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1. NORMALIZERS

Definition 1. Let G be a group, X C G, and g € G. Set
gXg ' ={yecG|y=grg ' for some x € X}.

We say that g normalizes X if gXg=! = X for all z € X.
Let A C G. We say that A normalizes X if a normalizes X for every a € A.
Let H < G. The normalizer of X in H is

Nyg(X)={he€ H|hXh™' =X}
Proposition 1. Let G be a group, H < G, and X C G. Then Ny(X) < H.

Proof. Since 1 € H, and 1z17! = z for all x € X, we know 1 € Ny (X).

Let hy,hy € Ny(X). Then

hiho X (hiho) ™t = hy(haXhy DAyt = i Xhit = X,

so hiho € NH(X)

Let h € H, so that X = hXh~'. Multiply both sides by h~! on the left and by
h on the right to get

h'Xh=h"'hXh 'h=X;
thus h=! € Ny (X). O
Observation 1. If we define the subnormalizer of X in H to be
Nu(X)={heH|hXh 'CcX}={heH|hzh™ € X forall z € X},

we wonder if these definitions are equivalent. Our proof of closure under inverses
relied on the first definition. Clearly JVH(X) C Np(X), but are these sets equal?

We found a counterexample (StackExchange Mathematics Question # 2413065):

Take G = Sym(Z), the group of permutations of the integers, and let X be
the subgroup of permutations that leave the natural numbers fixed. Let g be the
permutation m — m+1. Then g € Z\A/'(;(X) : indeed, if 0 € X, then for all n > 0 we
have (g~Log)(n) = o(n+1)—1 = n because n+1 > 0. But g~! ¢ Ng(X), because
if we take 7= (=1 —2) € X, we get (97¢g71)(0)=7(0—1)+1=-2+1=—1,s0
grg "t ¢ X.
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Here is another example: https://math.stackexchange.com/posts/107866/edit
Consider the group of matrices

. Hg ﬂ :meQX,yGQ} — ACL(1,Q)

no{[h oves)az

and its subgroup

A direct calculation gives

aHa_lz{B 21y] :yGZ}<H

is a proper subgroup of *H*.
2. PrRoODUCTS

Definition 2. Let G be a group and let X, Y C G. Set
XY={zyeGlzcXandycY} and X '={r'ecG|zrecX}

Proposition 2. Let G be a group and let HH K < G. Then HK < G if and only
if HK = KH.

Proof. If M < G, then M~! = M. Thus if HK < G, then HK = (HK)™! =
K 'H'=KH.

Suppose HK = KH. Let hy,ho € H and kq,ky € K so that hik; and hoks
are arbitrary members of HK. Since HK = K H, there exists k3 € K such that
klhg = hgkg. Then hlklhgkg = h1h2k3]€2 € HK.

Let h € H and k € K so that hk is an arbitrary member of HK. Then (hk)~!
k~'h~' € KH = HK. Thus HK < G.
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3. INTERNAL DIRECT PRODUCT
Proposition 3. Let G be a group and let H, K < G with K <G. Then KH < G.

Proof. Let kih1, koho be arbitrary elements of K H, where k1, ko €= K and hy, he €
K. Then
kihikoho = klhlkghl_lhlhg = k1kshihs,

where kg = hlkghfl € K since K is normal in G. Since k1k3 € K and h1hy € H,
we have kihi1koho € KH.

Let kh € KH where k € K and h € H. Then (kh)™* = h7 k™t =
h=k=*hh=! = koh™!, where kg = h™'k~'h € K since K<G. Thus (kh)~! € KH.

Therefore KH < G. O

Proposition 4. Let G be a group and let H K <G. Then
(a) HNK <« G;
(b) HK «(@.

Proof. Recall that to show N <@, it suffices to show that gng=' € N for alln € N
and all g € G.

(a) Let h€ HNK and g € G. Then g~thg € H since H<G and h € H. Also
g thg € K since K<G and h € K. Thus g-'thg€e HNK,so HNK <G.

(b) Let hk € HK, where h € H and k € K, and let ¢ € G. Then g~ 'hkg =
g 'hgg kg = hoko, where h0 = g~ 'hg € H and kg = g~ 'kg € K. Thus g 'hkg €
HK,so HK «G. O

Proposition 5. Let G be a group and let H and K be normal subgroups of G which
intersect trivially. Then the elements of H commute with the elements of K.

Proof. Let h € H and k € K. Since H is normal in G, k~'hk € H, so h~'k~'hk €
H. Since K is normal in G, h"'k~'h € K, so h 'k~ 'hk € K. Thus h='k~'hk €
HNK ={1},s0 h"*k='hk = 1. Thus hk = kh. O

Proposition 6. Let G be a group and let H and K be normal subgroups of G which
intersect trivially. Suppose that HK = G. Then G =2 H x K.

Proof. Define a map ¢ : H x K — G by (h,k) — hk. Since G = HK, this map is
surjective.

Let (hl,kl), (hg,k?g) € N x K. Then
d((h1, k1) (ha, k2)) = ¢((hiha, k1k2)) = hihokika = hikihoka = ¢((h1, k1))@ ((h2, k2)).

Thus ¢ is a homomorphism.
Let (h,k) € ker(¢). Then hk = 1. Thus h = k~!, so h € NN K; thus h = 1.
Similarly £ = 1. Thus ¢ is injective. (I

Thus we may view G as a direct product of normal subgroups H and K whenever
H N K is trivial. This is called an internal direct product.



4. SEMIDIRECT PrRODUCT

Definition 3. Let G be a group and let H, K < G. We say the G is the (internal)
semidirect product of K and H if

e KaG;

e KNH={1};

e KH =G.
In this case we write G = K x H.

Example 1. The dihedral groups are semidirect products. Consider Dy = {0, 7}
where o is an element of order 4 and 7 is an element of order 2. Let K = (o) and
H = (7). Then K< Dy, KNH ={e},and KH = Dj,.

The simplist nonabelian groups are of the form K x H, where K and H are
cyclic. The dihedral groups are exactly the groups of the form K x H, where K is
finite cyclic and H has order 2.

Proposition 7. Let G = K x H. Then G/K = H.

Proof. The canonical map H — G/K given by h — hK is a homomorphism. Verify
that it is bijective. O

Note how the multiplication occurs in semidirect product:
kihikaohe = ky(hikohi ')y ho.

Let K and H be any groups. Let ¢ : H — Aut(X). We may construct a
semidirect product of K and H relative to ¢, denoted by K x4 H, as follows:

For h € H, denote ¢(h) by ¢},. Define a multiplication on the cartesian product
K x H by

(k1 h1)(k2, h) = (k1¢n, (k2), hihs).

Verify that this is associative. The identity is still (15, 1), and the inverse of (k, h)
is (6n k), h ).

If : H— Aut(K) is the trivial map, then K x4 H = K x H. Otherwise, we
get a group which is nonabelian, even if both K and H are abelian. In this way,
we may build nonabelian groups out of cyclic groups.

Example 2. Let X denote the graph of tanz as a subset of R2, and consider
the group of all isometries of X. There are two types: horizontal translation by
multiples of m, and rotations by 180° about z-intercepts.
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