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1. Functions

Let A and B be sets. A function from A to B, denoted f : A → B, is an
assignment of every element in A to an element in B. We say that f maps A into
B, and that f is a function on A. If a ∈ A, the element to which it is assigned is
denoted f(a). We say that a is mapped to b by f . We often think of a function as
taking the set A and placing in in the set B, possibly compressing it in the process.

If A is sufficiently small, we may explicitly describe the function by listing the
elements of A and where they go; for example, if A = {1, 2, 3} and B = R, a

perfectly good function is described by {1 7→ 23.432, 2 7→ π, 3 7→
√

593}.
However, if A is large, the functions which are easiest to understand are those

which are specified by some rule or algorithm. The common functions of single
variable calculus are of this nature, for example, the polynomials in x, sinx, log x,
etc.

If f : A → B, the set A is called the domain of the function and the set B is
called the codomain.

If C ⊂ A, we define the image of C under f to be the set

f [C] = {b ∈ B | f(a) = b for some a ∈ A}.

The image of the domain is called the range of the function.
Notice that for some functions, not every point in the codomain is necessarily in

the range. For example, if f : R→ R is given by f(x) = x2, there is no point x ∈ R
which is mapped to −1 by f . A function f : A→ B is called surjective (or onto) if

∀b ∈ B∃a ∈ A 3 f(a) = b.

Equivalently, f is surjective if f [A] = B.
If D ⊂ B, we define the preimage of D under f to be the set

f−1[D] = {a ∈ A | f(a) ∈ D}.

If D is a singleton set, that is if D = {b} for some b ∈ B, we may write f−1[b]
instead of f−1[{b}].

Notice that f−1[b] is not necessarily a single element in A. For example, if
f : R→ R is given by f(x) = x2, then the preimage of the point 4 is

f−1[4] = {2,−2}.

A function f : A→ B is called injective (or one-to-one) if

∀a, b ∈ A, f(a) = f(b)⇒ a = b.

Equivalently, f is injective if for all b ∈ B, f−1[b] contains at most one element in
A.
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A function f : A→ B is called bijective if it is both injective and surjective. Such
a function sets up a correspondence between the elements of A and the elements of
B.

Example 1. The function f : Z → Z given by n 7→ 2n is injective but not
surjective. The function g : Z × Z → Q given by (p, q) 7→ p

q is surjective but not

injective. �

Example 2. Let A3 be the set of arrows in affine space. If we assign to each arrow
the vector which it represents, we get a function

ν : A3 → V3.

Selecting a particular coordinate system for affine space gives us a function

φ : V3 → R3.

We get one such φ for every selection of axes emanating from the point we select
as the origin. Since we have identified R3 with R3, we may think of φ as a function

φ : V3 → R3.

Thus φ assigns a point in R3 to each equivalence class of directed line segments in
affine 3-space. This function is bijective, in that for every vector, we get exactly one
point in R3, and every point in R3 corresponds to a vector. Note that φ respects the
operations of vector sum, dot, and cross product. That is, φ(~v⊕ ~w) = φ(~v) +φ(~w),
and so forth. �

The graph of a function f : A→ B is defined by

{(a, b) ∈ A×B | b = f(a)}.
Note that we identify Rm×Rn with Rm+n. Thus the graph of a function f : Rm →
Rn is

{(x1, . . . , xm, y1, . . . , yn) | f(x1, . . . , xm) = (y1, . . . , yn)}.
For example, the graph of a function f : R→ R is a subset of R2 and the graph of
a function f : R2 → R is a subset of R3.

2. Continuous Functions

First we describe the concepts of limit and continuity loosely for functions in
general, and then specifically for the sets we are interested in.

Suppose that a set is endowed with a notion of when two points are “near” each
other. Such a set is called a topological space. If the notion of “nearness” is an
actual distance, so that for any two points there is a positive real number which is
the distance between them, then the set is called a metric space. Two points which
are “near” each other are said to be in the same neighborhood.

Loosely speaking, a function between such sets is said to be continuous if it
preserves the property of “nearness”; that is, the function maps nearby points to
nearby points.

More specifically, suppose that A and B are sets for which a notion of distance
is defined. Suppose f : A → B. Let a0 ∈ A so that b0 = f(a0) ∈ B. Now if ε is
a small positive real number, the set of all the points whose distance to b0 is less
than ε is a neighborhood of b0.

We say that f is continuous if for every such ε, there is a positive real number δ
such that the neighborhood of radius δ around a0 is mapped into the neighborhood
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of radius ε around b0. This is the same as saying that for every a which is within
δ of a0, then f(a) is within ε of b0.

We are dealing to the sets R, R2, and R3, each of which carries a natural notion
of distance; thus we may speak of continuous functions between these sets or subsets
of these sets.

The limit concept is fundamentally tied to the concept of continuity. Let A
and B be sets which carry a notion of distance, and suppose we have a function
f : A → B. If a0 ∈ A, by “approaching” a0 we mean we are considering other
points a ∈ A which are getting closer to a0 under our notion of distance. Thus the
function f has a limit L ∈ B as a approaches a0 if f(a) gets closer and closer to L
as a gets closer and closer to a0. How close? As close as we want, via the epsilon
and delta definition. Thus f is continuous at a point where the limit exists if the
value of f at that point is the limit.

3. Vector Valued Functions

A vector valued function is a function whose range is Vn. We may coordinatize
affine space and obtain a function into Rn (which is identified with Rn). Now we
may consider the values either as equivalence classes of directed line segments or
as points in cartesian space, whichever is convenient.

Thus suppose that D ⊂ Rm and let f : Rm → Rn. Let a0 ∈ D.
We say that the limit of the function f as a approaches a0 is L ∈ Rn and write

lima→a0 f(a) = L if for every real number ε > 0 there exists a real number δ > 0
such that if 0 < |a− a0| < δ then |f(a)− L| < ε.

We say that f is continuous at a0 ∈ D if for every real number ε > 0 there exists
a real number δ > 0 such that if |a− a0| < δ then |f(a)− f(a0)| < ε.

Equivalently, f is continuous at a0 if the lima→a0
exists and is equal to f(a0).

Thus a continuous function “commutes” with the limit operator:

lim
a→a0

f(a) = f( lim
a→a0

a) = f(a0).

Now let I be a “connected” subset of R, i.e., I is an interval. Intuitively, a
continuous function f : I → R3 behaves as follows. Think of I as a thin piece
of straight wire. Then f may bend, stretch, or compress the wire, but since it is
continuous, it cannot break the wire. Then f places the stretched and bent wire
into space.

If D is a “connected” subset of R2, e.g., a rectangle, and f : D → R3, then think
of D as a piece of sheet metal and f as a machine which bends and stretches it and
places it somewhere in space.

4. Curves and Surfaces

Lines and planes in Rn are “flat” subsets of Rn of dimension 1 and 2, respectively.
Curves and surfaces are subsets of Rn of dimension 1 and 2, respectively, which
are not necessarily flat. We will study curves and surfaces which are the images,
preimages, and graphs of continuous functions f : Rm → Rn where m,n = 1, 2, 3.

Note that the equation f(P ) = g(P ) may be written f(P ) − g(P ) = 0, where
P ∈ Rm. Thus the locus of equation f(P ) = g(P ) is the preimage of the point 0
under the function f(P )−g(P ). In general, the preimage of a point is called a level
set.
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Curves Surfaces
Graphs {(x, f(x))} {(x, y, f(x, y))}

where f : R→ R where f : R2 → R
Preimages Locus of f(x, y) = k Locus of f(x, y, z) = k
(Level Sets) where k is constant where k is constant
Images Image of f : R→ Rn Image of f : R2 → Rn

(Parametrizations)

5. Parametrized Curves

A path in Rn is a continuous function

~r : I → Rn.

The set of points which is the image of a path is called a curve. The function ~r is
called a parametrization of the curve. This means that ~r supplies a specific rule
which tells us how to “trace out” the curve. There is more than one way to do this.

If we use the letter t to represent arbitrary values in I, we say that t is the
variable of the function ~r, or the parameter of the curve. Thus an arbitrary point
on the curve may be written ~r(t) where t ∈ I. It is often convenient to think of
t as time, so as t increases, time passes and ~r(t) moves along the curve. For this
reason, we call ~r(t) the position vector of the path at time t.

Example 3. Let P0 ∈ R3 and let ~v ∈ R3. The line P = P0 + t~v is a parametrized
curve. Thus if P0 = 〈x0, y0, z0〉 and ~v = 〈v1, v2, v3〉, the line is parametrized by
~r(t) = 〈x0 + v1t, y0 + v2t, z0 + v3t〉. �

Example 4. Let f : R → R be a continuous function, e.g., f(x) = x2. Let
~r : R→ R2 be given by ~r(t) = 〈t, f(t)〉. Then ~r traces out the graph of the function
f . �

Example 5. Let ~r : R→ R2 be given by ~r(t) = 〈cos t, sin t〉. Then ~r traces out the
unit circle in the plane. �

Example 6. Let ~r : R → R3 be given by ~r(t) = 〈cos t, sin t, t〉. Then ~r traces out
a helix which spirals around the z-axis. �

Suppose that ~r is a path and consider the function given by looking at just one
coordinate of the image of ~r. We have one such function for every dimension in the
image. These are called coordinate functions.

Example 7. The coordinate functions of the helix above are

x(t) = cos t; y(t) = sin t; z(t) = t.

�

Proposition 1. Let f : I → R3 and let t0 ∈ I. Let f(t) = 〈x(t), y(t), z(t)〉. Then
limt→t0 exists if and only if limt→t0 x(t), limt→t0 y(t), and limt→t0 z(t) all exist. In
this case,

lim
t→t0

f(t) = 〈 lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)〉.

Proof. Exercise (idea: if two points are close, so are their coordinates). �

Corollary 1. A function f : I → R3 is continuous at t0 ∈ I if and only if each of
the coordinate functions are continuous at t0.
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Now let ~r : I → Rn. We say that ~r is differentiable at the point t ∈ I if the limit

lim
h→0

~r(t+ h)− ~r(t)
h

exists. If so, this limit is called the derivative of ~r at t and is denoted ~r′(t) or d~r
dt .

Let ~w(t) = ~r(t+h)−~r(t)
h . Geometrically, we see that the line corresponding to the

vector ~w(t) gets closer and closer to being a tangent line to the curve as h→ 0. At
the limit, it becomes a tangent line; for this reason, we call ~r′(t) a tangent vector.

Proposition 2. If ~r is a path, then ~r is differentiable at t ∈ I if and only if each
of the coordinate functions is differentiable at t; in this case

~r′(t) = 〈x′(t), y′(t), z′(t)〉.

Proof. The limits of the coordinates are the coordinates of the limit. �

6. Operations on Paths

Just as we can add or multiply two real valued functions to obtain another real
valued function, we can perform vector operations on paths to obtain new functions.
We must be careful here, however, about the codomain of such a function.

Let ~p : I → R3 and ~q : I → R3 be two vector valued functions and let f : I → R
be a real valued function.

Then for a given time t,

• ~p(t) + ~q(t) ∈ R3;
• f(t)~p(t) ∈ R3;
• ~p(t) · ~q(t) ∈ R;
• ~p(t)× ~q(t) ∈ R3.

Proposition 3. Properties of Path Differentiation Let ~p : I → R3 and ~q :
I → R3 be two vector valued functions, let f : I → R be a real valued function, and
let c ∈ R be a constant. Then

(1) d
dt [~p(t) + ~q(t)] = d~p

dt + d~q
dt ;

(2) d
dt [c~p(t)] = cd~pdt ;

(3) d
dt [f(t)~p(t)] = df

dt~p(t) + f(t)d~p
dt ;

(4) d
dt [~p(t) · ~q(t)] = d~p

dt · ~q + ~p · d~qdt ;

(5) d
dt [~p(t)× ~q(t)] = d~p

dt × ~q + ~p× d~q
dt .

Proof. Expand into coordinates and compute. �

The last three are forms of the product rule. Be careful with the last one. The
order of the factors must be preserved because the cross product is not commutative.

Example 8. Let ~r : I → Rn be a path of constant magnitude, that is, |~r|(t) = K
for every t ∈ I and some fixed constant K ∈ R. Show that the tangent vector is
perpendicular to the position vector. Interpret this geometrically.

Solution. We have that
K2 = |~r|2 = ~r · ~r.

Taking the derivative of both sides gives

0 = ~r′ · ~r + ~r · ~r′ = 2~r′ · ~r.
Thus ~r′ · ~r = 0, so ~r′ ⊥ ~r.
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Geometrically, that ~r has constant magnitude K tells us that ~r lies on a sphere
of radius K. Then the position vector is on a radial line and the tangent vector is
on a tangent line. Any line tangent to a sphere is perpendicular to a radial line. �

7. Particular Motion

Let ~r : [a, b] → R3. Consider ~r(t) to be the position vector of a particle at time
t. Then the curve which is the image of the function ~r describes the spatial motion
of the particle. However, the curve alone is insufficient to know the rate at which
the particle traces out the curve.

The velocity vector of the particle is the vector whose direction points in the
instantaneous direction of the particle and whose length is the speed of the particle.
We have already seen that the derivative ~r′(t) is tangent to the curve, and so
indicates the direction of the particle. The speed of the particle is the rate of
change in distance traveled; that is, it is the derivative of the arclength function,
which gives the length of the curve from the starting point a to the point t ∈ [a, b];
this function is traditionally called s(t). Let us compute this function.

Break up the domain [a, t] into n portions of equal size ∆x = t−a
n . Let xi =

a + i∆x for i = 0, . . . , n. Note that xi+1 = xi + ∆x. The length of the arc is
approximated by adding together the lengths of the line segments from ~r(xi) to
~r(xi+1). One such line segment corresponds to the vector

~r(xi + ∆x)− ~r(xi);

therefore

s(t)
.
=

n−1∑
i=0

|~r(xi + ∆x)− ~r(xi)|
∆x

∆x.

The approximation becomes exact as ∆x→ 0, so

s(t) =

∫ t

a

|~r′(x)|dx.

Thus by the Fundamental Theorem of Calculus, the rate of change of the distance
function is s′(t) = |~r′(t)|.

Let us call the derivative of the position vector the path tangent vector. Since
the direction of the path tangent vector is the direction of the curve, and the length
of the path tangent vector is the speed of the parametrization, we see that the path
tangent vector is exactly the velocity vector.

Similarly, the acceleration vector is the derivative of the velocity vector.

Example 9. Let ~r = 〈cos t, sin t, t〉 be the position function of a particle traveling
in a helical path. Find the velocity, acceleration, and speed of the particle at any
time t. Find the arclength function. Find the vertical distance between two loops
of the helix. Find the arclength of one loop.

Solution. The velocity is ~v(t) = ~r′(t) = 〈− sin t, cos t, 1〉; the acceleration is ~a(t) =
~v′(t) = 〈− cos t,− sin t, 0〉.

The speed is the derivative of the arclength function, which is also the magnitude

of the velocity vector s′(t) =
√

sin2 t+ cos2 t+ 1 =
√

2. Thus s(t) =
∫ √

2 =
√

2t.
The helix makes one loop as t changes by 2π. Thus the vertical change is 2π and

the arclength is 2π
√

2. �
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8. Curve Analysis

When we are interested in the curve itself as opposed to its parametrization,
then the direction of the velocity vector remains important but its length does not.
Thus we study the unit tangent vector, which is any tangent vector divided by its
length. In order to find the unit tangent vector from a given parametrization, we
must be assured that the derivative is always defined and never zero.

A path ~r : R→ Rn is called smooth if it is infinitely differentiable; that is, if the
derivative is differentiable, and the second derivative is differentiable, and so forth
ad infinitum.

A regular path is a path which is everywhere smooth and whose first derivative
is never zero. Thus if ~r : I → Rn is regular, there is a well-defined unit tangent
vector

~T (t) =
~r′(t)

|~r′(t)|
.

9. Path Integration

The integral of a path ~r : [a, b]→ R3 is defined to be∫ b

a

~r(t)dt = lim
∆t→0

n∑
i=1

~r(t∗i )∆t,

where t∗i is a point in the ith subinterval of a division of [a, b] into n subintervals,
each with length ∆t = (b− a)/n.

We may write ~r(t) = 〈x(t), y(t), z(t)〉, and since limit passes to the components
of the function, we arrive at∫ b

a

~r(t)dt =
〈 ∫ b

a

x(t)dt,

∫ b

a

y(t)dt,

∫ b

a

z(t)dt
〉
;

that is, a vector valued function may be integrated componentwise. It is clear,
then, that differentiation and integration are inverse operations on vector valued
functions, since each merely acts on the components.

This may be used to retreive the velocity and position vectors from the accel-
eration vector. Suppose for simplicity that the initial position and velocity of a
particle is the zero vector. Then since ~a(t) = ~v′(t) and ~v(t) = ~r′(t), we have that
~v =

∫
~a and ~r =

∫
~v.

Example 10. In baseball, a pitcher’s mound is 60 feet from home plate. The
pitcher throws the ball directly towards the plane of the strike zone with initial
speed 80 miles per hour and initial release point 2 feet above the center of the
strike zone, but with spin such that the lateral component of acceleration is 16 feet
per second per second towards the pitchers left. Find the position of the ball relative
to the center of the strike zone as it passes the batter, ignoring wind resistence other
than the lateral acceleration and assuming that the height of the release point of
the ball is the same as the height of the center of the strike zone.

Solution. First note that 80 miles per hour is about 1.5 feet per second, so the
initial speed is 120 feet per second. Thus it takes the ball approximately one half
of a second to reach the plane of the strike zone.

Impose a coordinate system on the situation. Say the initial release point of the
ball is −60~i and the center of the strike zone is the origin.



8

Then the initial position vector is ~r0 = 〈−60, 0, 2〉 and the initial velocity vector
is ~v0 = 〈120, 0, 0〉.

The acceleration vector is constant under our assumptions. Its vertical com-
ponent is caused by gravity, which is −32 feet per second squared. Thus ~a(t) =
〈0, 16,−32〉.

We find ~v(t):

~v(t) =

∫
~a(t)dt = 〈0, 16t,−32t〉+ ~v0 = 〈120, 16t,−32t〉.

Now we find ~r(t):

~r(t) =

∫
~v(t)dt = 〈120t, 8t2,−16t2〉+ ~r0 = 〈120t− 60, 8t2,−16t2 + 2〉.

Thus ~r( 1
2 ) = 〈0, 2,−2〉. The pitch is low and away to a right handed hitter. �

10. Conic Sections

Just as curves are warped “one dimensional sets” in R2 or R3, surfaces are warped
“two dimensional sets” in R3. We begin by examining surfaces which arise as loci
of equations.

Consider the equation z2 = x2 + y2. The locus of this equation is a surface. We
wish to graph this surface.

If we pass a plane through a surface, we obtain a curve. Thus to see what a
surface looks like, it is convenient to fix one of the variables and see what kind of
curve the intersection of this plane with the surface is.

First we set z = 0. We discover that the intersection of the surface with the
xy-plane is a point, since x2 + y2 = 0 is satisfied only by the origin.

When x = 0, z2 = y2 so z = ±y. This is a pair of diagonal lines in the yz-plane.
Similarly, we get diagonal lines in the xz-plane.

Now let z = k, where k 6= 0. These are the horizontal slices. Here, x2 + y2 = k2.
Then the intersection of our surface with the plane at height k is a circle of radius
k. We can now see that this surface is a cone.

Letting x = k, we obtain the vertical slices of the cone parallel to the yz-plane.
These are given by the equation z2 = k2+y2, or z2−y2 = k2. These are hyperbolas.
Similarly, the slices parallel to the xz-plane are hyperbolas.

Finally, consider the planes given by y + z = k. This plane is parallel to the
x-axis and makes a 45 degree angle with the xy-plane. The intersection with the

cone is (y + k)2 = x2 + y2, so 2ky − k2 = x2 and y = x2−k2

2k = x2

2k −
k
2 . These slices

are parabolas.
For this reason, the ellipses, hyperbolas, and parabolas are called conic sections.

11. Quadric Surfaces

Just as curves which are the loci of degree 1 equations are always lines, surfaces
which are the loci of equations of degree 1 equations are always planes.

Surfaces which are the loci of degree 2 equations of the form

Ax2 +By2 + Cz2 +Hxy + Ixz + Jyz +Dx+ Ey + Fz +K = 0

are called quadric surfaces. Quadric surfaces are the 3rd dimensional analog of conic
sections. We wish to analyse these surfaces in a more or less “standard position”
so that we can understand their shapes and sizes without regard to their locations
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(for now). Thus we may rotate, reflect, or translate the surface to simplify the
equation.

By rotation and translation (in a manner we will not discuss), each quadric
surface can be represented by an equation of the form

Ax2 +By2 + Cz2 +Dx+ Ey + Fz +K = 0.

Cylinders (Curtains)
When one of the variables is missing, that variable is free to roam. Then we have

a curtain whose horizontal slices are conic sections. To graph such a surface, merely
graph the curve in the appropriate coordinate plane and extend perpendicularly.
These are also called cylinders, although (to me) this connotes a right elliptical
cylinder.

Now we assume that none of the variables is missing. Further rotations, reflec-
tions, rotations and algebraic manipulations leave us with the following cases.

(1) Ax2 +By2 + Cz2 = K;
(2) Ax2 +By2 +K = z.

The basic shape of these surfaces is determined by the signs of A, B, and C, and
whether K is nonzero. The proportions are determined by the absolute values of
A, B and C. First we look at the basic shapes.

First Equation
Sphere
When all the signs are positive, we have x2 + y2 + z2 = 1. We know this to be

the unit sphere. All planar slices are circles.

One Sheeted Hyperboloid
When one of the signs is negative, e.g., x2 + y2 − z2 = 1, we have a one sheeted

hyperboloid. The axis of symmetry is the variable which has the negative sign. The
horizontal slices are circles and the vertical slices are hyperbolas not intersecting
the axis of symmetry.

Two Sheeted Hyperboloid
When two of the signs are negative, e.g., −x2−y2 +z2 = 1, we have a two sheeted

hyperboloid. The axis of symmetry is the variable which has the positive sign. The
horizontal slices are circles and the vertical slices are hyperbolas not intersecting
the coordinate plane perpendicular to the axis of symmetry.

Note that the locus of −x2 − y2 − z2 = 1 is the empty set.

Cone
We have seen that the locus of x2 + y2 − z2 = 0 is a cone.

Second Equation
Elliptic Paraboloid
When both squared terms have the same sign, e.g., z = x2+y2, we have an elliptic

paraboloid. The horizontal slices are circles and the vertical slices are parabolas.

Hyperbolic Paraboloid (Saddles)
When the squared terms have different signs, e.g., z = y2 − x2, we have a

hyperbolic paraboloid, or saddle . The horizontal slices are hyperbolas. The vertical
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slices in one direction are upward parabolas and the vertical slices in the other
direction are downward parabolas.

If x or y is the nonsquared term, we simply have the same surface rotated to
that axis.

Effects of Changing K
For x2 + y2 + z2 = K, we know the K is the radius of the sphere.
For x2 + y2 − z2 = K, the shape is determined by the sign of K and the size is

determined by the absolute value of K.
For z = Ax2 + Bx2 + K, (A,B = ±1), K determines the z intercept of the

surface. Changing K does not change the shape, but merely translates the surface.

Effects of Changing A,B,C
In both equations, increasing the absolute value of A, B or C squashes the

surface in the direction to which these coefficients attach, whereas decreasing them
stretches it in that direction.

Let a = 1√
|A|

, b = 1√
|B|

, and c = 1√
|C|

. Now increasing a, b, or c stretches the

surface, and considering these constants helps us graph the surface. The circular
slices in the descriptions above become ellipses upon stretching.

Ellipsoids

Consider x2

a2 + y2

b2 + z2

c2 = 1. What happens to the locus of this equation as
a, b, c change? Increasing a stretches the sphere in the x direction and decreasing
it squashes the sphere.

This is an ellipsoid, and the constants a, b, and c tell us how to graph it.
Similar considerations apply to the other surfaces.

12. Functions on Euclidean Spaces

Functions of the form f : U → R, where U ⊂ Rn, are called real valued functions
in n variables. The coordinates of points in U are the variables of which we speak.
Thus if P = (x, y, z), we may write f(x, y, z) instead of f(P ). These mean the same
thing.

As before, U is the domain of f , R is the codomain, and f [U ] is the range. If the
function is given by a rule and the domain is not specified, the domain is assumed
to be the largest set of points where the rule makes sense.

Example 11. Let f(x, y, z) = 1√
16−x2−y2−z2

. Find the domain of f .

Solution. This function makes sense when
√

16− x2 − y2 − z2 is defined and
nonzero. It is defined and nonzero when 16 − x2 − y2 − z2 > 0, i.e., when
x2+y2+z2 < 16. This happens within an open ball of radius 4 about the origin. �

Note that to graph a function f : R→ R, we use one dimension for the domain
and one for the range. Thus the number of dimensions we need to draw both the
domain and range, and the relationship between them, is the number of dimensions
of the domain plus the number of dimensions of the range, that is, the dimension
of the graph of f .

We know how to draw 3 dimensions, so for functions f : R2 → R, this works out.
Merely let z = f(x, y), that is, plot the set of points (x, y, f(x, y)).
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If f is smooth, the set of all points (x, y, f(x, y)) form a surface in R3.
Note that the paraboloid f(x, y) = z = x2 + y2 is a function. The sphere x2 +

y2 + z2 = 1 is not a function, but its upper hemisphere f(x, y) = z =
√

1− x2 − y2

is.

Example 12. Graph f(x, y) = cos(x2 + y2).

Solution. The definition makes sense for all points in R2, so this is the domain for
f . The maximum value of f is 1 and its minimum value is −1, so the range of f is
[−1, 1].

Consider a circle of radius a from the origin. For (x, y) on this circle, we have
x2 + y2 = a2. Thus f(x, y) = cos a2 for all such points. The graph moves outwards
in ripples, with f(0, 0) = 1.

The last point to consider is the distance between the cusps of the ripples. Is
this distance static, increasing, or decreasing as we move away from the origin?

For a > 1, as a increases, a2 increases even faster. Thus the cosine whips through
all angles from 0 to 2π (mod 2π) faster and faster. Therefore the distance between
the cusps is decreasing, and the ripples get closer together as we move away from
the origin. �

Now consider f : R3 → R. The sum of the dimensions is four, and we have no
way to depict both the domain and the range simultaneously in a graph.

Instead we do the next best thing.
Let f : A → B be a function. A level set of A is the preimage of a single point

in B.
Specifically, if f : R2 → R and K ∈ R, the level curve of f at K is the subset of

the R2

f−1(K) = {(x, y) ∈ R2 | f(x, y) = K}.
If we already have a graph of f , we obtain level curves by slicing the surface with

a plane parallel to the xy-plane, obtaining a curve in R3 called a contour curve,
and projecting the curve of intersection onto the xy-plane, which we think of as the
domain, obtaining the level curve in R2. A number of different level curves gives
us a feel for the graph.

If f : R3 → R and K ∈ R, the level surface of f at K is the subset of R3

f−1(K) = {(x, y, z) ∈ R3 | f(x, y, z) = K}.

Level surfaces are even more useful than level curves, since they are virtually the
only means we have of visualizing the function.

Example 13. Draw some level surfaces for the function f(x, y, z) = x2 + y2 − z2.
�

There is one way to imagine the fourth dimension, and that is time. Thus
let f(x, y, z) = t, with t being time, and imagine the level surfaces of f moving
smoothly from one to the next as time passes. In this way, the “graph” of a
function f : R3 → R becomes a motion picture.

13. Limits and Continuity

We have already discussed limits and continuity in general. Here are a few
caveats about function f : Rn → R.
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First note that analogous limit and continuity laws apply here as they did for
real-valued functions of a single variable. For example, the limit of a sum is the
sum of the limits, the limit of a product is the product of the limits, et cetera.
Also, the sum, product, and composition of continuous functions is continuous.
Thus all polynomials in multiple variables are continuous, and rational functions
are continuous in their domains.

For functions f : R→ R, if we wish to find its limit at a point x0, we approach
x0 from the left and from the right, and see if we get the same value.

Suppose that f : R2 → R, and we wish to find lim(x,y)→(x0,y0). There are
infinitely many paths to take for an approach. If all of them give the same limit,
the limit of the function exists; if any two of them are different, the limit does not
exist.

Example 14. Let f(x, y) = x2−y2

x2+y2 . Does lim(x,y)→(0,0) f(x, y) exist?

Approach along the lines y = 0 and x = 0 and get different limits. �

Example 15. Let f(x, y) = xy
x2+y2 . Does lim(x,y)→(0,0) f(x, y) exist?

Approach along x or y axis gives a limit of zero, but along the line y = mx gives
m

m2+1 . �

Example 16. Let f(x, y) = xy2

x2+y4 . Does lim(x,y)→(0,0) f(x, y) exist?

Approach along the lines y = 0, x = 0, y = x and get the same answer. But for
x = y2, get a different answer. (See Stewart pg 726 for graph.) �

However, to show that a limit does exist, testing infinitely many paths is not
an approach which is feasible. Instead, we use limit laws to reduce to cases of
functions which we know to be continuous (or not). The limit exists at every point
of continuity and is equal to the value of f .

Example 17. Let f(x, y) = x3−xy2

x2+y2 . Does lim(x,y)→(0,0) f(x, y) exist?

Solution. Try the lines y = 0, x = 0, and y = x. These give the same answer. Try
the curve y = x2. This gives the same answer.

We begin to suspect that the limit exists. Simplify f - pull an x out of the
numerator to get f(x, y) = x when (x, y) 6= (0, 0). Thus the limit is 0. �

14. Partial Derivatives

In calculus of a single variables, the derivative of a function at a point can be
interpreted as the slope of the tangent line of the curve which is the graph of the
function. The slope of this line plus the point (x, f(x)) which is on the line allow
us to compute the entire line. Since the line approximates the curve, this allows us
to approximate the function near x.

For a function f : R2 → R, the graph is a surface, not a curve, and the natural
tangential object is the tangent plane, which in turn contains many tangent lines.
If we know the slope of just two of these lines, and we know value of f(x, y), then
we know the point (x, y, f(x, y)) and we will be able to determine the entire plane.

The natural lines on the tangent plane to examine are those whose projections
onto the xy-plane are parallel to the axes.

Let (x0, y0) be a point in the domain of f . Now if we fix one of the variables,
say x = x0, and let y vary, we obtain a curve on the surface which is the graph of
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a function of a single variable. We define the partial derivative of f(x, y) to be the
derivative of this function.

Thus the partial derivatives of f(x, y) = z with respect to x and y at the point
(x, y) are

∂z

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
;

∂z

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
.

By letting x and y vary, the partial derivatives become functions in their own
right.

We may also write fx(x, y) instead of ∂z
∂x (x, y) and fy(x, y) instead of ∂z

∂x (x, y).
We compute partial derivatives just as they are defined: treating one variable as

a constant.

Example 18. Let f(x, y) = z = x2 +2xy2 +3x2y3 +y. Then ∂z
∂x = 2x+2y2 +6xy3

and ∂z
∂y = 4xy + 9x2y2 + 1. �

Partial derivatives for functions f : Rn → R are defined and computed similarly.

15. Higher Order Partial Derivatives

Note the first order partial derivatives ∂z
∂x and ∂z

∂y are functions from R2 into

R. Thus they we may take their partial derivatives. We obtain four second order

partial derivatives in ∂2z
∂x2 , ∂2z

∂x∂y , ∂2z
∂y∂x , and ∂2z

∂y2 .

Proposition 4. If ∂2z
∂x∂y and ∂2z

∂y∂x exist and are continuous, then

∂2z

∂x∂y
=

∂2z

∂y∂x
.

We may take third order and fourth order partial derivatives, et cetera. A
function f : Rn → R is called smooth if all partial derivatives of any order exist.

16. Tangent Planes

A plane is tangent to a surface in R3 at the point P if:

(1) they intersect at the point P ;
(2) there exists a real number ε > 0 such that this is the only point of inter-

section within ε of P ;
(3) no other plane satisfies both (1) and (2). Thus a tangent plane, if it exists,

is unique.

A line is tangent to a surface at the point P if:

(1) they intersect at the point P ;
(2) the line lies on a tangent plane.

A vector is tangent to a surface at the point P if it represents an arrow which
lies on the tangent plane.

A normal vector of a tangent plane is perpendicular to all of the vectors which are
tangent to the plane. Since our surface is in R3 (as opposed to a higher dimension),
the normal vector is unique up to a scalar multiple.

The normal vector of a surface at a point is the normal vector of the tangent
plane of the surface at that point. This normal vector is perpendicular to a tangent
vector at the point of any curve which lies on the surface and passes through the
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point. Actually, any vector tangent to the surface may be expressed as the velocity
vector of a path.

In fact, the tangent plane at P0 is the union of the vectors P0 + ~v, where ~v is
such a tangent vector. We have already seen that, on a sphere, the tangent vectors
are perpendicular to the position vectors. Thus, on a sphere, the position vector is
a normal vector.

Example 19. Find the plane which is tangent to the sphere x2 + y2 + z2 = 1 at

the point P0 = (
√

3
3 ,
√

3
3 ,
√

3
3 ).

Solution. In this case, the normal vector is the position vector, or any scalar multi-
ple thereof. Thus let ~n = 〈1, 1, 1〉. So our plane is (P −P0) ·~n = 0, which simplifies
to

x+ y + z =
√

3.

�

However, it is not true for surfaces in general that the tangent plane is perpen-
dicular to the position vector.

Any plane which is not parallel to the z-axis may be expressed as a function of
x and y in the form

z = ax+ by + c

. The intersection of this plane with a plane y = y0 parallel to the xz-plane is the
line in that plane z = ax+ (by0 + c). Thus the slope of this line is a; we call a the
slope of the plane in the x direction. Similarly, b is the slope of the plane in the y
direction.

Suppose the plane which is the graph of a function g(x, y) = ax + by + c is
tangent to a surface which is the graph of a function f : R2 → R at the point
(x0, y0, f(x0, y0)). Then g is the best linear approximation of f near the point
(x0, y0) in the domain.

Example 20. Find the plane which is tangent to the curtain z = 25 − y2 at the
point P0 = (0, 4, 9).

Solution. Notice that the tangent plane has no slope in the x-direction. Thus we
merely need to find the slope in the y-direction. This is dz

dy = −2y, which equals −8

at our point. Extrapolation yields that the z-intercept is at z = 41. So the plane
is z = −8y + 41. �

We wish to find the equation for the plane which is tangent to a surface which
is the graph of a function f : R2 → R at a point on the surface (x0, y0, z0). Note
that z0 = f(x0, y0). We can find a normal vector to the plane if we can find two
vectors which lie in the plane.

Consider the curve given by intersecting the plane y = y0 with the surface. This
curve is then parametrized on the variable x by ~a(x) = 〈x, y0, f(x, y0)〉. Its tangent
vector is ~a′(x) = 〈1, 0, ∂z∂x 〉. Similarly 〈0, 1, ∂z∂y 〉 is a tangent vector on the plane.

Call these vectors ~v and ~w respectively.
Then ~n = ~v × ~w = 〈− ∂z

∂x ,−
∂z
∂y , 1〉 is a normal vector to our plane.

Then the tangent plane is

((x, y, z)− (x0, y0, z0)) · ~n = 0,
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which simplifies to

z = z0 +
∂z

∂x
(x− x0) +

∂z

∂y
(y − y0).

Note the similarity between this formula and the slope of the tangent line from
single variable calculus

y = y0 +
dy

dx
(x− x0).

Example 21. Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 at
the point (1, 1, 3).

Solution. Find the partials: ∂z
∂x = 4x and ∂z

∂y = 2y. These are functions, so we plug

in our point (1, 1) from the domain: ∂z
∂x (1, 1) = 4 and /pz

∂x (1, 1) = 2. Then the plane
is z = 3 + 4(x− 1) + 2(y − 1), or 4x+ 2y − z = 3. �

17. Differentials

Let f : U ⊂ Rn → R be injective and smooth. The graph of such a function is a
set of dimension n lying inside Rn+1.

Intuitively, a function f : Rn → R is differentiable when its graph may be locally
approximated by a flat set of dimension n. In the case f : R2 → R, this flat set is
a tangent plane. Let (x0, y0) ∈ R2 and let z0 = f(x0, y0). The tangent plane of f
at (x0, y0) is also a function, say g : R2 → R. Then g(x, y) = z0, and for a point
(x, y) near (x0, y0), f(x, y)

.
= g(x, y).

Let ∆x = x−x0, ∆y = y− y0, and ∆z = f(x, y)− z0. Then ∆z is the change in
height as we move along the surface from the point over (x0, y0) to the point over
(x, y). Let dz = g(x, y)− z0. Then dz is the change in height as we move along the
tangent plane from the point over (x0, y0) to the point over (x, y).

This is true no matter what path we choose to move along the tangent plane.
In particular, if first we move along a straight line in the x direction, we have a
change of height equal to the slope in that direction times the distance we moved
in the x direction; this is ∂z

∂x∆x. From here, we move in the y direction for another

change of height equal to ∂z
∂y∆y. The total change in height gives us

dz =
∂z

∂x
∆x+

∂z

∂y
∆y.

We call dz the differential of f at (x0, y0). Note that dz is a function of ∆x and
∆y.

Example 22. Estimate
√

(2.95)2 + (4.05)2.

Solution. Let f(x, y) =
√
x2 + y2. Then

∂f

∂x
=

y√
x2 + y2

;
∂f

∂y
=

x√
x2 + y2

.

Now let x0 = 3 and y0 = 4 so that z0 = f(3, 4) = 5. Then

dz =
∂f

∂x
(3, 4)∆x+

∂f

∂y
(3, 4)∆y =

3

5
(−0.05) +

4

5
(0.05) = − 3

100
+

4

100
=

1

100
.

So
√

(2.95) + (4.05) = z0 + ∆z
.
= z0 + dz = 5.01. My calculator gives 5.0105. �
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18. Parametrized Surfaces

The image of a function ~s : U → R3, where U ⊂ R2, is called a parametrized
surface. We think of such a function as taking a piece of the plane and placing it
somewhere in space. We will not study these here, but merely mention a couple of
examples.

Example 23. Let f : R2 → R so that the graph of f is a surface in R3. Now let
~s : R2 → R3 be given by ~s(x, y) = 〈x, y, f(x, y)〉. The image of ~s is the graph of f .

Example 24. Note the the unit sphere, which is the locus of the equation x2 +y2 +
z2 = 1, and therefore is the preimage of 1 under the function f(x, y, z) = x2+y2+z2,
cannot be expressed as the graph of a function g : D ⊂ R2 → R; this is because
it is not “well-defined” for any point in the unit disk, as we have two choices for
where to send the point (one above it and one below it).

However, the unit sphere may be expressed as the image of a function. As we
will see when we look at spherical coordinates, the unit sphere is the image of the
function ~s : [0, 2π]× [0, π]→ R3 given by

~s(θ, φ) = 〈sinφ cos θ, sinφ sin θ, cosφ〉.

19. Summary

Graph Curve
Let f : R → R be given by f(x) = x2. Then the graph of f is a curve in R2

which is a parabola. The picture of such a curve clearly displays both the domain
and range and the relationship between them. However, not every curve in R2 may
be expressed as the graph of a function. A tangent vector of such a curve at the
point (x, f(x)) may be given by 〈1, f ′(x)〉.

Image Curve
Let ~r : R→ R3 be given by ~r(t) = 〈cos t, sin t, t〉. Then the image of ~r is a curve

in R3 which is a helix. The picture of such a curve displays only the range and not
the domain. Thus the picture of the curve does not give us any information about
the manner in which the curve is parametrized. A tangent vector of such a curve
at the point ~r(t) is ~r′(t).

Preimage Curve
Let f : R2 → R be given by f(x, y) = y2 − x2. Then the preimages of nonzero

points in R under f are level curves of f in R2 which are hyperbolas. The picture
of such a curve displays only the domain of the function. We must draw many
level curves in the domain to get an idea of the function itself. To find the tangent
vector, we may restate the curve as an image (parametrize the curve) or as a graph
(solve for y), or manipulate the gradient vector.

Graph Surface

Let f : R2 → R be given by f(x, y) =
√

9− x2 − y2. Then the graph of f is a
surface in R3 which is a hemisphere. The picture of such a surface displays both
the domain and range and the relationship between them. The normal vector of
such a surface at the point (x, y, f(x, y)) is 〈− ∂z

∂x ,−
∂z
∂y , 1〉.

Image Surface
Let ~s : R2 → R3 be given by ~s(r, θ) = 〈r cos θ, r sin θ, r〉. Then the image of ~s

is a surface in R3 which is a cone. The picture of such a surface displays only the
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range. The picture alone does not indicate how the surface is parametrized. The
normal vector for such a surface may be computed without too much difficulty, but
we will not derive it in this course.

Preimage Surface
Let f : R3 → R be given by f(x, y, z) = x2 + y2 − z2. Then the preimage of a

point K in R under f is a level surface of f in R3 which is a one sheeted hyperboloid
(if K > 0), a cone (if K = 0), or a two sheeted hyperboloid (if K < 0). The picture
of such a surface displays only the domain, and to obtain information about the
function, we may draw many level surfaces in the same picture. The normal vector
for such a surface is given by the gradient.
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