real numbers s and t such that
2 + t = −3 + 2s, 3 + 2t = 3− s, and 4 + 3t = −1 + s. We assume that there is such
an s and t and try to find them. Adding the last two equations gives 7 + 5t = 2
so 5t = −5 and t = −1. If t = −1, then the last equation gives 4 − 3 = −1 + s so
s = 2. Now plug t = −1 and s = 2 into our lines and see that they give the same
point, (1, 1, 1). Thus the lines intersect there. �

2. Planes

A plane in R3 is determined by a point on the plane and a perpendicular direc-
tion. A vector which is perpendicular to a plane is called a normal vector.

Let P0 = (x0, y0, z0) be a given point and let ~n = 〈n1, n2, n3〉 be a vector.
Suppose P = (x, y, z) is a point on the plane which passes through P0 and is
perpendicular to ~n. Then the arrow from P0 to P is on the plane, and the vector
P − P0 is perpendicular to the normal vector ~n. Thus

(P − P0) · ~n = 0.

The set of all P which satisfy this equation constitute the plane; this is called the
vector equation of the plane.

Writing this in coordinates gives (x− x0, y − y0, z − z0) · (n1, n2, n3) = 0 so

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0,
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which can also be written

n1x + n2y + n3z = n1x0 + n2y0 + n3z0.

On the other hand, the locus of an equation

ax + by + cz = d

is a plane with normal vector 〈a, b, c〉. This is called the standard form of the
equation of a plane.

Example 4. Find the equation of the plane which passes through the point
P (2, 4, 1) with normal vector equal to the position vector.

Solution. We have that ~n = 〈2, 4, 1〉. The equation of the plane, then, is 2(x− 2) +
4(y − 4) + (z − 1) = 0, which simplifies to 2x + 4y + z = 21. �

If the plane is presented in the standard form ax + by + cz = d and a, b, c, d are
positive, the plane is particularly easy to graph. Simply find the axis intercepts by
setting two of the variables to zero.

x− intercept =
d

a
y − intercept =

d

b
z = intercept =

d

c
Plot these points and connect the dots to obtain a nice picture of the plane.

Example 5. Find the equation of the plane which passes through the points
P (3, 0, 0), Q(0, 2, 0), and R(0, 0, 5).

Solution. The plane is of the form ax + by + cz = d. Let d = 3 · 2 · 5 = 30. We
know that 3 = d

a = 30
a , so a = 10. Similarly, b = 15 and c = 6. Thus our plane is

10x + 15y + 6z = 30. �
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Example 6. Find the equation of the plane which passes through the points
P (2, 1, 3), Q(1, 5, 3), and R(3, 2, 5).

Solution. The vectors ~v = Q − P = 〈−1, 4, 0〉 and ~w = R − P = 〈1, 1, 2〉 lie on
the plane. Thus their cross product is perpendicular to it, so we may use this as a
normal vector.

~n = ~v × ~w = 〈6, 2,−5〉
Then use P as a point on the plane, which gives the equation 6(x− 2) + 2(y− 1)−
5(z − 3) = 0, which simplifies to 6x + 2y − 5z = 6. �

Given two planes, exactly one of the following holds:

• Their normal vectors are parallel, in which case they are said to be parallel
planes.

• They intersect in a line.

The angle between two planes is the angle between their normal vectors.

Example 7. Let ~v = 〈1, 2, 2〉 and ~w = 〈2, 0, 1〉. Let Y be the plane spanned by ~v

and ~j and let Z be the plane spanned by ~w and ~k. Find the line which is Y ∩ Z
and the angle between Y and Z.

Solution. Outline:

(1) Find the normal vectors using cross product;
(2) Cross the normals to find the direction vector of the line;
(3) Find a point on the line to produce the equation of the line;
(4) Dot the normals to find the angle between them.

�

Example 8. Let T be the plane given by 5x + 3y + z = 4 and let P = (6, 2, 7).
Find the distance from P to T .

Solution Method 1. Find the line through P in the direction of the normal vector
of the plane. This line intersects the plane at a point Q. Then find the distance
between P and Q. �

Solution Method 2. Find any point Q on the plane. Let ~v = P −Q. Find the unit
normal ~n to the plane. Project ~v onto ~n.

We find Q by plugging in arbitrary x and y and solving for z. It is easiest to use
x = 0 and y = 0, which gives that Q = (0, 0, 4) is on the plane.

Now find the unit normal vector of the plane. A normal vector is 〈5, 3, 1〉, so the

unit normal is ~n = 〈5,2,1〉√
35

.

Project the vector ~v = P −Q = 〈6, 2, 3〉 onto the unit normal. This will give the
distance.

proj~n(~v) = ~n · ~v =
30 + 4 + 3√

35
=

37√
35

.

�
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3. Exercises

Exercise 1.
E&P § 13.3 # 1,5,7,11,15,17,23,31,33

Exercise 2. Find an equation for the plane consisting of all points that are equidis-
tant from the two points (1, 1, 0) and (0, 1, 1).

Exercise 3. Let A be the plane given by x+ 2y+ 3z = 6 and B be the plane given
by 3x + 2y + z = 6.
Let L = A ∩ B be the line of intersection of A and B. Let P = (1, 1, 1) and note
that P ∈ L.
Find the equation of the plane which is perpendicular to L and passes through the
point P , expressed in the form ax + by + cz = d.

Exercise 4. (Challenge) The volume of a tetrahedron is V = 1
3Ah, where A is

the area of the triangular base and h is the height. Let P = (1, 2, 1). Some planes
through P , together with the coordinate planes, determine a tetrahedron.

Let Q = (4, 3, 4) and let ~v = 〈−2, 1, 0〉. Suppose there is a moving plane at P
whose normal vector ~n at time t is a vector from P to the point Q + t~v. Find the
minimum volume of a tetrahedron bounded by the coordinate planes and the plane
through P with normal vector ~n = Q + t~v − P . (Hint: find V as a function of
t by considering the axis intercepts of the plane determined by ~n for a fixed but
arbitrary t.)

Exercise 5. (Challenge) Let S be the solution set of the equation x2 + y2 + z2 = 4
Let P = (0, 0, 1). Find a vector ~n such that the plane through P with normal vector
~n intersects S in a circle of radius 1.
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