
COMPOSITION, GRADIENT, AND EXTREMA
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1. Composition of Functions

Let A, B, and C be sets and let f : A→ B and g : B → C. The composition of
f and g is the function

g ◦ f : A→ C

given by

g ◦ f(a) = g(f(a)).

If f and g are injective, then g ◦ f is injective. If f and g are surjective, then
g ◦ f is surjective.

The domain of g ◦ f is A and the codomain is C. The range of g ◦ f is the image
under g of the image under f of the domain of f .

Example 1. Let A be the set of living things on earth, B the set of species, and
C be the set of positive real numbers. Let f : A → B assign to each living thing
its species, and let g : B → C assign to each species its average mass. Then g ◦ f
guesses the mass of a living thing.

Example 2. Let ν : An → Vn be the function that assigns an arrow to the vector
it represents. Let φ : Vn → R3 be a coordinatization of the set of n-dimensional
vectors. Then φ ◦ ν : An → Rn sends each arrow to a coordinatized point.

Example 3. Let f : R→ R be given by f(x) = x2 and let g : R→ R be given by
g(x) = sinx. Then g ◦ f : R→ R is given by g ◦ f(x) = sinx2 and f ◦ g : R→ R is
given by f ◦ g(x) = sin2 x.

Example 4. Let ~r : R → R2 be given by ~r(t) : 〈2 cos t, sin t〉. The image of ~r is
an ellipse in the plane. Let ~s : R2 → R3 be given by ~s(x, y) = 〈x, y, y2 − x2〉. The
image of ~s is a saddle surface.

Then the image of ~s ◦~r is a curve in R3 whose shape is roughly the boundary of
a potato chip.

We may think of the ellipse as a road on a plane. Then think of ~s as an earthquake
which takes the plane and shifts it, warping its shape into a saddle. The road is
carried along with the plane as it warps. The new position of the road is the image
of the composition of the functions.

2. Chain Rule

Let f : R2 → R and let ~r : R → R2. Then f ◦ ~r : R → R is a real domained
real valued function. Geometrically, we view the image of ~r as a curve on the plane
and we view the graph of f as a surface in R3. If we vertically project the curve
onto the surface, we obtain a curve in R3. The height of this curve is given by the
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function f ◦ ~r. We may interpret the derivative of f ◦ ~r to be the rate of change in
the height of this curve.

The derivative of ~r is a tangent vector in R2. Let f vertically project this tangent
vector onto the plane tangent to the surface over the point ~r(t0) for some t0 ∈ R.
This vertically projected vector is tangent to the vertically projected curve, and its
z component is the rate of change in the height of the curve.

We know from our study of differentials that the z component is related to the x
and y components. Suppose that the coordinate functions of ~r are x(t) and y(t), that
is, ~r(t) = 〈x(t), y(t)〉. Since the vertically projected vector’s tail sits on the point
(x(t), y(t), f(x(t), y(t)), we think of the x component of the vertically projected
vector as ∆x, a change in x, and the y component of the vertically projected vector
as ∆y, a change in y. Then the z component is ∆z, the change in z on the tangent
plane, which is given by

dz =
∂z

∂x
∆x+

∂z

∂y
∆y.

By our manner of taking the derivative of a path, we know that the components
of a tangent vector are the derivatives of the component functions. Thus ∆x = dx

dt

and ∆y = dy
dt .

Thus we have
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

Example 5. Let z = 9− x2 − y2 and let ~r(t) = 〈2 cos t, sin t〉. Find dz
dt .

Solution #1. The partials for the paraboloid are ∂z
∂x = −2x and ∂z

∂y = −2y. The

derivatives of the component functions are dx
dt = −2 sin t and dy

dt = cos t. Thus

dz

dt
= (−2x)(−2 sin t) + (−2y)(cos t)

= 8 sin t cos t− 2 sin t cos t

= 6 sin t cos t = 3 sin 2t.

�

Solution #2. We may explicitly write z as a function of t by substitution: z =
9− 4 cos2 t− sin2 t. Then dz

dt = 8 cos t sin t− 2 sin t cos t. �

Now consider functions f : R2 → R2 and g : R2 → R. Then f is some transfor-
mation of the plane, and the graph of g is a surface. The lines x = k and y = k, for
some constant k, are sent to curves by f . Thus we may apply to above reasoning
to partially visualize the chain rule in this case. Since g ◦ f : R2 → R, we obtain
the partial derivatives.

Let u and v be the coordinates in the domain of f and let x and y be the
coordinates in the domain of g. Let w = g ◦ f . Then x, y, and w are functions of
u and v and a point in the image of w may be written w(x(u, v), y(u, v)). Since
w : R2 → R, we obtain the partial derivatives

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u

and
∂w

∂v
=
∂w

∂x

∂x

∂v
+
∂w

∂y

∂y

∂v
.
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Example 6. Let f : R2 → R be given by f(x, y) = z = y2 − x2. Find the partials
of f with respect to polar coordinates.

Solution. Let g : R2 → R2 be given by f(r, θ) = 〈r cos θ, r sin θ〉. This function is
the polar coordinate transformation. Then

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r

= (−2x)(cos θ) + (2y)(sin θ)

= (−2r cos θ)(cos θ) + (2r sin θ)(sin θ)

= −2r cos2 θ + 2r sin2 θ = −2r cos 2θ.

Note that for θ = π/2, this partial is zero. This corresponds to the radial lines at
this angle on the saddle surface.

Also
∂z

∂θ
=
∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ

= (−2x)(−r sin θ) + (2y)(r cos θ)

= (−2r cos θ)(−r sin θ) + (2r sin θ)(r cos θ)

= 4r cos θ sin θ = 2r sin 2θ.

Note that this is zero whenever θ is a multiple of π; this corresponds to the extrema
on concentric circles. �

Lastly, consider functions f : Rm → Rn and g : Rn → R. Then g ◦ f : Rm → R.
Label the coordinates of Rm by t1, . . . , tm and the coordinates of Rn by x1, . . . , xn.
When we consider g ◦ f , each coordinate of Rn is a function of the coordinates of
Rm. Let w = g ◦ f . Thus we may write a point in the image of w as

w(x1(t1, . . . , tm), . . . , xn(t1, . . . , tm)).

The chain rule in this case is

∂w

∂ti
=

n∑
j=1

∂w

∂xj

∂xj
∂ti

.
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3. Tangent Vectors of Projected Curves

Let us recapitulate. Draw a corresponding picture using your favorite curves and
surfaces as you read this.

Let ~r : R → R2. The image of ~r is a curve on a plane. Let the component
functions of ~r be x(t) and y(t) so that ~r(t) = 〈x(t), y(t)〉. Let f : R2 → R. The
graph of f is a surface. Then the composition z = f ◦ ~r : R → R is a real
domained, real valued function which represents the height of the curve ~c(t) =
〈x(t), y(t), f(x(t), y(t))〉.

Let ~s : R2 → R3 be given by ~s(x, y) = 〈x, y, f(x, y)〉, so that the image of ~s is the
same surface as the graph of f . Note that ~c = ~s ◦ ~r. The image of ~c is the vertical
projection of the curve which is the image of ~r onto the surface which is the image
of ~s.

Let t0 ∈ R be a point in the domain of ~r. Then ~r(t0) = (x0, y0) ∈ R2 is a point
in the domain of f .

The velocity vector ~c′(t0) is the vertical projection of the velocity vector ~r′(t0)
onto the tangent plane of the surface over the point (x0, y0). The z component of
~c′(t0) is z′(t0), which is the rate of change of the height of the curve given by ~c at
time t0, and is given by the chain rule as

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dz

dy
.

Note that the tangent plane is the graph of an injective function ~p : R2 → R3

given by

~p(x, y) = 〈x, y, z0 +
∂z

∂x
(x− x0) +

∂z

∂y
(y − y0)〉,

where z0 = f(x0, y0). Thus there is a one to one correspondence between the
vectors emanating from (x0, y0) and the tangent vectors on the tangent plane.

Thus every vector on the tangent plane arises as the velocity vector of a vertically
projected curve. We now find such a curve explicitly.

Let ~w = 〈w1, w2, w3〉 be an arbitrary vector on the tangent plane, which we think
of as emanating from the point (x0, y0, z0). Then ~v = 〈w1, w2〉 is a vector in the
domain of f emanating from the point (x0, y0). Let ~r(t) = 〈x0 + w1t + y0 + w2t〉
be a line in the domain of f which passes through the point (x0, y0. Note that
~r(0) = (x0, y0) and that the velocity of this line in ~v. Let ~c(t) = ~s ◦ ~r(t) be the line
vertically projected onto the surface. The velocity vector of ~c at t = 0 is ~w, because
w3 is determined by w1, w2, and f by the differential formula

w3 =
∂f

∂x
w1 +

∂f

∂y
w2.

Now suppose that ~v above is a unit vector. We wish to see that w3 represents
the rate of change of f in the direction ~v.
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4. Directional Derivatives

The partial derviatives of a function f : Rn → R represent the rate of change of
the function in the direction of one of the coordinates axes. We may wish to find
the rate of change in any direction, given by a unit vector ~u.

Let P ∈ Rn be a point in the domain. A point near P in the direction of ~u is
P + h~u, where h is a small positive real number. The average rate of change of the

function f between P and P + h~u is f(P+h~u)−f(P )
h . Thus we define the directional

derivative of f at the point P in the direction ~u to be

D~uf(P ) = lim
h→0

f(P + h~u)− f(P )

h
.

The directional derivative is the instantaneous rate of change of the function f in
the direction ~u at the point P .

To compute directional derivatives, we use the following proposition, which is
readily generalized to functions with higher dimensional domains.

Proposition 1. Let D ⊂ R2 and let f : D → R. Let ~u = 〈u1, u2〉. Then

D~uf =
∂f

∂x
u1 +

∂f

∂y
u2.

Proof. Let P0 = (x0, y0) ∈ D and let ~r(h) = P0 + h~u. Then ~r(h) = 〈x(h), y(h)〉
where x(h) = x0 + hu1 and y(h) = y0 + hu2. Thus

D~uf(x0, y0) = lim
h→0

f(P0 + h~u)− f(P0)

h
by def of dir deriv

= lim
h→0

f(~r(h))− f(~r(0))

h

=
d

dh
(f ◦ ~r)(0) by def of reg deriv

=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
by Chain Rule

=
∂f

∂x
u1 +

∂f

∂y
u2.

�

Viewing the above proof geometrically, we note that the graph of f is a surface
in R3. The line ~r vertically projects onto this surface. The last component of
the vertically projected curve is its height. The directional derivative is the last
component of the tangent vector to this curve.

From this, we see that the directional derivative is linear in both positions.

Corollary 1. Let f, g : Rn → R and let a ∈ R be a constant. Let ~u,~v ∈ Rn be unit
vectors. Then

(1) D~u(f + g) = D~uf +D~ug;
(2) D~uaf = aD~uf ;
(3) D~u+~vf = D~uf +D~vf ;
(4) Da~uf = aD~uf .

Note that the directional derivative is a function. For a fixed f : Rn → R and
~u ∈ Rn,

D~uf : Rn → R.
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Example 7. Let f(x, y) = x2 + y2 + 4 and let ~v = 〈1, 2〉. Find the directional
derivative of f in the direction of ~v at the point (1, 1).

Solution. First note that |~v| =
√

5, so we must divide by the
√

5. But since the
directional derivative is linear, we may divide ~v first to obtain a unit vector or we
may divide the result.

For clarity, let ~u = ~u√
5
. Then D~uf = −2x 1√

5
− 2y 2√

5
so D~uf(1, 1) = −6√

5
. �

5. Gradient Vector

Let f : Rn → R and define the gradient of f to be

Of = 〈 ∂f
∂x1

, . . . ,
∂f

∂xn
〉.

We see that
D~uf = Of · ~u.

This is just a restatement of our above proposition in a more compact notation.
Note that the gradient is a function, just as a derivative is a function. Each

point in the domain of f has its own gradient vector. Thus

Of : Rn → Rn.

Such a function is called a vector field.
Now we would like to find the direction in which f is increasing the most rapidly.

We consider a sphere’s worth of unit vectors emanating from a point in the domain
of f , and find the one whose directional derivative is the greatest.

Thus let f : Rn → R and let ~u ∈ Rn. Then at every point in the domain we have

D~uf = Of · ~u = |Of ||~u| cos θ = |Of | cos θ,

where θ = ∠(Of, ~u) ∈ [0, π]. Then the maximum value of D~uf is attained when
θ = 0; that is, when ~u is parallel to Of . Therefore the gradient points in the
direction of maximum increase of the function f .

The maximum rate of change is the rate of change in the direction of the gradient
vector. To see this, we unitize the gradient vector, letting

~u =
Of
|Of |

,

and find that

D~uf = Of · ~u = Of · Of
|Of |

=
Of · Of
|Of |

=
|Of |2

|Of |
= |Of |.

Now suppose that f : R3 → R. Now let P0 = (x0, y0, z0) ∈ R3 be a point in
the domain and let K = f(x0, y0, z0). Consider the level surface of f at K. Let
~r : R→ R3 represent a curve which lies on the level surface and passes through the
point P0 at time t0. The velocity vector of ~r(t0) is tangent to the surface.

Let x(t), y(t), and z(t) be the coordinate functions of ~r so that ~r(t) =
〈x(t), y(t), z(t)〉. Now for every t ∈ R, since the curve lies on the surface, we
have that

f(x(t), y(t), z(t)) = K.

Differentiating both sides of this yields, by the chain rule,

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= 0,
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which may be rewritten as
Of · ~r′ = 0;

this says that the gradient is perpendicular to the velocity vector.
Every vector tangent to the surface may be represented by such a curve. Thus

the gradient is perpendicular to the tangent plane of the surface. We say that the
gradient is the normal vector of the surface.

It is equally true that the gradient vector is normal to a level curve of a function
from R2 into R.

We now have a way of computing the tangent line of a level curve and the tangent
plane of a level surface.

Example 8. Find an equation for the line which is tangent to the ellipse x2

4 + y2

9 = 1

at the point P0(1, 3
√

3
2 ).

Solution. The line is perpendicular to the gradient vector of a function for which

the ellipse is a level curve. Let f(x, y) = x2

4 + y2

9 so that the curve is the level
surface at 1 of f . Then the line is the set of point P such that (P − P0) · Of = 0.

Note that Of = 〈x2 ,
2y
9 〉. We evaluated the gradient at our point and get

Of(P0) = 〈 12 ,
√

3
3 〉. Then this equation becomes 1

2 (x − 1) +
√

3
3 (y − 9

2 ) = 0, which
rearranges to

y = −
√

3

2
+ 3 +

√
3

3
.

�

Example 9. The ray ~r(t) = 〈t, 2t, 2t〉, where t ≥ 0, intersects the hyperboloid
x2 + y2 − z2 = 4 in a point. Find the component of velocity of the line in the
direction normal to the surface at the point of intersection.

Solution. Lets find the point of intersection by substitution. The time t of inter-
section satisfies the equation t2 + 4t2− 4t2 = 4; thus t = 2 and ~r(1) = (2, 4, 4). The
velocity of the line is always ~v = 〈1, 2, 2〉. The speed of the line is always 9.

Let f(x, y, z) = x2 + y2 − z2. Then the hyperboloid is a the level surface of f at
f = 1. The vector normal to the the level surfaces of f is the gradient vector. We
have that Of = 〈2x, 2y,−2z〉. Evaluating this at the point of intersection gives us
the vector which is normal to the surface at this point; it is ~n = 〈4, 8,−8〉.

The component of ~v in the direction of ~n is

proj~n(~v) =
~n · ~v
|~n|

=
8 + 32− 32√
4
√

1 + 4 + 4
=

4

3
.

�
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There are some common misunderstandings about the gradient vector. We recap
what we know, and expel some of these misunderstandings.

The gradient of a function f : Rn → R IS:

• a vector which lies in the DOMAIN of a function;
• a vector which we may dot with a unit vector to obtain a directional deriv-

ative;
• a vector which points in the direction of maximum increase of the function;
• a vector whose length is the maximum rate of change of the function;
• a vector which “points into the hill” on the GRAPH of f ;
• normal to the LEVEL SETS of the function.

The gradient of a function f : Rn → R IS NOT:

• a vector which lies in the RANGE or in the DOMAIN × RANGE of the
function f ;
• a vector which is normal to the GRAPH of the function f ;
• a vector which “points uphill” on the GRAPH of f .
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6. Differentiability

Consider this section to be optional. You should read it, but we will not study
functions which are not differentiable.

We are now in a position to define what it means for a function f : Rn → R to be
differentiable at a point P ∈ Rn. Recall that we intuitively wish this to mean that
the graph of the function is approximated by the graph of a linear function (such
as a line if n = 1 or a plane if n = 2) near the point P , and that this approximation
should become better and better the closer we get to P .

First, we generalize our terminology by saying that a subset D ⊂ Rn is a hyper-
plane if D is a “flat” set in Rn of dimension n− 1. Such a set is the span of n− 1
vectors whose tails are at P ∈ D.

Thus let f : Rn → R and let P ∈ Rn. Suppose that all of the partial derivatives
of f exist at P , so that Of exists at P . We define the linear approximation of f at
P to be the function TP : Rn → R which is given by

TP (Q) = f(P ) + Of(P ) · (Q− P );

the graph of this function is called the tangent hyperplane of f at P .
Consider the case n = 2, z = f , P = (x0, y0), Q = (x, y), and f(x0, y0) = z0. Let

∂z
∂x and ∂z

∂y be the partial derivatives of f evaluated at (x0, y0), so that Of(P ) =

〈 ∂z∂x ,
∂z
∂y 〉. Thus in this case

TP (Q) = f(P ) + Of(P ) · (Q− P )

= z0 + 〈∂z∂x, ∂z
∂y
〉 · (x− x0, y − y0)

= z0 +
∂z

∂x
(x− x0) +

∂z

∂y
(y − y0),

which is the equation of the tangent plane which we have previously seen.
We say that f : Rn → R is differentiable at P ∈ Rn if all the partials of f exist

at P (so that Of exists at P and TP exists) and also

lim
Q→P

|f(Q)− TP (Q)|
|Q− P |

= 0;

that is, not only does TP (Q) approach f(P ) as P approaches Q, but it does so
faster than the approach.

We may restate this in terms of differentials by saying that f : R2 → R is
differentiable at (x0, y0) if

lim
(∆x,∆y)→(0,0)

∆z − dz
|〈∆x,∆y〉|

= 0.

One may ask why we don’t simply require all the partials to exist, or that
TP (Q) approach f(P ) as Q approaches P . The answer is that these definitions are
insufficient to guarantee that the locus of TP is a unique hyperplane, or to give us
the following proposition, which is true under our definition:

Proposition 2. Let f : Rn → R and g : R → R be differentiable. Then g ◦ f is
differentiable.

The idea of differentiability extends to functions f : Rm → Rn; however, in this
case, the map TP becomes a linear transformation of multiple dimensions which
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is described by a matrix of partial derivatives. Understanding this in any detail
requires linear algebra.
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7. Extrema

Let f : D ⊂ Rn → R. Let P ∈ Rn be a point in the domain of f . Since the range
R is an ordered set (unlike Rn itself), we may compare f(P ) to f(Q) for points Q
near P . If f(P ) is the largest value attained by f in some neighborhood of P , we
say that P is a local maximum of f , and that f(P ) is a local maximum value of f .
In symbols, P is a local maximum if there exists some real number δ > 0 such that
for every Q with |Q− P | < δ, we have f(Q) ≤ f(P ).

Similarly, P is a local minimum if f(Q) is the smallest value attained by f in
some neighborhood of P . If P is either a local maximum or a local minimum, we
say that P is a local extremum.

Example 10. The function of f(x, y) = (4 − x2 − y2)2 has a local maximum at
the origin; the local maximum value there is 16.

If f(P ) ≥ f(Q) for every Q ∈ D, we say that P is a global maximum of f ; if
f(P ) ≤ f(Q) for every Q ∈ D, we say that P is a global minimum.

It is possible that global extrema do not exist. For example, a plane has no local
nor global extrema.

A set D ⊂ Rn is called compact if it is closed and bounded. Here, closed means
that the set contains all of its boundary points and bounded means that it may be
contained in a sphere of finite radius.

Proposition 3. Let D ⊂ Rn be a compact set and let f : D → R be continuous.
Then f attains a global maximum value and a global minimum value somewhere on
D.

Proof. We suppose that D is “connected”, that is, it is all in one piece. The gist
of the proof is that a continuous function maps compact sets to compact sets and
connected sets to connected sets. Thus the image of f is some closed interval of
real numbers. Then the minimum of the function is the lower endpoint of the this
interval. �

8. Critical Points

Let f : D ⊂ Rn → R be differentiable and suppose that P ∈ D. We say that P
is a critical point of f if the gradient vector at P is the zero vector, that is, if the
partial derivatives are all equal to zero at P .

First suppose that f : R → R and that f ′(x0) = 0 for some x0 ∈ R. For
simplicity, we assume that f ′ is continuous near x0. Thus on either side of x0,
there is a small interval where f ′ is either positive, negative, or zero.

If the sign of the derivative is the same on either side, then we have a local
extremum; the second derivative detects whether it is a minimum or a maximum.
If the second derivative is positive, then the derivative is increasing, so function is
sloping less and less downward as we approach x0, and is sloping more and more
upward as we leav x0. This is a local minimum. A negative second derivative
detects a local maximum.

It is possible that the signs differ on either side, such as is the case for the
function f(x) = x3 at x0 = 0. In this case, the second derivative is also zero.
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It is also possible that the derivative is zero on one side of x0 but nonzero on the
other. For example, this occurs at x0 = 0 with the function

f(x) =

{
0 if x < 0

x2 if x ≥ 0

In this case, the second derivative is discontinuous and undefined at x0 = 0.
Lastly, the derivative may be zero everywhere in a neighborhood of x0, in which

case we say that the function is locally constant.
Now let us examine what the partial derivatives being zero implies for function

f : R2 → R; the ideas are generalizable to higher dimensions.
Thus let f : R2 → R and let P0 = (x0, y0) be a critical point. Define g(x) =

f(x, y0) and h(y) = f(x0, y). Then we have g′ = fx and h′ = fy. Now if (x0, y0) is
a local extremum of f , it is clear that x is a local extremum of g and y is a local
extremum of h.

On the other hand, suppose that x0 is a local extremum of g and y0 is a local
extremum of h. It turns out that, if these extrema are of the same type (either
both maxima or both minima), this implies that (x0, y0) is a local extremum of f .

To see this, we consider the second order directional derivative. We assume here
that the second partials of f are continuous. Let ~u = 〈u1, u2〉 be a unit vector.
Then D~uf = fxu1 +fyu2. Note that D~uf is a real valued function of two variables.
Thus we may apply the operator D~u a second time:

D2
~uf = D~u(fxu1 + fyu1)

= D~u(fx)u1 +D~u(fy)u1 because D~u is linear

= (fxxu1 + fxyu2)u1 + (fyxu1 + fyyu2)u2

= fxxu
2
1 + 2fxyu1u2 + fyyu

2
2 because fxy = fyx

We are interested in whether or not D2
~u has the same sign for all unit vectors ~u,

because this operator D2
~u tells us if the slice of the surface in the direction of ~u is

concave up or concave down. If the sign of the second order directional derivative is
the same in all directions, this will tell us that the critical point is a local extremum.

Now suppose that fxx(x0, y0) 6= 0 and fyy(x0, y0) 6= 0, as happens when g and
h have local extrema at (x0, y0). We may think of our last expression of D2

~u as a
polynomial in u1. We wish to see if this polynomial has any roots. If it has no
roots, then the D2

~u never changes sign as ~u rotates around the critical point. If it is
always positive, the critical point is a local minimum of f . If it is always negative,
the critical point is a local maximum of f .

If it has two roots, then the D2
~u detects a local minima in some directional slices

and a local maximum in others. In this case, the critical point is called a saddle
point. If it has exactly one root, it is called a degenerate critical point.

The roots of the polynomial are given by the quadratic formula as

−2fxyu2 ±
√

4f2
xy − 4fxxfyyu2

2

2fxx
= u2

(−fxy ±√f2
xy − fxxfyy

fxx

)
.

Now u2 depends on u1 and is never zero when u1 is. Thus to find how many roots
this polynomial has, it suffices to look at the discriminant; by tradition we let

∆ = fxxfyy − f2
xy.

Note that this is the negative of the value under the radical above.
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If ∆ > 0, the polynomial has no real roots, because then the value under the
radical is negative. In this case we have a local extremum. Whether such a qua-
dratic polynomial is always positive or always negative depends on the sign of the
coefficient in front of u2

1, in this case, fxx. If fxx > 0, then the polynomial is always
positive, which means that all slices are concave down, so we have a local minimum.
If fxx < 0, then we have a local maximum.

If ∆ < 0, the polynomial has two real roots. Some slices are concave up and
some are concave down, so we have a saddle point.

If ∆ = 0, more complex things are happening, and we have a degenerate critical
point.

If fxx = 0 at our critical point, we may use the same test with fyy. If this is also
zero, the second derivative test fails. We cannot conclude that we have a degenerate
critical point.

Example 11. Find and classify the critical points of f(x, y) = x2 + y2.

Solution. The partials are fx(x, y) = 2x and fy = 2y. These are zero only at
the origin. The second order partials are fxx = 2, fyy = 2, and fxy = 0. Thus
∆ = 4 > 0, and fxx = 2 > 0, so we have a local minimum. �

Example 12. Find and classify the critical points of f(x, y) = x2 − y2.

Solution. The partials are fx(x, y) = 2x and fy = −2y. These are zero only at
the origin. The second order partials are fxx = 2, fyy = −2, and fxy = 0. Thus
∆ = −4 > 0, and we have a saddle point. �

Example 13. Find and classify the critical points of f(x, y) = x2 + y3.

Solution. The partials are fx(x, y) = 2x and fy = 3y2. These are zero only at
the origin. The second order partials are fxx = 2, fyy = 6y, and fxy = 0. Thus
∆(0, 0) = 12y |(0,0)= 0, and we have a degenerate critical point. �

Example 14. Find and classify the critical points of f(x, y) = x2 + y3 + 3xy.

Solution. The partials are fx(x, y) = 2x + 3y and fy = 3y2 + 3x. First find all
solutions to fx = fy = 0. The first equations gives that y = − 2

3x. Plugging this

into the second gives that 4
3x

2 + 3x = 0. Thus x = 0, in which case y = 0, or

x = − 9
4 , in which case y = 3

2 . Thus our critical points are (0, 0) and (− 9
4 ,

3
2 ).

The second order partials are fxx = 2, fyy = 6y, and fxy = 3. Thus ∆(x, y) =
12y − 3. So ∆(0, 0) = −3 < 0, implying that the origin is a saddle point. Also
∆(− 9

4 ,
3
2 ) = 15 > 0 and fxx(− 9

4 ,
3
2 ) = 2 > 0, so (− 9

4 ,
3
2 ) is a local minimum with

minimum value f(− 9
4 ,

3
2 ) = − 27

16 . �
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9. Lagrange Multipliers

We now simultaneously consider two different problems, which initially seem
unrelated. The first is geometric: we ask, “when are the level sets of to functions
tangent?”. The second is analytic: we ask, “how may a maximize or minimize a
function when constrained by an extra condition?”

Let f : Rn → R and g : Rn → R. Suppose that we wish to minimize f under the
condition that our minimum P ∈ Rn also has to satisfy an equation of the form
g(P ) = K for some constant K. The condition g(P ) = K is called a constraint.
This is the same as asking for the minimum value attained by f on the level set of
g at K.

Note that no two distinct level surfaces of f intersect. We think of the level
surfaces of f as moving through space as time passes. The value of f on the surface
at time t is t; for smaller t, f has smaller values. Some of these level surfaces
of f will intersect the set where g = K and some will not. The first one that
does will be the one with the smallest values of f , that is, the minimum value of
f on the set where g = K. The surfaces will be tangent when they first touch.
Thus there normal vectors will be parallel there. Since these are level surfaces, the
normal vectors are given by the gradient vector. Thus Of‖Og at the minimum
point. Similar comments apply to maxima.

The condition Of‖Og may be stated as Of = λOg for some real number λ. This
equation gives us n equations in n+ 1 variables (the n coordinate variables plus λ).
The constraint gives us another equation, so we search for solutions to this system
of equations. This is called the method of Lagrange multipliers.

Example 15. Find the minimum and maximum values of f(x, y) = x2 +y2 subject
to the constraint x2 − y2 = 1.

Solution. First view this geometrically. The level curves of f are circles, which we
view as expanding with time. The minimum value of f on the hyperbola x2−y2 = 1
is attained on a circle centered at the origin which is tangent to the hyperbola. This
occurs for a circle of radius one, which is the level surface of f at 1. There is no
maximum value.

Now we find this analytically via the method of Lagrange multipliers. Let
g(x, y) = x2 − y2. Thus our hyperbola becomes the level surface of g at 1, and the
equation g(x, y) = 1 is our constraint. Then Of = 〈2x, 2y〉 and Og = 〈2x,−2y〉.
We solve the following system of equations:

(1) 2x = λ2x;
(2) 2y = −λ2y;
(3) x2 − y2 = 1.

Immediately from equation (1), either x = 0 or λ = 1. But x = 0 does not satisfy
equation (3), so λ = 1. Then equation (2) gives that y = 0, so x = 1 and y = 0.
Thus the minimum occurs at (1, 0), as we suspected, and the minimum value of f
on the hyperbola is f(1, 0) = 1. �

Example 16. Find all level surfaces of f(x, y, z) = x2 + (y − 1)2 − z2 which are
tangent to the sphere of radius 2 centered at the origin. In the process, find the
minimum and maximum values attained by f on the sphere and the points where
they occur.
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Solution. We search for level surfaces of f which intersect the unit sphere in points
where their normal vectors are parallel via the method of Lagrange Multipliers.

Let g(x, y, z) = x2 + y2 + z2. Then our sphere is the level surface of g at 4.
We have Of = 〈2x, 2(y − 1),−2z〉 and Og = 〈2x, 2y, 2z〉. We solve the system of
equations

(1) 2x = λ2x;
(2) 2(y − 1) = λ2y;
(3) −2z = λ2z;
(4) x2 + y2 + z2 = 4.

Equation (1) gives that either x = 0 or λ = 1. If λ = 1, then equation (2) gives
that −2 = 0, a contradiction. Thus λ 6= 1, and x = 0.

Equation (3) gives that either z = 0 or λ = −1. We test these cases separately.
Suppose that z = 0. Since x is also zero, we have that y2 = 4 so y = ±2. Thus

(0,−2, 0) and (0, 2, 0) at points where the sphere is tangent to some level surface
of f . These surfaces are at f(0,−2, 0) = 9 and f(0, 2, 0) = 1 respectively.

Suppose that λ = −1. Then from equation (2), 2y − 2 = −2y so y = 1
2 .

Plugging this and x = 0 into equation (4) gives that z = ±
√

15
2 . Thus the points

(0, 1
2 ,±

√
15
2 ) at points of tangency between the sphere and the level surface of f at

f(0, 1
2 ,±

√
15
2 ) = − 14

4 . This is the minimum value of f on the sphere, and 9 is the
maximum value.

Geometrically, we know that the level surfaces of f at t are one sheeted hyper-
boloids for t > 0 and two sheeted hyperboloids for t < 0. The axis of symmetry
of the hyperboloids intersects the sphere off center; thus there are two one sheeted
hyperboloids which are tangent the the sphere and there is one such two sheeted
hyperboloid. �
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