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Preface

Linear algebra is the study of vector spaces and linear transformations. This
document constitutes a brief course in linear algebra over the real numbers, empha-
sizing that the objects of study are spaces consisting of lines, and functions between
them that map lines to lines. This is consistent with the usage of this material in
vector calculus, and this text in intended to illuminate that subject.

Many authors begin the study of linear algebra by examining solution methods
for systems of linear equations; in this approach, matrices become arrays of coeffi-
cients of linear equations, and the definition of multiplication of matrices appears
as an unmotivated concept which somewhat mysteriously produces results.

The approach in this text is the emphasize the geometry at all times; solving
systems of linear equations is a problem which naturally evolves from attempts to
solve geometric problems involving lines, planes, and so forth. This is algebra in the
service of geometry, and for this reason, we have chosen the title Linear Geometry.

We begin with the geometry of uncoordinatized euclidean space, and the con-
cept of vectors as equivalence classes of arrows. These vectors can be added and
stretched geometrically, which imposes an algebraic system on sets of vectors. Intro-
duction of a coordinate system transfers the geometric study of vectors in euclidean
space to the algebraic study of points in cartesian space.

We introduce affine spaces as subsets of Rn which are closed under lines, such
as lines and planes. After developing explicit and implicit representations of affine
spaces, we define vector spaces as subsets of Rn which are closed under algebraic
vector operations. We see that vector spaces are exactly those affine spaces which
pass through the origin, and that affine spaces are translations of vector spaces.
This again links the geometry with the algebra.

The natural functions between affine spaces are those which send lines to lines,
which we call affine transformations; the natural functions between vector spaces
are those which preserve the vector operations, which we call linear transforma-
tions. We see that linear transformations are exactly those affine transformations
on vector spaces which preserve the origin, and that affine transformations may be
decomposed into a translation, followed by a linear transformation, followed by the
inverse translation.

Working with such spaces and transformations produces systems of linear equa-
tions, which are initially solved using Gaussian elimination directly on the systems.
The solutions thus obtained are themselves affine.

We then see how linear transformations can be described by matrices. In this
context, multiplication of matrices corresponds to composition of linear transfor-
mations, and solving systems of linear equations using matrices is equivalent to
finding the preimage of a point under a linear transformation. Such a preimage, in
turn, is itself an affine space.

vii



CHAPTER 1

Sets and Functions

Abstract. It is difficult to grasp advanced mathematics without fluent con-

trol over the concepts of set and function. This chapter rapidly lists some of
what you should know. It is hoped that much of this is review.

1. Sets

A set is a collection of objects. The objects in a set are called elements of that
set. Sometimes elements are referred to as members or points. If an element is in a
set, we say that the element is contained in the set.

If two symbols a and b represent the same element, we write a = b. If the
symbols a and b represent different elements, we write a 6= b. If an element a is
contained in a set A, this relation is written a ∈ A. If a is not in A, this fact is
denoted a /∈ A. We assume that the statements a ∈ A and a = b are always either
true or false, although we may not know which.

Two sets are considered equal when they contain the same elements:

A = B ⇔ [x ∈ A⇔ x ∈ B].

The sets we will primarily be using are the standard sets of numbers, and those
derived from them. These sets have standard names:

Natural Numbers: N = {1, 2, 3, . . . }
Integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Rational Numbers: Q = {p
q
| p, q ∈ Z, q 6= 0}

Real Numbers: R = {infinite decimal expansions}
Complex Numbers: C = {a+ ib | a, b ∈ R and i2 = −1}

1



2 1. SETS AND FUNCTIONS

2. Subsets

Let A and B be sets. We say that B is a subset of A and write B ⊂ A if
x ∈ B ⇒ x ∈ A.

For our purposes, we consider N ⊂ Z ⊂ Q ⊂ R ⊂ C.
It is clear that A = B if and only if A ⊂ B and B ⊂ A.
A set with no elements is called an empty set. Since two sets are equal if and

only if they contain the same elements, there is only one empty set, and it is denoted
∅. The empty set is a subset of any other set.

If X is any set and p(x) is a proposition whose truth or falsehood depends on
each element x ∈ X, we may construct a new set consisting of all of the elements
of X for which the proposition is true; this set is denoted:

{x ∈ X | p(x)}.
An interval is a type of subset of the real numbers; it is the set of all real num-

bers between two points, called endpoints; we consider ±∞ to be valid endpoints.
The distance between these endpoints is the length of the interval. This distance
may be finite or infinite. Those intervals whose endpoints are contained in the set
are called closed; those whose endpoints are not contained in the set are called open.
Notation for intervals is standard:

[a, b] = {x ∈ R | a ≤ x ≤ b} (finite closed)

(a, b) = {x ∈ R | a < x < b} (finite open)

[a, b) = {x ∈ R | a ≤ x < b}
(a, b] = {x ∈ R | a < x ≤ b}

(−∞, b] = {x ∈ R | x ≤ b} (infinite closed)

(−∞, b) = {x ∈ R | x < b} (infinite open)

[a,∞) = {x ∈ R | a ≤ x} (infinite closed)

(a,∞) = {x ∈ R | a < x} (infinite open)
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3. Set Operations

Let X be a set and let A,B ⊂ X.
The intersection of A and B is denoted by A ∩ B and is defined to be the set

containing all of the elements of X that are in both A and B:

A ∩B = {x ∈ X | x ∈ A and x ∈ B}.
The union of A and B is denoted by A∪B and is defined to be the set containing

all of the elements of X that are in either A or B:

A ∪B = {x ∈ X | x ∈ A or x ∈ B}.
We note here that there is no concept of “multiplicity” of an element in a set; that
is, if x is in both A and B, then x occurs only once in A ∪B.

The complement of A with respect to B is denoted ArB and is defined to be
the set containing all of the elements of A which are not in B:

ArB = {x ∈ X | x ∈ A and x /∈ B}.

Example 1.1. Let A = {1, 3, 5, 7, 9}, B = {1, 2, 3, 4, 5}. Then A ∩ B = {1, 3, 5},
A ∪B = {1, 2, 3, 4, 5, 7, 9}, ArB = {7, 9}, and B rA = {2, 4}. �

Example 1.2. Let C = [1, 5] ∪ (10, 16) and let N be the set of counting numbers.
How many elements are in C ∩ N?

Solution. The set C ∩ N is the set of natural numbers between 1 and 5 inclusive
and between 10 and 16 exclusive. Thus C ∩ N = {1, 2, 3, 4, 5, 11, 12, 13, 14, 15}.
Therefore C ∩ N has 10 elements. �

A picture corresponds to each of these set operations; these pictures are called
Venn diagrams. Use Venn diagrams to convince yourself of the following properties.

Proposition 1.3. Let X be a set and let A,B,C ⊂ X. Then

(a) A = A ∪A = A ∩A;
(b) ∅ ∩A = ∅;
(c) ∅ ∪A = A;
(d) A ⊂ B ⇔ A ∩B = A;
(e) A ⊂ B ⇔ A ∪B = B;
(f) A ∩B = B ∩A;
(g) A ∪B = B ∪A;
(h) (A ∩B) ∩ C = A ∩ (B ∩ C);
(i) (A ∪B) ∪ C = A ∪ (B ∪ C);
(j) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);
(k) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C);
(l) Ar (B ∪ C) = (ArB) ∩ (Ar C);

(m) Ar (B ∩ C) = (ArB) ∪ (Ar C);
(n) A ⊂ B ⇒ A ∪ (B rA) = B;
(o) A ⊂ B ⇒ A ∩ (B rA) = ∅;
(p) Ar (B r C) = (ArB) ∪ (A ∩B ∩ C);
(q) (ArB) r C = Ar (B ∪ C);
(r) (ArB) ∪ (B rA) = (A ∪B) r (A ∩B).
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4. Product of Sets

An ordered pair is two elements in a specific order; if a and b are elements,
the pair containing them with a first and b second is denoted (a, b). Of course the
notation conflicts with our notation for an open interval of real numbers, but this
cannot be helped, since it is standard.

Ordered pairs obey the “defining property”:

(a, b) = (c, d)⇔ a = c and b = d.

If (a, b) is an ordered pair, then a is called the first coordinate and b is called the
second coordinate.

Let A and B be sets. The product of A and B is denoted A×B and is defined
to be the set of ordered pairs whose first coordinate is in A and whose second
coordinate is in B:

A×B = {(a, b) | a ∈ A and b ∈ B}.

Proposition 1.4. Let X be a set and let A,B,C ⊂ X. Then

(a) (A ∪B)× C = (A× C) ∪ (B × C);
(b) (A ∩B)× C = (A× C) ∩ (B × C);
(c) A× (B ∪ C) = (A×B) ∪ (A× C);
(d) A× (B ∩ C) = (A×B) ∩ (A× C);
(e) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

Similarly, we may speak of ordered triples (a, b, c); the product of three sets A,
B, and C is

A×B × C = {(a, b, c) | a ∈ A, b ∈ B, and c ∈ C }.
In general, we may speak of ordered n tuples of the form (a1, . . . , an), where

again the entry ai is known as the ith coordinate of the tuple. If A1, . . . , An are
sets, their product is

×ni=1Ai = {(a1, . . . , an) | ai ∈ Ai}.
The product of a set A with itself n times is denoted by An; thus

An = {(a1, . . . , an) | ai ∈ A}.
For example, the set of ordered triples of real numbers is denoted by R3.

Example 1.5. Let A = [1, 3] × [2, 4) × (3, 5). How many elements are in the set
A ∩ Z3?

Solution. We have B = [1, 3] ∩ Z = {1, 2, 3}, C = [2, 4) ∩ Z = {2, 3}, and D =
(3, 5) ∩ Z = {4}. Then

A× Z3 = B × C ×D = {(1, 2, 4), (1, 3, 4), (2, 2, 4), (2, 3, 4), (3, 2, 4), (3, 3, 4)},
a set with 6 elements. �
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5. Functions

Let A and B be sets. A function from A to B, denoted f : A → B, is an
assignment of every element in A to a unique element in B; we say that f maps
A into B, and that f is a function on A. If a ∈ A, he element in B to which a is
assigned is denoted f(a); we say that a is mapped to b by f . We often think of f
as sending points in A to locations in B. Functions obey the “defining property”:

for every a ∈ A there exists a unique b ∈ B such that f(a) = b.

If A is sufficiently small, we may explicitly describe the function by listing the
elements of A and where they go; for example, if A = {1, 2, 3} and B = R, a

perfectly good function is described by {1 7→ 23.432, 2 7→ π, 3 7→
√

593}.
However, if A is large, the functions which are easiest to understand are those

which are specified by some rule or algorithm. The common functions of single
variable calculus are of this nature, for example, the polynomials in x, sinx, log x,
etc.

Let f : A→ B be a function. The domain of f is A, and the codomain of f is
B.

If C ⊂ A, the image of C is

f(C) = {b ∈ B | f(c) = b for some c ∈ C}.
The image of a function is the image of its domain.

If D ⊂ B, the preimage of D is

f−1(D) = {a ∈ A | f(a) ∈ D}.

Remark 1.1. Some authors use the word range to mean what we have called the
image of a function.

We say that f is injective (or one to one) if for every a1, a2 ∈ A we have
f(a1) = f(a2)⇒ a1 = a2.

We say that f is surjective (or onto) for every b ∈ B there exists a ∈ A such
that f(a) = b. A function is surjective if and only if its range is equal to its image.

We say that f is bijective if it is both injective and surjective. Such a function
sets up a correspondence between the elements of A and the elements of B.

Example 1.6. The function f : Z → Z given by n 7→ 2n is injective but not
surjective. The function g : Z × Z → Q given by (p, q) 7→ p

q is surjective but not

injective. �

Example 1.7. Let f : R→ R.

(a) if f(x) = x3, then f is bijective.
(b) if f(x) = x2, then f is neither surjective nor injective.
(c) if f(x) = x3 − x, the f is surjective but not injective.
(d) if f(x) = arctanx, then f is injective but not surjective.
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6. Composition of Functions

Let A, B, and C be sets and let f : A → B and g : B → C. The composition
of f and g is the function

g ◦ f : A→ C

given by
g ◦ f(a) = g(f(a)).

If f and g are injective, then g ◦ f is injective. If f and g are surjective, then
g ◦ f is surjective.

The domain of g ◦ f is A and the range is C. The image of g ◦ f is the image
under g of the image under f of the domain of f .

Example 1.8. Let A be the set of living things on earth, B the set of species, and
C be the set of positive real numbers. Let f : A → B assign to each living thing
its species, and let g : B → C assign to each species its average mass. Then g ◦ f
guesses the mass of a living thing. �

Example 1.9. Let f : R → R be given by f(x) = x2 and let g : R → R be given
by g(x) = sinx. Then g ◦ f : R→ R is given by g ◦ f(x) = sinx2 and f ◦ g : R→ R
is given by f ◦ g(x) = sin2 x. �

Example 1.10. Let f : R → R2 be given by f(t) = 〈2 cos t, sin t〉. The image of
f is an ellipse in the plane. Let s : R2 → R3 be given by s(x, y) = (x, y, y2 − x2).
The image of s is a saddle surface.

Then the image of s ◦ f is a curve in R3 whose shape is roughly the boundary
of a potato chip.

We may think of the ellipse as a road on a plane. Then think of s as an
earthquake which takes the plane and shifts it, warping its shape into a saddle.
The road is carried along with the plane as it warps. The new position of the road
is the image of the composition of the functions. �

If A is a set, define the identity function on A to be the function idA : A→ A
given by idA(a) = a for all a ∈ A. Identity functions are bijective, and have the
property that if f : A→ B, then f ◦ idA = f and idB ◦ f = f .

We say that f is invertible if there exists a function f−1 : B → A, called the
inverse of f , such that f ◦ f−1 = idB and f−1 ◦ f = idA.

Proposition 1.11. A function is invertible if and only if it is bijective.

If f is injective, we define the inverse of f to be a function f−1 : f(A)→ A by
f−1(y) = x, where f(x) = y. Since an invertible function is bijective, it is injective,
and this definition of inverse agrees with our previous one in this case.

If f : A → B is a function and C ⊂ A, we define a function f �C : C → B,
called the restriction of f to C, by f �C (c) = f(c). If f is injective, then so is f �C .
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7. Cardinality

The cardinality of a set is the number of elements in it. Two sets have the same
cardinality if and only if there is a bijective function between them.

Let N = {1, 2, 3, . . . } be the set of natural numbers and for n ∈ N let

Nn = {m ∈ N | m ≤ n} = {1, 2, 3, . . . , n}.
A set X is called finite if there exists a surjective function from X to Nn for some
n ∈ N. If there exists a bijective function X → Nn, we say that the cardinality of
X is n, and write |X| = N .

A set X is called infinite if there exists an injective function N→ X.

Proposition 1.12. A set is infinite if and only if it is not finite.

Proposition 1.13. Let A be a finite set and let f : A→ A be a function. Then f
is injective if and only if f is surjective.

Proposition 1.14. Let A and B be finite sets. Then |A×B| = |A| · |B|.

8. Collections

A collection is a set whose elements are themselves sets or functions.
Let X be a set. The collection of all subsets of X is called the power set of X

and is denoted P(X).
Let C be a collection of subsets of X; then C ⊂ P(X). Define the intersection

and union of the collection by

• ∩C = {x ∈ X | x ∈ C for all C ∈ C}
• ∪C = {x ∈ X | x ∈ C for some C ∈ C}

If C contains two subsets of X, this definition concurs with our previous definition
for the union of two sets.

Let A and B sets. The collection of all functions from A to B is denoted
F(A,B).



8 1. SETS AND FUNCTIONS

9. Summary

Symbol Meaning Example
⇒ implies p⇒ q
⇔ if and only if p⇔ q
∀ for every ∀ε > 0
∃ there exists ∃δ > 0
` such that ` p

Table 1. Logical Connectives

Set Name Definition
N Natural Numbers {1, 2, 3, . . . }
Z Integers {. . . ,−2,−1, 0, 1, 2, . . . }
Q Rational Numbers {p/q | p, q ∈ Z}
R Real Numbers { Infinite decimal expansions }
C Complex Numbers {a+ ib | a, b ∈ R and i2 = −1}
R2 Cartesian Plane {(a, b) | a, b ∈ R}
R3 Cartesian Space {(a, b, c) | a, b, c ∈ R}

Table 2. Standard Sets

Symbol Meaning Definition
∈ is an element of Example: π ∈ R
/∈ is not an element of Example: π /∈ Q
⊂ is a subset of A ⊂ B ⇔ (a ∈ A⇒ a ∈ B)
∩ intersection A ∩B = {x | x ∈ A and x ∈ B}
∪ union A ∪B = {x | x ∈ A or x ∈ B
r complement ArB = {x | x ∈ A and x /∈ B}
× cartesian product A×B = {(a, b) | a ∈ A and b ∈ B}

Table 3. Set Operations

Let A and B be sets. The notation f : A → B means f maps A into B; that
is, f is a function whose domain is A and whose range is B.
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10. Exercises

Exercise 1.1. Let A, E, O, P , and S be the following subsets of the natural
numbers:

• A = {n ∈ N | n < 25};
• E = {n ∈ A | n is even};
• O = {n ∈ A | n is odd};
• P = {n ∈ A | n is prime};
• S = {n ∈ A | n is a square};

Compute the following sets:

(a) (E ∩ P ) ∪ S;
(b) (E ∩ S) ∪ (P rO).
(c) P × S;
(d) (O ∩ S)× (E ∩ S).

Exercise 1.2. Let A, B, and C be the following subsets of R:

• A = [0, 100);
• B = [ 1

2 ,
505
7 ];

• C = (−8, π].

Compute the number of points in the set (A×B × C) ∩ (Z× Z× Z).
(Hint: use Proposition 1.4(e) and Proposition 1.14.)

Exercise 1.3. Let A and B be subsets of a set U . The symmetric difference of A
and B, denoted A4B, is the set of points in U which are in either A or B but not
in both.
(a) Draw a Venn diagram describing A4B.
(b) Find two set expressions which could be used to define A4B, and justify your
answer.

Exercise 1.4. In each case, give an example of a function f : R→ R such that:

(a) f is neither injective nor surjective;
(b) f is injective but not surjective;
(c) f is surjective but not injective;
(d) f is bijective.

Exercise 1.5. Let f : R→ R be given by f(x) = sinπx.
Let A = Z and B = [ 1

2 , 1].

(a) Find f(A).
(b) Find f−1(B).
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Exercise 1.6. Let f : R→ R be given by f(x) = x3− 5x2− 3x+ 19. Find f−1(4).

Exercise 1.7. Let f : X → Y be a function and let A,B ⊂ X.
(a) Show that f(A ∪B) = f(A) ∪ f(B).
(b) Show that f(A ∩B) ⊂ f(A) ∩ f(B).
(c) Give an example where f(A ∩B) 6= f(A) ∩ f(B).

Exercise 1.8. Let f : X → Y be a function and let C,D ⊂ Y .
(a) Show that f−1(C ∪D) = f−1(C) ∪ f−1(D).
(b) Show that f−1(C ∩D) = f−1(C) ∩ f−1(D).

Exercise 1.9. Let A, B, and C be any sets. Determine which of the following
statements is true, using Venn diagrams if necessary:

(a) A ⊂ B ⇒ A ∩B = A
(b) A ⊂ B ⇒ B rA = B
(c) Ar (B ∪ C) = (ArB) ∪ (Ar C)
(d) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Exercise 1.10. For a, b ∈ R, let [a, b] = {x ∈ R | a ≤ x ≤ b} be the closed interval
between a and b. How many elements are contained in the following sets?

(a) ([−2, 3] ∪ [5, 9]) ∩ Z
(b) ([

√
2, π] ∪ (33, 25]) ∩ Z

(c) ([1, 5]× (3, 6)) ∩ (Z× Z)



CHAPTER 2

Vectors in Rn

Abstract. The primary goal of this chapter is to define the concept of “vec-

tor” and various vector operations both algebraically and geometrically, and
to understand why these definitions are in agreement. Specifically, we will

describe a correspondence

{classes of arrows in euclidean space} ←→ {points in cartesian space}
which preserves the vector operations.

1. Euclidean Space

Around 300 B.C. in ancient Greece, Euclid wrote The Elements, a collection
of thirteen books which sets down the fundamental laws of synthetic geometry.
This work starts with points and sets of points called lines, the notions of distance
between points and angle between lines, and five postulates which regulate these
ideas. The key postulate implies that two distinct points lie on exactly one line.

Geometric figures such as triangles and circles resided on an abstract notion
of plane, which stretched indefinitely in two dimensions. The Greeks also analyzed
solids such as regular tetrahedra, which resided in space which stretched indefinitely
in three dimensions.

The ancient Greeks had very little algebra, so their mathematics was performed
using words and pictures; no coordinate system which gave positions to points was
used as an aid in their calculations. We shall refer to the uncoordinatized spaces of
synthetic geometry as euclidean spaces. Euclidean spaces are flat in the sense that
if a euclidean space contains two points, it contains the entire line which passes
through these two points. Traditional euclidean spaces come in four types: a point,
a line, a plane, and space itself; these are euclidean spaces of dimension zero, one,
two, and three, respectively.

The notion of coordinate system arose in the analytic geometry of Fermat and
Descartes after the European Renaissance (circa 1630). This technique connected
the algebra which was flourishing at the time to the ancient Greek geometric no-
tions. We refer to coordinatized lines, planes, and spaces as cartesian spaces; these
are composed of ordered n-tuples of real numbers.

Just as coordinatizing euclidean space yields a powerful technique in the under-
standing of geometric objects, so geometric intuition and the theorems of synthetic
geometry aid in the analysis of sets of n-tuples of real numbers.

The concept of vector links the geometric world of Euclid to the more algebraic
world of Descartes. Vectors may be defined and manipulated entirely in the geo-
metric realm or entirely algebraically; ideally, we use the point of view that best
serves our purpose. Typically, this is to understand (geometrically) or to compute
(algebraically).

11
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2. Cartesian Space

An ordered n-tuple of real numbers is an list (x1, . . . , xn), where x1, . . . , xn are
real numbers, with the defining property that

(x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1, . . . , xn = yn.

We define n-dimensional cartesian space to be the set Rn of ordered n-tuples
of real numbers. The point (0, . . . , 0) is called the origin, and is labeled by O. The
numbers x1, . . . , xn are called the coordinates of the point (x1, . . . , xn). The set of
points of the form (0, . . . , 0, xi, 0, . . . , 0), where xi is in the ith slot, is known as the
ith coordinate axis. The set of points of the form (0, . . . , 0, xi, 0, . . . , 0, xj , 0, . . . , 0)
is known as the ijth coordinate plane.

In R2, we often use the standard variables x and y instead of x1 and x2. In R3,
we often use x, y, and z instead of x1, x2, and x3.

We wish to define the distance between two points in Rn in such a way that it
will agree with our geometric intuition into the pictures produced by our graphs.
Here we use the Pythagorean Theorem.

Let P = (x1, y1) and Q = (x2, y2). Then

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2.

Example 2.1. The distance in R2 from P = (−4, 3) to Q = (2, 5) is

d(P,Q) =
√

(2− (−4))2 + (5− 3)2 =
√

36 + 4 =
√

40 = 2
√

10.

�

Let P = (x1, y1, z1) and Q = (x2, y2, z2). Then

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be points in Rn. The distance
between x and y is defined by

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2;

this formula, which is motivated by the Pythagorean Theorem, defines a function

d : Rn × Rn → R,
called the distance function.

Example 2.2. The distance R3 between (2, 5,−1) and (−4, 3, 8) is

d =
√

(−4− 2)2 + (3− 5)2 + (8− (−1))2 =
√

36 + 4 + 9 =
√

49 = 7.

�

Example 2.3. The distance in R5 between (−2,−1, 0, 1, 2) and (5, 4, 3, 2, 1) is

d =
√

(5− (−2))2 + (4− (−1))2 + (3− 0)2 + (2− 1)2 + (1− 2)2 =
√

96 = 4
√

6.
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3. Graphing

For n = 1, 2, or 3, it is possible to draw a picture of a subset of Rn. Such a
picture is the graph of the set.

To graph a set of real numbers, draw a line and select a point to represent zero
and a point to its right to represent one. Now mark off the other points accordingly;
this process is ruling. Now plot real numbers accordingly.

We may graph ordered pairs and sets of order pairs by drawing perpendicular
lines, called axes, which are ruled; each line represents a copy of the real num-
bers, and an ordered pair is plotted as the appropriate point. By convention, the
horizontal axis is designated x and represents the first coordinate, and the verti-
cal axis is designated y and represents the second coordinate. For example, the
graph of the set [0, 1] × [1, 2] is a square which touches the y-axis and is lifted 1
unit above the x-axis. Note that the graph of a function f is the graph of the set
{(x, y) ∈ R2 | y = f(x)}.

We may also graph ordered triples of real numbers on a flat piece of paper,
using perspective to give the illusion of depth. In this case, tradition demands that
the first coordinate of an ordered triple is labeled x, the second y, and the third
z; and that the positive z-axis points north, the positive y-axis points east, and
the positive x-axis points southwest so that it appears to emanate from the page.
Points and sets are plotted against this coordinate system in the natural way.

Example 2.4. Let A = [1, 3], B = [2, 4), C = (3, 5), and D = A× B × C. Graph
the set D ∩ Z3.

Solution. We see that

D × Z3 = (A×B × C) ∩ (Z× Z× Z)

= (A ∩ Z)× (B ∩ Z)× (C ∩ Z)

= {1, 2, 3} × {2, 3} × {4}
= {(1, 2, 4), (1, 3, 4), (2, 2, 4), (2, 3, 4), (3, 2, 4), (3, 3, 4)}.

Plot these six points. �

Example 2.5. Draw the box with diagonal vertices P (1, 1, 2) and Q(4,−1, 4).

Solution. First we find the other six vertices. These are (4, 1, 2), (4,−1, 2),
(1,−1, 2), (1,−1, 4), (4, 1, 4), and (1, 1, 4). Graph these and draw the edges which
move parallel to a coordinate axis. �
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4. Loci

We may consider subsets of Rn such that the coordinates of the points in the
subset are related in some specified way. The common way of doing this is to
consider equations with the coordinates as variables. The locus of an equation
is the set of all points in Rn which, when their coordinates are plugged into the
equation, cause the equality to be true. Two equations are equivalent if they have
the same locus.

Example 2.6. The locus of y = x in R2 is a diagonal line through the origin.

If we are considering and loci in Rn and one of the variables is missing from
the equation, any value for that variable will satisfy the equation.

Example 2.7. The locus in R3 of the equation y = x a vertical plane containing
the line y = x on the xy-plane, and the z-axis.

Example 2.8. The locus in R3 of the equation z = sin y is a rippled “plane”; any
point of the form (x, y, sin y) is in the locus.

Consider the locus in R3 of the equation z = 0. This is the set of points of the
form (x, y, 0). This set is the xy-plane, and is immediately identified with R2 in the
natural way, via the correspondence (x, y, 0) ↔ (x, y). Similarly, the loci of x = 0
and y = 0 are the yz-plane and the xz-plane, respectively. Together, these sets are
called coordinate planes.

Example 2.9. Find the locus in R3 of the equation xyz = 0.

Solution. If xyz = 0, either x = 0, y = 0, or z = 0. Thus the locus is the union of
the loci for these latter equations; that is, the locus of the equation xyz = 0 is the
union of the coordinate planes. �

Consider the locus in R3, using variables x, y, and z, of the equation y2+z2 = 0.
Since x can be anything, but y and z both must be zero, the locus is the set of
points of the form (x, 0, 0), which is the x-axis. Similarly, the loci of x2 + z2 = 0
and x2 + y2 = 0 are the y-axis and the z-axis, respectively. Together, these are
called coordinate axes.

Example 2.10. Find the locus in R3 of the equation (x2+y2)(x2+z2)(y2+z2) = 0.

Solution. Since ab = 0 if and only if either a = 0 or b = 0, we obtain the union of
loci of equations with one side equalling zero by multiplying. Thus we can see that
the locus of (x2 + y2)(x2 + z2)(y2 + z2) = 0 is the union of the coordinate axes. �

Let P0 = (x0, y0, z0) be some fixed point in R3 and let r ∈ R. Consider the
equation d(P, P0) = r, where P = (x, y, z) is a variable point. The locus of this
equation is exactly the set of all points in R3 whose distance from P0 is equal to
r. This set is called the sphere of radius r centered at P0. Since distance is always
positive, we may square both sides of the equation and obtain a new equation with
the same locus. Thus the equation of a sphere is

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2.
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Example 2.11. Find the radius and center of the sphere given by

x2 + y2 + z2 + 6x− 16 = 0.

Solution. Complete the square. The locus of the above equation is the same as the
locus of x2 + 6x+ 9 +y2 + z2 = 16 + 9, i.e., (x+ 3)2 +y2 + z2 = 25. Thus the center
is (−3, 0, 0) and the radius is 5. �

A system of equations in n-variables is a set of equations, each involving the
same n-variables. The locus of the system is set of points in Rn which simultaneously
satisfy all of the equations in the system. Such sets are merely the intersection of
the loci of the individual equations. Two systems of equations are equivalent if they
have the same locus.

Example 2.12. The locus of {x = 0, y = 0} in R3 is the z-axis.

Typically, the equations are listed without the set braces.

Example 2.13. Find the locus in R2 of the system of equations

x+ y = 1;

x− y = 3.

Solution. If we add the equations, we obtain an equation which is also true for any
point (x, y) in the locus. Here, the result is 2x = 4, so x = 2. Substituting this into
the first equation gives 2 + y = 1, so y = −1. Both x and y are “bound” to specific
values, so the locus is a set containing a point {(2,−1)}. �

Often, in order to understand the locus of a system of equations, we need to
modify a system to obtain an equivalent system, which is more easily understood.

Example 2.14. Find the locus in R3 of the system of equations

x2 + y2 + z2 = 4;

x2 + y2 + (z − 2)2 = 4.

Solution. Subtracting these equations produces −4z + 4 = 0; dividing this by −4
and adding 4 to both sides gives z = 1. Substituting this result for the second
equation, we obtain the equivalent system of equations

x2 + y2 + z2 = 4;

z = 1.

The locus of the first equation is a sphere of radius 2 centered at the origin. The
locus of the second equation is a plane of height 1 parallel to and above the xy-
plane. The intersection of a sphere and a plane is a circle on that plane. To find
the radius of the circle, substitute z = 1 into the sphere to obtain

x2 + y2 = 3.

The locus of this equation in R3 is a cylinder surrounding the z-axis of radius
√

3.
The circle is the intersection of this cylinder with the perpendicular plane z = 1;
thus the radius of the circle is

√
3. �
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5. Coordinatization

In order to apply the techniques of analytic geometry to synthetic geometry or
to a real-life problem, we must impose a coordinate system, a process we refer to
as coordinatization of euclidean space.

To coordinatize a line, we have only to select a single point as zero, and a
direction for the positive numbers. The coordinate of a point is its distance to zero,
together with a negative sign if the point is on the negative side of zero; we call
this signed distance.

To coordinatize a plane, select two lines which intersect at right angles to be-
come the axes; the point of intersection becomes the origin. Select one ray from
the origin as the positive x-axis; the positive y-axis is found by moving counter-
clockwise by 90 degrees. The coordinates of a point consist of the signed distance
to the selected axes.

To coordinatize three dimensional space, we first select a point in euclidean
space and call it the origin. We then select three perpendicular lines that intersect
at the origin as the axes. We must also select, on each axis, one of the two directions
as the positive direction. By convention, this is done in such a way that the ordered
system of axes constitute a right-handed orientation. We use the “right-hand rule”:
with your right hand, make a fist, let your thumb point up and your index finger
out, parallel to your arm. Let your middle finger stick out perpendicular to your
index finger. Then your axes should be oriented such that the index finger points
in the positive x direction, your middle finger points in the positive y direction, and
your thumb points in the positive z direction.

Now the coordinates of a point are given by the signed distance of that point to
the corresponding coordinate plane. No two points occupy the exact same location,
so each point has its own unique coordinates.

Coordinatizing a euclidean space gives us a cartesian space. These spaces have
essentially the same properties. The reason for the distinction is to help us keep in
mind that we may often select the coordinate system which best suits our needs in
a particular problem.
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6. Arrows

An arrow in euclidean space is a directed line segment; it is a line segment with
one end designated as its tip and the other as its tail. If the arrow starts at point

P (P is the tail) and ends at Q (Q is the tip), denote this arrow by P̂Q. This is
the arrow from P to Q.

To obtain more precision, we formally define an arrow in a euclidean space E
as an ordered pair (P,Q) ∈ E × E, where P is the tip and Q is the tail. The
ordered pair is enough information to produce the line segment and differentiate
the tip from the tail.

We do not exclude the possibility that the tip and the tail of an arrow are the
same, in which case the arrow is thought of as a point. Such an arrow is called a
zero arrow.

Each nonzero arrow determines a unique line, which is the line through the tip
and the tail. There are two rays on the line whose endpoint is the tail of the arrow;
the ray which contains the tip is known as the orientation of the arrow.

A nonzero arrow is determined by three attributes:

(1) direction, which is the line on which it resides, and its orientation thereon;
(2) magnitude, which is the distance between the tip and the tail;
(3) position, which is determined by its tail.

A zero arrow has zero magnitude and no direction; it is determined by its
position.

The inverse arrow of an arrow P̂Q is the arrow Q̂P , defined to be the same
line segment with the tip and tail reversed.

We may add two arrows in a natural way if the tip of the first equals to the
tail of the second; the sum is the defined to be the arrow which starts at the tail of
the first and ends at the tip of the second, so that

P̂Q+ Q̂R = P̂R.

The arrow P̂R forms the third side of a triangle. Note that if we add the arrow

P̂Q to its inverse arrow Q̂P , we obtain the zero arrow P̂P .
We would like to be able to add any two arrows, but the dependence on the

positioning of the arrows in our definition prevents us. We need to be able to “slide”
the arrows around via parallel transport; that is, we need to disregard the position
of the arrow, and consider only the magnitude and direction attributes of arrows.
and ignore the position; this would allow us to “slide” arrows around in euclidean
space, and consider them to start at the tail or at the tip of some other arrow.

Say that two arrows are equivalent if they have the same direction and mag-
nitude, but possibly different positions. Break the set of all arrows in a euclidean
space into blocks, where the members of one block consist of all arrows which are
equivalent to any other arrow in the block. We call such a block an equivalence
class of arrows. Every arrow is in exactly one equivalence class. Any arrow in an
equivalence class is called a representative of that class.
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7. Vectors

A vector is an equivalence class of arrows. If v̂ is an arrow, define

~v = {ŵ | ŵ is an arrow which is equivalent to v̂};
this is the vector represented by v̂. If ŵ is equivalent to v̂, we say that ŵ represents
~v. Naturally, since v̂ is equivalent to itself, v̂ represents ~v. Technically, the phrase
“ŵ represents ~v” means that ŵ ∈ ~v, and in fact, ŵ ∈ ~v if and only if ~w = ~v.

All zero arrows are equivalent; the zero vector is the equivalence class consisting
of all of the zero arrows. Thus there is a unique zero vector.

The inverse vector of a vector ~v is the vector −~v, defined to be the vector
represented by the arrow −v̂, where v̂ represents ~v.

A nonzero vector is determined by two attributes:

(1) direction;
(2) magnitude.

Thus a vector is unpositioned direction and length.

If P is the tail and Q is the tip of an arrow, we write
−−→
PQ for the vector

represented by the arrow P̂Q.
For any vector ~v and any point P , there is a unique arrow ŵ such that ŵ ∈ ~v

and the tail of ŵ is equal to P . It is now possible to add the vectors
−−→
PQ and

−→
RS;

let Q̂T be the unique arrow with the same magnitude and direction as R̂S, and

define the geometric sum by
−−→
PQ +

−→
RS =

−→
PT . Note that −

−−→
PQ =

−−→
QP and that−−→

PQ+
−−→
QP is the point P ; thus adding the inverse vector produces the zero vector.

Note that if
−−→
PQ +

−−→
QR =

−→
PR, we may add the inverse of

−−→
PQ to both sides of

this equation to get
−→
PR −

−−→
PQ =

−−→
QR. Let ~v =

−−→
PQ, ~w =

−−→
QR, and ~x =

−→
PR, this

equation becomes ~w − ~v = ~x. Thus the vector from the tip of ~v to the tip of ~w is
~w − ~v.

We now consider coordinatized cartesian space Rn. Two arrows are equivalent
in Rn if and only if the differences of the corresponding coordinates are equal.
A = (a1, . . . , an), B = (b1, . . . , bn), C = (c1, . . . , cn), and D = (d1, . . . , dn), then
−−→
AB is equivalent to

−−→
CD if and only if

bi − ai = di − ci for all i = 1, . . . , n.

Equivalence classes of arrows in Rn are called vectors in Rn.
Each vector in Rn has exactly one representative which is an arrow whose tail

is at the origin. Such an arrow is said to be in standard position. The tip of this
arrow is a point in Rn. Each vector corresponds to exactly one point in Rn in this

way. If P ∈ Rn, then
−−→
OP is called the position vector of P .

If P = (x1, . . . , xn) ∈ Rn is any point, the position vector of P will be denoted
〈x1, . . . , xn〉. It makes sense to define the difference of points to be the vector from
the first to the second; thus if A = (a1, . . . , an), B = (b1, . . . , bn), we define

Q− P =
−−→
QP = 〈b1 − a1, . . . , bn − an〉.

The correspondence between points and vectors in cartesian space allows us
to switch between these concepts, blurring the distinction. We often consider vec-
tors and points in Rn as interchangeable; the viewpoint we adopt depends on the
situation. Thus we use the notation Rn to denote the set of all vectors in n-space.
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8. Vector Addition

Let ~v = 〈v1, v2, . . . , vn〉 and ~v = 〈w1, w2, . . . , wn〉 be vectors in Rn. We define
the vector sum of these vectors algebraically by adding the corresponding coordi-
nates:

~v + ~w = 〈v1 + w1, v2 + w2, . . . , vn + wn〉.
Geometrically, the vector sum ~v+~w corresponds to sliding an arrow representing

~w over so that its tail is equal to the tip of ~v. That is, there is a unique arrow which
represents the vector ~w whose tail equals the tip of the vector ~v. We interpret ~v+ ~w
geometrically to be the tip of this arrow. It is the endpoint of the diagonal of the
parallelogram determined by ~v and ~w.

Example 2.15. Let ~v = 〈2, 3〉 and ~w = 〈−1, 4〉 be vectors in R2. Then

~v + ~w = 〈2 + (−1), 3 + 4〉 = 〈1, 7〉.

The zero vector in Rn corresponds to the origin, and is denoted ~0, or ~0n if we
wish to emphasize that we are referring to the origin in Rn. If ~v = 〈x1, . . . , xn〉, the
inverse vector of ~v is

−~v = 〈−x1, . . . ,−xn〉.

Example 2.16. We compute the sum of the vectors whose tips form an equilateral
triangle inscribed in the unit circle of R2. Let ~v1, ~v2, ~v3 be vectors in the plane given
by ~vj = 〈cos(2πj/3), sin(2πj/3)〉. Then ~v1 = 〈−

√
3/2, 1/2〉, ~v2 = 〈−

√
3/2,−1/2〉,

and ~v3 = 〈1, 0〉, so

(~v1 + ~v2) + ~v3 = 〈−1, 0〉+ 〈1, 0〉 = ~0.

To indicate that the vector ~v is n-dimensional, we write ~v ∈ Rn.

Proposition 2.17 (Primary Properties of Vector Addition).
Let ~x, ~y, ~z ∈ Rn. Then

(a) ~x+ ~y = ~y + ~x; (Commutativity)
(b) (~x+ ~y) + ~z = ~x+ (~y + ~z); (Associativity)

(c) ~x+~0 = ~x; (Existence of an Additive Identity)

(d) ~x+ (−~x) = ~0; (Existence of Additive Inverses)

Remark. These properties are derived directly from the definition. �

Subtraction of vectors means adding the inverse, which is given by

~w − ~v = ~w + (−~v).

The vector from the tip of ~v to the tip of ~w is ~w − ~v, which is clear, because
~v + (~w − ~v) = ~w.

Example 2.18. Let ~v = 〈1,−3, 0, 5〉 and ~w = 〈1, 2, 3, 4〉 be vectors in R4. The
inverse vector of ~v is −~v = 〈−1, 3, 0,−5〉, and the vector from the tip of ~v to the
tip of ~w is

~w − ~v = ~v + (−~w) = 〈1− 1, 2− (−3), 3− 0, 4− 5〉 = 〈0, 5, 3,−1〉.
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9. Scalar Multiplication

Let ~v = 〈v1, v2, . . . , vn〉 and let a be a real number; we often refer to real
numbers as scalars. We define the scalar multiplication of a times ~v algebraically
by multiplying each coordinate of ~v by a:

a · ~v = 〈a~v1, a~v2, . . . , a~vn〉.
The dot is usually omitted from the notation, so a · ~v is written as a~v.

Geometrically, the scalar multiple a~v is interpreted as the vector whose direction
is that of ~v but whose length is |a| times the length of ~v. If a < 0, then the
orientation of a~v is opposite the orientation of ~v. Thus multiplying a vector by
negative one reverses its orientation, and produces its inverse.

Example 2.19. Let ~v ∈ R3 be given by ~v = 〈3,−2, 8〉 and a = 5. Then the vector
in the same direction as ~v but 5 times as long is

a~v = 5〈3,−2, 8〉 = 〈15,−10, 8〉.

Example 2.20. Let ~v ∈ R3 be given by ~v = 〈49,−14, 35〉. Then ~v = 7〈8,−2, 5〉.

Proposition 2.21 (Primary Properties of Scalar Multiplication).
Let ~x, ~y, ~z ∈ Rn and let a, b ∈ R. Then

(a) 1 · ~x = ~x; (Scalar Identity)
(b) (ab)~x = a(b~x); (Scalar Associativity)
(c) a(~x+ ~y) = a~x+ a~y; (Distributivity of Scalar Mult over Vector Add)
(d) (a+ b)~x = a~x+ b~x. (Distributivity of Scalar Mult over Scalar Add)

Remark. These properties are derived directly from the definition. �

Proposition 2.22 (Secondary Properties of Scalar Multiplication).
Let ~x, ~y, ~z ∈ Rn and let a, b ∈ R. Then

(a) 0 · ~x = ~0;

(b) a ·~0 = ~0;
(c) −1 · ~x = −~x;
(d) (−a)~x = −(a~x).

Remark. These properties may be derived from the primary properties. �

We say that two nonzero vectors ~v and ~w are parallel, and write ~v‖~w, if arrows
representing ~v and ~w lie on parallel line segments. This happens exactly when ~w is
a scalar multiple of ~v:

~v‖~w ⇔ ~w = a~v for some a ∈ R.

Example 2.23. Let P = (4,−1,−1), Q = (7, 2, 5), R = (3, 4, 5), and S = (5, 6, 9).

Show that ~PQ‖ ~RS.

Solution. We have ~PQ = Q − P = 〈3, 3, 6〉, and ~RS = S − R = 〈2, 2, 4〉. Let

~v = 〈1, 1, 2〉. Then ~PQ = 3~v and ~RS = 2~v, so ~PQ = 3
2
~RS. Thus ~PQ‖ ~RS. �
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10. Linear Combinations

A linear combination of the vectors ~v1, . . . , ~vm ∈ Rn is an expression of the
form

a1~v1 + · · ·+ am~vm,

where a1, . . . , am ∈ R. This expression produces another vector in Rn.
Consider the case of two vectors ~v, ~w ∈ R2. A linear combination of ~v and ~w is

an expression of the form a~v + b~w, where a, b ∈ R.

Example 2.24. Let ~v = 〈1, 1〉 and ~w = 〈1,−1〉. Then ~v+ ~w is a linear combination
a~v + b~w of ~v and ~w, with a = b = 1, and ~v + ~w = 〈2, 0〉.

Let ~i = 〈1, 0〉 and ~j = 〈0, 1〉 in R2. Then every vector in R2 can be expressed

as a linear combination of ~i and ~j, thusly:

〈x, y〉 = 〈x, 0〉+ 〈0, y〉 = x〈1, 0〉+ y〈0, 1〉 = x~i+ y~j.

We say that ~i and ~j form a basis for R2, because every vector in R2 can be written
as a linear combination of these two. This, however, is not the only basis.

Example 2.25. Let ~v = 〈2, 1〉, ~w = 〈−1, 2〉, and ~x = 〈5, 1〉, Express ~x as a linear
combination of ~v and ~w.

Solution. We wish to find a, b ∈ R such that ~x = a~v + b~w, that is, 〈5, 1〉 = 〈2a −
b, a+ 2b〉. Now 〈v1, v2〉 = 〈w1, w2〉 if and only if v1 = w1 and v2 = w2, so this gives
us a system of equations in a and b:

2a− b = 5;

a+ 2b = 1.

The first equation says b = 2a − 5, and substituting this into the second gives
a + (2a − 5) = 1, so 3a = 6, whence a = 2. Thus b = 2(2) − 5 = −1. This shows
that ~x = 2~v − ~w. �

Next, consider a linear combination of two vectors in R3.

Example 2.26. Let ~v = 〈2,−1, 3〉, ~w = 〈−3,−1, 8〉, a = 2, and b = −3. Then

a~v + b~w = 2〈2,−1, 3〉 − 3〈−3,−1, 8〉 = 〈4 + 9,−2 + 3, 6− 24〉 = 〈13, 1,−18〉.

Let ~i = 〈1, 0, 0〉, ~j = 〈0, 1, 0〉, and ~k = 〈0, 0, 1〉 in R3. Then every vector in R3

can be expressed as a linear combination of these three vectors:

〈x, y, z〉 = x~i+ y~j + z~k.

These are the standard basis vectors in R3.
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11. Norm

The norm of a vector is the distance between the tip and the tail of a repre-
senting arrow. If the vector is in standard position in Rn, its norm is the distance
between the corresponding point and the origin. Thus if ~x = 〈x1, . . . , xn〉, the norm
of ~x is denoted ‖~x‖ and is given by

‖~x‖ =

√√√√ n∑
i=1

x2
i .

Synonymous names for this quantity include modulus, magnitude, absolute value,
or length of the vector.

Example 2.27. Let ~v ∈ R3 be given by ~v = 〈2, 4, 8〉. Find ‖~v‖.

Solution. The norm is

‖~v‖ =
√

22 + 42 + 82 =
√

4 + 16 + 64 =
√

84 = 2
√

21.

�

Example 2.28. Let ~v ∈ R8 be given by ~v = 〈1, 3, 4, 2, 5, 4, 3, 1〉. Find ‖~v‖.

Solution. The norm is

‖~v‖ =
√

1 + 9 + 16 + 4 + 25 + 16 + 9 + 1 =
√

81 = 9.

�

A unit vector is a vector whose norm is 1. In some sense, a unit vector represents
pure direction (without length); if ~u is a unit vector and a is a scalar, then a~u is a
vector in the direction of ~u with norm a.

Let ~v be any nonzero vector. We obtain a unit vector in the direction of ~v
simply by dividing by the length of ~v. Thus the unitization of ~v is

~u =
1

‖~v‖
~v.

Example 2.29. Let ~v ∈ R3 be given by ~v = 〈2, 4, 8〉. Find ‖~v‖. Find a unit vector
in the same direction as v.

Solution. Since ‖~v‖ = 2
√

21, the unitization of ~v is

~v

‖~v‖
=

(
1√
21
,

2√
21
,

4√
21

)
.

�
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12. Dot Product

Let ~v = 〈v1, v2, . . . , vn〉 and ~w = 〈w1, w2, . . . , wn〉 be vectors in Rn. We define
the dot product of ~v and ~w to be the real number ~v · ~w given by

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn.

Example 2.30. Let ~v, ~w ∈ R3 be given by ~v = 〈−2,−1, 4〉 and ~w = 〈−5, 12, 1〉.
Then

~v · ~w = (−2)(−5) + (−1)(12) + (4)(1) = 10− 12 + 4 = 2.

There is no ambiguity caused by using a dot for scalar multiplication and
vector dot product, because their definitions agree in the only case where there is
overlap (namely, if n = 1). We usually drop the dot from the notation for scalar
multiplication anyway (unless the vector is a known constant). Note that ~v+~w ∈ Rn
and a~v ∈ Rn, but ~v · ~w ∈ R.

Proposition 2.31 (Properties of Dot Product and Norm). Let ~x, ~y, ~z ∈ Rn and
a ∈ R. Then

(a) ~x · ~x = ‖~x‖2;
(b) ~x · ~y = ~y · ~x; (Commutativity)
(c) ~x · (~y + ~z) = (~x · ~y) + (~x · ~z); (Distributivity over Vector Addition)
(d) a(~x · ~y) = (a~x) · ~y = ~x · (a~y);

(e) ~x ·~0 = 0;
(f) ‖a~x‖ = |a|‖~x‖.

Remark. Properties (a) through (f) are derived directly from the algebraic defini-
tions. Properties (c) and (d) together are called linearity of dot product. �

The geometric interpretation of dot product is as useful as it is unanticipated
from the definition. To understand it, we first need to understand the concept of
projection.

Given a line L in Rn and a point P in Rn not on the line, there is a unique point
Q on the line which is closest to the point. The lines L and PQ are perpendicular.
The point Q is the projection of P onto L.

Let ~v and ~w be vectors in Rn. There is a unique point on the line through
~w which is the projection of the tip of ~v onto this line. The vector whose tail is
the origin and whose tip is this projected point is called the vector projection of ~v
onto ~w. The norm of this vector projection is the distance from the origin to this
projected point and is called the scalar projection of ~v onto ~w. Let proj~w(~v) denote
the scalar projection of ~v onto ~w.

Drop a perpendicular from the tip of ~v onto the line through ~w to obtain a
right triangle. If θ is the angle between the vectors ~v and ~w, we see that

proj~w(~v) = ‖~v‖ cos θ.

To complete our geometric interpretation of dot product, we need a generaliza-
tion of the Pythagorean theorem known as the Law of Cosines.
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Lemma 2.32 (Law of Cosines). Let A, B and C be the vertices of a triangle,
whose corresponding opposite sides have lengths a, b, and c, respectively. Let θ be
the angle at vertex C. Then

c2 = a2 + b2 − 2ab cos θ.

Proof. For simplicity, we assume that θ is the largest angle, so that the other two
angles are acute. The other cases are similar.

Drop a perpendicular from vertex A to the opposite side. Call this distance h.
Let m be the distance from C to the perpendicular. Then a−m is the distance from
B to the perpendicular. Thus (a−m)2 + h2 = c2 and m2 + h2 = b2. Substituting
h2 = b2 −m2 into the first of these yields a2 − 2am + b2 = c2. But m = b cos θ,
proving the result. �

Proposition 2.33. Let ~v, ~w ∈ Rn and let θ be the angle between ~v and ~w. Then

~v · ~w = ‖~v‖‖~w‖ cos θ.

Proof. To use the Law of Cosines, consider the triangle whose vertices are the tips
of ~v and ~w. The vector from ~v to ~w is ~w − ~v, so the lengths of the sides of this
triangle are ‖~v‖, ‖~w‖, and ‖~w − ~v‖. The Law of Cosines now gives us

‖~w − ~v‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cos θ.

Since the square of the modulus of a vector is its dot product with itself, we have

(~w − ~v) · (~w − ~v) = ~v · ~v + ~w · ~w − 2‖~v‖‖~w‖ cos θ.

By distributivity of dot product over vector addition and other properties,

~w · ~w − 2~v · ~w + ~v · ~v = ~v · ~v + ~w · ~w − 2‖~v‖‖~w‖ cos θ.

Cancelling like terms on both sides and then dividing by −2 yields

~v · ~w = ‖~v‖‖~w‖ cos θ.

�

Corollary 2.34. Let ~v, ~w ∈ Rn and let θ be the angle between ~v and ~w. Then

proj~w(~v) =
~v · ~w
‖~w‖

.

If ~u is of unit length, then
proj~u(~v) = ~v · ~u.

Proof. From trigonometry, proj~w(~v) = ‖~v‖ cos θ. But cos θ = ~v·~w
‖~v‖‖~w‖ . The result

follows. �

Geometrically, the dot product of ~v and ~w is the length of the projection ~v onto
~w, divided by the length of ~w.
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Example 2.35. Let ~v = 〈5, 2, 1〉 and ~w = 〈3, 2, 3〉. Find the scalar and vector
projections of ~v onto ~w, and find the angle between them.

Solution. We know that ~v · ~w = ‖~w‖proj~w(~v). Thus

proj~w(~v) =
~v · ~w
‖~w‖

=
15 + 4 + 3√

9 + 4 + 9
=

22√
22

=
√

22.

Thus the scalar projection is the length of ~w, so vector projection is ~w itself. This
intuitively indicates that ~v and ~w form a right triangle, with the line segment
between the origin and ~w as the hypotenuse.

We also know that if θ is the angle between ~v and ~w, then cos θ = ~v·~w
‖~v‖‖~w‖ =

√
22√
29

,

so the angle is approximately 29.4 degrees. �

We say that ~v is orthogonal (or perpendicular) to ~w, and write ~v ⊥ ~w, if the
angle θ between them is a right angle. This happens exactly when the cosine of this
angle is zero: cos θ = 0. Also, by the definition of projection, this happens exactly
when the vector projection of ~v onto ~w is the zero vector.

Dot product gives us a test for perpendicularity:

~v ⊥ ~w ⇔ ~v · ~w = 0.

Note that from this point of view, any vector is perpendicular to the zero vector.

Example 2.36. Let ~v = 〈5, 2, 1〉 and ~w = 〈3, 2, 3〉. Verify that these vectors form
a right triangle.

Solution. From the previous example, we believe that the line segment between the
points ~v and ~w is one of the legs. This leg is represented by the vector ~x = ~w−~v =
〈−2, 0, 2〉. Then ~x · ~w = −6 + 0 + 6 = 0, so ~x is orthogonal to ~w. �

We finish this section with a useful formula.

Proposition 2.37. Let ~v = 〈a, b〉 and ~w = 〈c, d〉 be vectors in R2. The area of the
parallelogram determined by ~v and ~w is |ad− bc|.

Proof. The area of a parallelogram of height h and base s is A = hs. Consider ~w
to be the base; then s = ‖~w‖. Now the height is the scalar projection of ~v onto a
vector perpendicular to ~w. Let ~x = 〈−d, c〉; then ~w · ~x = 0, so ~w ⊥ ~x. Moreover,
‖~w‖ = ‖~x‖. We have

A = hs = ‖~w‖~x · ~v
‖~x‖

= ~x · ~v = ad− bc.

�

Example 2.38. Find the area of the triangle in R2 with vertices P = (1, 2),
Q = (5, 3), and R = (−3, 7).

Solution. We turn this into a problem involving vectors by treating P as a “trans-
lated origin”; subtract by P to translate the corresponding vertex to the origin.
Thus let ~v = Q− P = 〈4, 1〉 and ~w = R − P = 〈−8, 4〉. The area of the triangle is
half of the area of the parallelogram, so

area(4PQR) =
1

2
((4)(4)− (1)(−8)) = 12.

�
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13. Cross Product

The dot product takes two vectors and produces a scalar. In three dimensions,
there is a very useful operation that takes two vectors and produces a third vector.
It is convenient, in defining the cross product, to use the standard basis vectors
~i = 〈1, 0, 0〉, ~j = 〈0, 1, 0〉, and ~k = 〈0, 0, 1〉; then 〈x, y, z〉 = x~i+ y~j + z~k.

Let ~v = 〈v1, v2, v3〉 and ~w = 〈w1, w2, w3〉 be vectors in R3. We define the cross
product of ~v and ~w to be the vector ~v × ~w given by

~v × ~w = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉.
This may be rewritten as

~v × ~w = (v2w3 − v3w2)~i− (v1w3 − v3w1)~j + (v1w2 − v2w1)~k.

We remember this formula via a symbolic determinant. Recall that an m × n
matrix is a rectangular array of real numbers with m rows and n columns. The
determinant of a 2× 2 matrix is

det

[
a b
c d

]
= ad− bc.

The determinant of a 3× 3 matrix is

det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 = a1det

[
b2 b3
c2 c3

]
− a2det

[
b1 b3
c1 c3

]
+ a3det

[
b1 b2
c1 c2

]
.

Thus

~v × ~w = det

 ~i ~j ~k
v1 v2 v3

w1 w2 w3

 .
Proposition 2.39.

(a) ~i×~j = ~k;

(b) ~j × ~k =~i;

(c) ~k ×~i = ~j.

Proposition 2.40 (Properties of Cross Product). Let ~x, ~y, ~z ∈ Rn and a ∈ R.
Then

(a) ~x× ~y = −(~y × ~x);
(b) (a~x)× ~y = ~x× (a~y) = a(~x× ~y);
(c) ~x× (~y + ~z) = (~x× ~y) + (~x× ~z);
(d) (~x+ ~y)× ~z = (~x× ~z) + (~y × ~z);
(e) ~x · (~y × ~z) = (~x× ~y) · ~z;
(f) ~x× (~y × ~z) = (~x · ~z)~y − (~x · ~y)~z;

(g) ~x×~0 = ~0.

Remark. To prove any of these identities, write each vector in terms of their com-
ponents and use the algebraic definition of cross product.

Property (a) says that cross product is anticommutative. Properties (b)
through (d) are referred to as the linearity of cross product. �
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Proposition 2.41. Let ~v, ~w ∈ R3. Then (~v × ~w) ⊥ ~v and (~v × ~w) ⊥ ~w.

Proof. To see that (~v × ~w) ⊥ ~v, we use the dot product.

(~v × ~w) · ~v = (v2w3 − v3w2)v1 + (v3w1 − v1w3)v2 + (v1w2 − v2w1)v3

= v2w3v1 − v3w2v1 + v3w1v2 − v1w3v2 + v1w2v3 − v2w1v3

= 0.

Similarly, (~v × ~w) · ~w = 0 so ~v × ~w ⊥ ~w. �

Proposition 2.42. Let ~v, ~w ∈ R3, and let θ be the angle between ~v and ~w. Then

‖~v × ~w‖ = ‖~v‖‖~w‖ sin θ,

which is the area of the parallelogram determined by ~v and ~w.

Proof. The area of the parallelogram determined by ~v and ~w is given by the formula
area equals base times height. If we let ‖~v‖ be the base, then the height is simply
‖~w‖ sin θ. Thus the area is ‖~v‖‖~w‖ sin θ.

Now consider

‖~v × ~w‖2 = (v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

= v2
2w

2
3 − 2v2v3w2w3 + v2

3w
2
2

+ v2
3w

2
1 − 2v1v3w1w3 + v2

1w
2
3

+ v2
1w

2
2 − 2v1v2w1w2 + v2

2w
2
1.

Also,

(‖~v‖‖~w‖ sin(θ))2 = ‖~v‖2‖~w‖2 sin2(θ)

= ‖~v‖2‖~w‖2(1− cos2(θ))

= ‖~v‖2‖~w‖2 − ‖~v‖2‖~w‖2 cos2(θ)

= ‖~v‖2‖~w‖2 − (~v · ~w)2

= (v2
1 + v2

2 + v2
3)(w2

1 + w2
2 + w2

3)

− (v1w1 + v2w2 + v3w3)2

= v2
2w

2
3 − 2v2v3w2w3 + v2

3w
2
2

+ v2
3w

2
1 − 2v1v3w1w3 + v2

1w
2
3

+ v2
1w

2
2 − 2v1v2w1w2 + v2

2w
2
1.

These last quantities are the same, and since θ ∈ [0, π], we have sin θ ≥ 0. Thus we
take square roots to yield the result. �

Proposition 2.43. Let ~v, ~w ∈ R3. Then the triple (~v, ~w,~v × ~w) is oriented by the
right-hand rule.

Remark. The orientation of ~v × ~w is actually determined by the orientation given
to the coordinate axes. The proof of this requires more advanced techniques than
we currently have. The basic idea is the ~v× ~w changes continuously as the lengths
of ~v and ~w and the angle between them change. Thus if can deform ~v to~i and ~w to
~j without getting a zero vector as the cross product, the orientation of (~v, ~w,~v× ~w)

must be the same as that of (~i,~j,~i×~j), which is right handed. �
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Geometrically, the cross product of ~v, ~w ∈ R3 is the unique vector ~x ∈ R3 which
satisfies these three properties:

(1) ~x ⊥ ~v and ~x ⊥ ~w so that ~x is perpendicular to the plane determined by ~v
and ~w;

(2) the length of ~x is equal to the area of the parallelogram determined by ~v
and ~w;

(3) ~x is oriented by the right hand rule.

Proposition 2.44. Let ~v, ~w ∈ R3. Then ~v‖~w if and only if ~v × ~w = ~0.

Proof. If θ ∈ [0, π], then sin θ = 0 if and only if θ = 0 or θ = π. �

Example 2.45. Find the area of the triangle in R3 with vertices P = (2, 4, 1),
Q = (1, 2, 3), and R = (5, 0, 1).

Solution. Let ~v = Q − P = 〈−1,−2, 2〉 and ~w = R − P = 〈3,−4, 0〉. The area of
the triangle is half of the area of the parallelogram determined by ~v and ~w, which
we find via the cross product:

~v × ~w = (0− 8)~i− (0− 6)~j + (4− (−6))~k = 〈−8, 6, 10〉.
Thus the area of the triangle is half to the length of this vector:

area(4PQR) =
1

2

√
64 + 36 + 100 = 5

√
2.

�

Example 2.46. Let ~v = 〈2, 5, 1〉 and ~w = 〈3, 1, 2〉. Find a vector which is perpen-
dicular to both 22~v + 29~w and 83~v − 8~w.

Solution. These vectors are linear combinations of ~v and ~w, and is therefore on the
plane determined by ~v and ~w. It suffices to find a vector which is perpendicular to
this plane. We do this by crossing ~v and ~w:

~v × ~w = (10− 5)i− (4− 3)j + (2− 15)k = 〈5,−1,−13〉.
�

Proposition 2.47. Let ~x, ~y, ~z ∈ R3. Then ~x · (~y × ~z) is a scalar quantity which is
equal to the signed volume of the parallelepiped determined by the three vectors. The
magnitude of this quantity is the volume and the sign detects whether the vectors
have a right or left handed orientation in the order presented. We call ~x · (~y × ~z)
the scalar triple product.

Proof. The volume is equal to the base times the height. If ~w = ~y × ~z, the height
is simply the projection of ~x onto this vector, proj~w(~x) = ~x · ~w/‖~w‖. But the area
of the base is ‖~w‖, so the base times the height is ~x · ~w. �

The triple scalar product can the computed as a determinant.

~x · (~y × ~z) = det

x1 x2 x3

y1 y2 y3

z1 z2 z3

 .



13. CROSS PRODUCT 29

Example 2.48. Do the points O = (0, 0, 0), P = (1, 2, 3), Q = (2, 3, 1), and
R = (3, 1, 2) lie on the same plane?

Solution. We treat P , Q, and R as vectors starting at the origin, and note that
the four points lie on the same plane if and only if the volume of the parallelepiped
determined by these vectors is zero. The triple scalar product is

P · (Q×R) = (6− 1)1− (4− 3)2 + (2− 9)3 = 5− 2− 21 = 18 6= 0;

so no, they don’t lie on the same plane. �

Example 2.49. Show that the maximum volume of a parallelepiped with sides of
length one is one.

Solution. First, draw a picture and give everything in the picture a name. Let
~x, ~y, ~z ∈ R3 have length one. Let ~w = ~x × ~y. Let θ be the angle between ~x and ~y.
Let φ be the angle between ~z and ~w. Note that θ, φ ∈ [0, π].

The volume of a parallelepiped is base times height. The area of the base is the
length of the cross product; since we have unit vectors, this is sin θ. The height is
the projection of ~z onto ~w; since ~z has unit length, this is cosφ. Thus the volume
is sin θ cosφ.

To maximize this product, maximize each of the factors; sin θ is largest when
θ = π/2 and cosφ is largest when φ = 0. Thus the volume is maximized when
~x ⊥ ~y and ~z‖~w, which means that ~x ⊥ ~z and ~y ⊥ ~z. This is a cube. Thus its
volume is one. �

Example 2.50. Find the volume of the tetrahedron in R3 with vertices A =
(2, 0, 1), B = (1, 2, 0), C = (0, 1, 2), and D = (2, 2, 2).

Solution. Consider a solid obtained from a base region in a plane and a point P in
space, and taking the union of all line segment from the point to a point in the base.
Suppose A is the area of the base and h is the distance from P to the plane. By
a combination of the formula of a cone, Cavelieri’s principle, and proportionality
argument, the volume of the solid is

V =
1

3
Ah.

Let ~v = B−A = 〈−1, 2,−1〉, ~w = C−A = 〈−2, 1, 1〉, and ~x = D−A = 〈0, 2, 1〉.
The base of the tetrahedron is half of the parallelogram determined by ~v and ~w.
The height is the projection of the vector ~x onto the perpendicular vector ~v × ~w.
Thus, the volume is one sixth of the triple scalar product:

V =
1

6
det

−1 2 −1
−2 1 1
0 2 1

 =
1

6
[−(1− 2)− 2(−2− 0)− (−4− 0)] =

3

2
.

�

We have previously seen that the area of the parallelogram determined by
vectors ~v and ~w in R2 is the determinant of the 2× 2 matrix whose rows are ~v and
~w. We have now seen that the volume of a parallelepiped determined by vectors ~v,
~w, and ~x in R3 is the determinant of the 3× 3 matrix whose rows are ~v, ~w, and ~x.
Later, we will see that this is not a coincidence.
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14. Summary

• The set of points in euclidean space, when labeled with coordinates, is
called cartesian space. This is the set of all ordered n-tuples of real num-
bers, and is denoted Rn. There is no geometric difference between eu-
clidean space and cartesian space. The reason for the distinction is that
there is more than one way to impose coordinates on euclidean space.

• Arrows have position, direction, and magnitude. Vectors have only direc-
tion and magnitude. Two arrows with the same magnitude and direction
“represent” the same vector. We think of vectors as arrows which we can
“slide around”, to be placed at any convenient tail.

• Selection of a coordinate system creates a correspondence between vectors
in euclidean space and points in cartesian space, given by placing the tail
of the vector at the origin and taking the corresponding point to be the
tip. Every translation or rotation of the axis system creates a different
correspondence.

• The operations of vector addition, scalar multiplication, dot product, and
cross product may be defined geometrically or algebraically, and these
definitions respect the correspondence between vectors and points.

• We think of the difference of points as a vector, and the sum of a point and
a vector as another point. However, if we need to add points, we convert
them into the vector they represent without specifically mentioning this;
if we need to consider a vector as the tip of the representing arrow in
standard position, we also proceed without further mention.

• The vector sum of two vectors traverses the diagonal of the parallelogram
determined by the two vectors.

• The scalar product of a scalar times a vector is that vector stretched by
a factor of the scalar.

• The dot product of two vectors is the length of the projection of one onto
the other, adjusted by the length of the other.

• The cross product of two vectors is perpendicular to both of them, with
length equal the area of the parallelogram determined by them, oriented
by the right hand rule.

• Many formulas relating dot and cross products to projections, angles, and
so forth can be derived from the above interpretations using pictures and
simple geometric facts, and then computed with the algebraic definitions.

• The purpose of describing vectors in this way is to build up geometric
intuition which will be helpful in solving problems using linear algebra.
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15. Exercises

Exercise 2.1. Graph the box whose diagonal vertices are the points (0, 0, 0) and
(1, 4, 2). Label each vertex of the box.

Exercise 2.2. Let A = [0, 1], B = [1, 2), and C = (3, 4]. Graph the set

A×A× (B ∪ C).

Exercise 2.3. Describe (and sketch if possible) the graph in R3 of the following
equations, where x, y, z are real variables:

(a) z = 2
(b) (x2 + y2)z = 0
(c) x2 + y2 + z2 = 0
(d) x2 + y2 + z2 − 4 = 0
(e) x2 + y2 + z2 + 4 = 0
(f) x2 + y2 − z = 0

Exercise 2.4. Find the center and the radius of the sphere which is the locus of
the equation

x2 + y2 + z2 = 4x+ 9y + 36z.

Graph the sphere.

Exercise 2.5. Consider the line segment from P1 = (x1, y1, z1) to P2 = (x2, y2, z2).
Convince yourself that its midpoint is(x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
.

Exercise 2.6. Find an equation of a sphere if one of its diameters has endpoints
(2, 1, 4) and (4, 3, 10).

Exercise 2.7. Draw the directed line segment
−−→
AB. Find and draw the equivalent

the vector ~v whose tail is at the origin.

(a) A = (3, 1), B = (3, 3)
(b) A = (−3, 5), B = (−2, 0)
(c) A = (0, 2, 4), B = (5, 2,−2)

Exercise 2.8. Find the vector sum ~v + ~w and illustrate geometrically.

(a) ~v = 〈0, 1〉, ~w = 〈1, 0〉
(b) ~v = 〈2, 4〉, ~w = 〈5, 1〉
(c) ~v = 〈−2, 3〉, ~w = 〈3,−2〉
(d) ~v = 〈1, 0, 1〉, ~w = 〈0, 1, 0〉
(e) ~v = 〈1, 2, 3〉, ~w = 〈−1, 2,−3〉

Exercise 2.9. Find ‖~v‖, ~v + ~w, ~v − ~w, 2~v, and 3~v − 2~w.

(a) ~v = 〈1, 2〉, ~w = 〈3, 4〉
(b) ~v = 〈−1,−2〉, ~w = 〈2, 1〉
(c) ~v = 〈3, 2,−1〉, ~w = 〈0, 6, 7〉
(d) ~v =~i−~j, ~w =~i+ ~k

(e) ~v =~i+~j + ~k, ~w = 2~i− 3~j − 4~k
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Exercise 2.10. Find a unit vector which has the same direction as ~v.

(a) ~v = 〈3, 4〉
(b) ~v = 〈5,−5〉
(c) ~v = 〈1, 2, 3〉
(d) ~v =~i+~j + ~k

Exercise 2.11. Express ~i and ~j in terms of ~v and ~w.

(a) ~v =~i+~j, ~w =~i−~j
(b) ~v = 2~i+ 3~j, ~w =~i−~j

Exercise 2.12. Find ~v · ~w.

(a) ~v = 〈2, 4〉, ~w = 〈−1, 4〉
(b) ~v = 〈5,−1〉, ~w = 〈7, 7〉
(c) ~v = 〈1, 2, 3〉, ~w = 〈3, 2, 1〉
(d) ~v = 〈2,−4, 1〉, ~w = 〈3, 3, 6〉

Exercise 2.13. Find the scalar and vector projections of ~v onto ~w.

(a) ~v = 〈2, 4〉, ~w = 〈−1, 4〉
(b) ~v = 〈5,−1〉, ~w = 〈7, 7〉
(c) ~v = 〈1, 2, 3〉, ~w = 〈3, 2, 1〉
(d) ~v = 〈2,−4, 1〉, ~w = 〈3, 3, 6〉

Exercise 2.14. Find the values for t ∈ R such that v ⊥ ~w.

(a) ~v = 〈3, t〉, ~w = 〈−4, 3〉
(b) ~v = 〈t, 12〉, ~w = 〈t3, 18〉
(c) ~v = 〈t, 2t, 3t〉, ~w = 〈5, t,−2〉

Exercise 2.15. Find the values for t ∈ R such that the angle between ~v = 〈1, 1〉
and ~w = 〈t, 1〉 is 60◦.

Exercise 2.16. Find the angle between the diagonal of a cube and one of its edges.

Exercise 2.17. Find ~v × ~w.

(a) ~v = 〈1, 0, 1〉, ~w = 〈0, 1, 0〉
(b) ~v = 〈1, 2, 3〉, ~w = 〈1, 3, 5〉
(c) ~v = 〈1, 1, 1〉, ~w = 〈−1, 1, 1〉

Exercise 2.18. Let ~v = 〈1, 2, 3〉 and ~w = 〈3, 2, 1〉. Find the following.

(a) ‖~v‖
(b) ‖~w‖
(c) ~x = ~v + ~w
(d) ~y = ~v − ~w
(e) ‖~x‖
(f) ‖~y‖
(g) ~v · ~w
(h) ~x · ~y
(i) ~v × ~w
(j) ~x× ~y
(k) ‖~v × ~w‖
(l) ‖~x× ~y‖
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Exercise 2.19. Let ~x = 〈1, 2, 3〉, ~y = 〈−2, 0,−3〉, and ~z = 〈1,−2, 0〉.
(a) Draw each of these vectors emanating from the origin.
(b) Now draw ~x emanating from the origin, ~y with its tail at the tip of ~x, and

~z with its tail at the tip of ~y.
(c) Find ~x+ ~y + ~z. Does your result agree with your picture?

Exercise 2.20. Find the volume of the parallelepiped determined by the vectors
~x = 〈1, 2, 3〉, ~y = 〈2, 3, 1〉, and ~z = 〈−1, 0, t〉. Find t such that these vectors are
coplanar.

Exercise 2.21. The vectors ~v = 〈1, 0, 1〉 and ~w = 〈0, 1, 1〉 form a 60◦ angle. Find
a third vector ~x such that the origin and the tips of ~v, ~w, and ~x are the vertices of
a regular tetrahedron.

Exercise 2.22. Do the points P = (0, 1, 2), Q = (3, 7, 5), R = (−1, 0, 1), and
S = (6, 2, 8) lie on the same plane? Can one change this answer by changing the
y-coordinate of Q? What does this tell you?

Exercise 2.23. The spheres

x2 + y2 + z2 = 144 and (x− 3)2 + (y − 4)2 + (z − 12)2 = 25

intersect in a circle. Find the center of the circle.
(Hint: Let O = (0, 0, 0), P = (3, 4, 12), Q be a point of intersection of the spheres,
and R be the center point; then R is on the line OP , and OP ⊥ QR.)

Exercise 2.24. Let ~v and ~w be vectors in R2. Give a geometric interpretation of
and prove the following formulae:

(a) Cauchy Schwartz Inequality:

‖~v · ~w‖ ≤ ‖~v‖‖~w‖
(b) Triangle Inequality:

‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖
(c) Parallelogram Law:

‖~v + ~w‖2 + ‖~v − ~w‖2 = 2‖~v‖2 + 2‖~w‖2

(Hint for (b) and (c): Use the Cauchy Schwartz Inequality, the distributivity of dot
over sum, and the fact that ‖~v + ~w‖2 = (~v + ~w) · (~v + ~w).)

Exercise 2.25. The following identities are true for ~x, ~y, ~z ∈ R3. Examine them
for geometric content.

(a) (~x− ~y)× (~x+ ~y) = 2(~x× ~y);
(b) ~x× (~y × ~z) = (~x · ~z)~y − (~x · ~y)~z;

(c) ~x× (~y × ~z) + ~y × (~z × ~x) + ~z × (~x× ~y) = ~0.

(Hint: first consider the case of standard basis vectors; then consider the case of
arbitrary unit vectors; then try to generalize to arbitrary vectors.)
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Exercise 2.26. Let ~v and ~w be vectors in Rn and let θ be the angle between them.
Recall that ~v is orthogonal to ~w, written ~v ⊥ ~w, if θ = 90◦, which happens exactly
when ~v · ~w = 0,

Let ~w, ~y ∈ R3. Show that the vector

~v = ~y − ~w · ~y
‖~w‖2

~w

is orthogonal to ~w.

Exercise 2.27. Let ~v and ~w be vectors in Rn and let θ be the angle between them.
Recall that the formula ~v · ~w = ‖~v‖‖~w‖ cos θ implies that the scalar projection of ~v
onto ~w is given by

proj~w(~v) =
~v · ~w
‖~w‖

.

(a) Define a function ~v : R→ R2 by ~v(t) = 〈t, t2〉. Graph the image of ~v.
(b) Let ~w = 〈1, 1〉 ∈ R2. Graph the line through ~w.

(c) Define a function f : R→ R by f(t) =
proj~w(~v(t))

t2
. Find a formula for f

in terms of t.
(d) Find f([1, 2]), the image of the closed interval [1, 2] under the function f .
(e) Interpret limt→∞ f(t) geometrically.

Exercise 2.28. Let f(t) be a real valued function given by

f(t) = ‖~i× 〈cos t, sin t, 0〉‖.
Find f and interpret it geometrically, thinking of t as time and noting that as t
changes, 〈cos t, sin t, 0〉 sweeps out a unit circle in the xy-plane.



CHAPTER 3

Affine Spaces in Rn

Abstract. Affine spaces are subsets of euclidean space which look like lower

dimensional euclidean spaces in the sense that they are closed under lines. We
use our results regarding vectors to investigate affine spaces in cartesian space.

1. Affine Spaces in Rn

An affine space in Rn is a nonempty subset L ⊂ Rn with the property that if
P,Q ∈ L are distinct points in L, then the entire line through P and Q is a subset
of L. If L is an affine space in Rn, we call Rn the ambient space of L.

Let P ∈ Rn be a point and set L = {P}; we call a set containing one element a
singleton set. The singleton set L is vacuously an affine space, since there are not
two distinct points in L. Blurring the distinction between P and {P}, we say that
points in Rn are affine spaces.

If L ⊂ Rn is a line, then it is also an affine space. The affine subsets of R2 are
points, lines, and the entire space R2. The affine subsets of R3 are points, lines,
planes, and the entire space R3.

Recall that two sets are disjoint if their intersection is empty; otherwise, we say
that they are nondisjoint. We will show that the intersection of nondisjoint affine
spaces is always an affine space.

If we intersect two lines in R2, we typically obtain a point, although we may
obtain a line (if the lines are the same), or the empty set (if the lines are distinct
and parallel). If we intersect two planes in R3, we typically obtain a line, although
we may obtain a plane (if the planes are the same), or the empty set (if the planes
are distinct and parallel). If we intersect two lines in R3, we typically obtain the
empty set (if the lines are skew or distinct and parallel), although we may obtain
a line (if the lines are the same), or a point (if the lines are nonparallel and reside
on the same plane).

It may initially be surprising that it is possible to intersect two planes in R4

and obtain a point, but that is exactly the case if we intersect certain coordinate
planes. To see this, let x, y, z, w be the coordinate variables in R4. The xy-plane is
{(x, y, 0, 0) | x, y ∈ R}, the yz-plane is {(0, y, z, 0) | y, z ∈ R}, and the zw-plane is
{(0, 0, z, w) | z, w ∈ R}. Thus the xy-plane and the yz-plane intersect in a line (the
y-axis), but the xy-plane and the zw-plane intersect in a point (the origin). Ask
yourself this: given two arbitrary planes, the intersection is empty, a point, a line,
or a plane; which has the highest probability?

We now build techniques of representing an affine space either parametrically
or as the locus of a linear equation. We start with lines in R2, planes in R3, lines
in R3, and work our way into higher dimensions.

35
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2. Lines in R2 via Parametric Equations

A line in R2 is determined by a point on the line and the direction of the line.
Let P0 = (x0, y0) be a given point on the line, and let ~v = 〈v1, v2〉 be a vector in
the direction of the line; we call ~v a direction vector. If we start at P0 and move in
the direction specified by ~v for a period of time t at a speed given by ‖~v‖, we arrive
at the point

P = P0 + t~v.

If we let t range throughout the real numbers, then the set of points satisfying this
equation form a line. Thus we call P = P0 + t~v the parametric equation of the
line; it is this form of the equation of a line that most easily generalizes to higher
dimensions. The variable t is called the parameter.

If we label P = (x, y), where we think of x and y as variables, the parametric
equation becomes

(x, y) = (x0 + tv1, y0 + tv2).

This produces two equations

x = x0 + tv1 and y = y0 + tv2.

These are known as the coordinate parametric equations of the line.
If v1v2 6= 0, we may eliminate the parameter t by solving the parametric equa-

tions for t and setting the results equal to each other to obtain

x− x0

v1
=
y − y0

v2
;

this is called the symmetric equation of the line.
Solving the symmetric equation for y produces the functional equation, or slope-

intercept form of the equation of the line:

y = mx+ b where m =
v2

v1
and b = y0 −mx0.

On the other hand, given a line y = mx+ b in functional form, we immediately
see that P0 = (0, b) is a point on it, and 〈1,m〉 is its direction vector.

Example 3.1. Find the parametric, coordinate, symmetric, and functional equa-
tions of the line in R2 through Q = (4, 1) and R = (−3, 3).

Solution. Let ~v = R−Q = 〈−7, 2〉; this is a direction vector for the line. Then the
parametric equation is P = Q + t~v, where P = (x, y). Substituting in the values,
this becomes

(x, y) = (4, 1) + t〈−7, 2〉.
In coordinate form,

x = 4− 7t and y = 1 + 2t.

The symmetric equation is
x− 4

−7
=
y − 1

2
.

The functional equation is

y = −2

7
x+

15

14
.

�
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3. Lines in R2 via Normal Equations

A line in R2 is also determined by a point on it and a direction which is
perpendicular to the line. Again let P0 = (x0, y0) be a specific point on the line,
and let ~n = 〈n1, n2〉 be a vector which is perpendicular to the line; we call ~n a
normal vector. If P = (x, y) is a general point on the line, then the arrow from P0

to P lies on the line. Thus P − P0 is a vector in the direction of the line, and ~n is
perpendicular to P − P0. Therefore

(P − P0) · ~n = 0;

this is called the normal equation of the line.
The normal equation may be rewritten as 〈x − x0, y − y0〉 · 〈n1, n2〉 = 0, that

is, n1(x−x0) +n2(y− y0) = 0, or finally n1x+n2y = n1x0 +n2y0. Setting a = n1,
b = n2, and c = n1x0 + n2y0, we obtain the general form of the equation of a line

ax+ by = c,

where a, b, c ∈ R are constants and x and y variables.
On the other hand, given a line ax+by = c in general form, we immediately see

that a vector normal to this line is 〈a, b〉; for if P0 = (x0, y0) is a fixed point on the
line, and if P = (x, y) is an arbitrary point on the line, we have ax+by = ax0 +by0.
Letting ~n = 〈a, b〉, rewrite this as P ·n = P0 ·~n, which is equivalent to (P−P0)·~n = 0.
But P − P0 is a direction vector for the line, so ~n is perpendicular to it.

Example 3.2. Find the normal and general equations of the line in R2 through
Q = (3, 1) and R = (−2, 3).

Solution. A direction vector for the line is ~v = R−Q = 〈−5, 2〉. A vector perpen-
dicular to this is ~n = 〈2, 5〉, since ~n · ~v = −5(2) + 2(5) = 0. The normal equation,
then, is

(P −Q) · ~n = 0,

where P = (x, y). To get the general form, compute that 〈x− 3, y − 1〉 · 〈2, 5〉 = 0
implies 2x− 6 + 5y − 5 = 0, so

2x+ 5y = 11.

�

In R2, it is easy to find a perpendicular vector. If ~v = 〈a, b〉, set ~w = 〈b,−a〉.
Then ~v · ~w = ab− ba = 0, so ~v ⊥ ~w.

Example 3.3. Find the general equation of the parametric line (1 + 2t, 2− 3t).

Solution. The direction vector of the line is ~v = 〈2,−3〉, and a point on it is
Q = (1, 2). Let ~n = 〈3,−2〉; then ~v ⊥ ~n; set P = (x, y), so that the general
equation of the line is P · ~n = Q · ~n; since Q · ~n = 3(1) − 2(2) = −1, the general
equation is

3x− 2y = −1.

�

In R2 we have two distinct methods of using vectors to produce equations for
lines; the parametric equation and the normal equation. Do both of the techniques
generalize to higher dimensions?
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4. Lines in R3 via Parametric Equations

A line in R3 is determined by a point on the line and the direction of the line.
The direction may be specified by a direction vector.

Let P0 = (x0, y0, z0) be a given point and let ~v = 〈v1, v2, v3〉 be a vector. If we
start at P0 and move in the direction ~v for a period of time t at a rate given by
‖~v‖, we arrive at the point

P = P0 + t~v.

If we let t range throughout the real numbers, then the set of points satisfying this
equation form a line. This is called the parametric equation of the line, and t is a
parameter.

If we label P = (x, y, z), then

(x, y, z) = (x0 + tv1, y0 + tv2, z0 + tv3).

This gives us three equations

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3.

These are called the coordinate parametric equations of the line.

Example 3.4. Find the parametric and coordinate equations of the line which
passes through the points Q = (1, 3, 2) and R = (5,−2, 3).

Solution. Let ~v be the vector from Q to R. Thus ~v = R − Q = 〈4,−5, 1〉. This is
the direction of the line we seek. Letting Q be the designated point on the line,
we have that a point P is on the line if P = Q+ t~v = (1 + 4t, 3− 5t, 2 + t). Thus
the coordinate parametric equations of the line become x = 1 + 4t, y = 3− 5t, and
z = 2 + t. �

If v1, v2, and v3 are nonzero, we may eliminate the parameter t by simply
solving the coordinate parametric equations for t and setting all the results equal
to each other. This yields

x− x0

v1
=
y − y0

v2
=
z − z0

v3
.

These are called the symmetric equations of the line.
In this form, the symmetric equations point out that the set determined by

P = P0 +t~v is somewhat independent of t; we could replace t by 2t or t3 and achieve
the same line. Also the symmetric equations yield the following relationships:

y − y0

x− x0
=
v2

v1
;

z − z0

x− x0
=
v3

v1
;

z − z0

y − y0
=
v3

v2
.

These equations may be recognized as the equations of the projected lines; that
is, the line in R3 may be projected onto each of the coordinate planes, producing a
line there whose equation is retrieved from the symmetric equations in this way.

Example 3.5. Find the slope-intercept form of the equation of the line which is
the projection of the line (1 + 4t, 3− 5t, 2 + t) onto the xy-plane.

Solution. We merely eliminate the third coordinate. Thus the vector equation of
the line is (1+4t, 3−5t). Eliminating t yields x−1

4 = y−3
−5 . Thus y−3 = − 5

4 (x−1),

so y = − 5
4x+ 7

4 . �
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Given two lines in R3, exactly one of the following holds:

• Their direction vectors are parallel, so we call them parallel lines.
Parallel lines intersect if and only if they are the same line.

• They intersect in exactly one point.
• They do not lie on the same plane, in which case we call them skew lines.

That two distinct intersecting lines on the same plane intersect in exactly one
point is a result of Euclid’s controversial fifth postulate. The only other claim
being made here is the intuitively clear proposition that two distinct lines in space
have parallel direction vectors if and only if they lie on the same plane but do not
intersect.

Example 3.6. Determine whether or not the lines

(2 + t, 3 + 2t, 4 + 3t) and (−3 + 2t, 3− t,−1 + t)

are parallel, intersecting, or skew.

Solution. The direction vectors of the lines are 〈1, 2, 3〉 and 〈2,−1, 1〉, which are
not parallel; thus the lines are not parallel.

We realize that the t in the first parametrization represents a different quantity
than the t in the second parametrization. To see if the lines intersect, we cannot
simply solve for t; let us call the parameter of the second line s instead of t. Thus
the second line becomes (−3 + 2s, 3− s,−1 + s).

The question becomes whether or not there are real numbers s and t such that
2 + t = −3 + 2s, 3 + 2t = 3− s, and 4 + 3t = −1 + s. We assume that there is such
an s and t and try to find them. Adding the last two equations gives 7 + 5t = 2
so 5t = −5 and t = −1. If t = −1, then the last equation gives 4 − 3 = −1 + s so
s = 2. Now plug t = −1 and s = 2 into our lines and see that they give the same
point, (1, 1, 1). Thus the lines intersect there. �
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5. Planes in R3 via Normal Equations

A plane in R3 is determined by a point on the plane and a perpendicular
direction. A vector which is perpendicular to a plane is called a normal vector.

Let P0 = (x0, y0, z0) be a specific point and let ~n = 〈n1, n2, n3〉 be a vector.
Suppose P = (x, y, z) is a general point on the plane which passes through P0 and
is perpendicular to ~n. Then the arrow from P0 to P is on the plane, and the vector
P − P0 is perpendicular to the normal vector ~n. Thus

(P − P0) · ~n = 0.

The set of all points P which satisfy this equation constitute the plane; this is called
the normal equation of the plane.

Writing this in coordinates gives 〈x− x0, y − y0, z − z0〉 · 〈n1, n2, n3〉 = 0 so

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0,

which can also be written

n1x+ n2y + n3z = n1x0 + n2y0 + n3z0.

On the other hand, the locus of an equation

ax+ by + cz = d

is a plane with normal vector ~n = 〈a, b, c〉. This is called the general equation of
the plane. Note that d = P0 · ~n, where P0 is any point on the plane.

Example 3.7. Find the general equation of the plane which passes through the
point Q = (2, 4, 1) with normal vector equal to the position vector.

Solution. We have that ~n = (2, 4, 1). The equation of the plane, then, is 2(x− 2) +
4(y − 4) + (z − 1) = 0, which simplifies to 2x+ 4y + z = 21. �

If the plane is presented in the general form ax+ by + cz = d and a, b, c, d are
positive, the plane is particularly easy to graph. Simply find the axis intercepts by
setting two of the variables to zero.

x− intercept =
d

a
y − intercept =

d

b
z − intercept =

d

c
Plot these points and connect the dots to obtain a nice picture of the plane.

We note that:

• If the plane passes through the origin, d = 0.
• Otherwise, d is not unique.

For example, x + 3y + 5z = 7 and 2x + 6y + 10z = 14 are equations of the same
plane.
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We realize that three points in R3 determine a plane; we now give three exam-
ples of finding the general form to the equation of such a plane.

Example 3.8. Find the equation of the plane which passes through the points
P = (3, 0, 0), Q = (0, 2, 0), and R = (0, 0, 5), using intercept points.

Solution. The plane is of the form ax + by + cz = d. Let d = 3 · 2 · 5 = 30. We
know that 3 = d

a = 30
a , so a = 10. Similarly, b = 15 and c = 6. Thus our plane is

10x+ 15y + 6z = 30. �

Example 3.9. Find the equation of the plane which passes through the points
P = (0, 1, 4), Q = (1, 0, 3), and R = (−2, 6, 0), using dot product.

Solution. Let ~v = Q− P = 〈1,−1,−1〉 and ~w = R − P = 〈−2, 5,−4〉. There is an
entire plane’s worth of vectors which are perpendicular to ~v, and a different plane’s
worth of vectors which are perpendicular to ~w; their intersection is a line which is
perpendicular to both. Let ~n = 〈n1, n2, n3〉 be a direction vector for this line. Then
~n is a normal vector for the plane we seek. Note that any nonzero vector along this
line is a normal vector, so we anticipate some choice in our eventual solution.

Now ~n is perpendicular to both ~v and ~w, so

~v · ~n = 0 and ~w · ~n = 0.

Multiplying this out and thinking of the ni’s as variables, this gives two equations
in three variables:

n1 − n2 − n3 = 0

−2n1 + 5n2 − 4n3 = 0

Multiply the first equation by 2, add the resulting equations, and simplify to see
that n2 = 2n3. Plug this into the first equation and simplify to get n1 = 3n3.

Thus any vector of the form ~n = 〈3n3, 2n3, n3〉 is a normal vector. Set n3 = 1
to get ~n = 〈3, 2, 1〉. The equation of the plane is

n1x+ n2y + n3z = n1x0 + n2y0 + n3z0,

where (x0, y0, z0) is a point on the plane. Using Q as this point, we have
(x0, y0, z0) = (1, 0, 3), so

3x+ 2y + z = 6.

�

Example 3.10. Find the equation of the plane which passes through the points
P = (2, 1, 3), Q = (1, 5, 3), and R = (3, 2, 5), using cross product.

Solution. The vectors ~v = Q − P = 〈−1, 4, 0〉 and ~w = R − P = 〈1, 1, 2〉 lie on
the plane. Thus their cross product is perpendicular to it, so we may use this as a
normal vector; set

~n = ~v × ~w = 〈6, 2,−5〉
Then use P as a point on the plane, which gives the equation 6(x− 2) + 2(y− 1)−
5(z − 3) = 0, which simplifies to 6x+ 2y − 5z = 6. �
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Given two planes in R3, exactly one of the following holds:

• They intersect in a line.
• They have empty intersection. When this occurs, the normal vectors are

parallel, and they are called parallel planes.
• They are equal.

Example 3.11. Consider the planes in R3 with general equations x + 2y − z =
−4 and 2x − y + 3z = 7. Find the parametric equation of the line which is the
intersection of these planes.

Solution 1. We find two points of intersection; the direction vector will be their
difference.

Set z = 0, so we have x + 2y = 4 and 2x − y = 7. Then y = 2x − 7, so
x+ 2(2x− 7) = −4, whence 5x = 10, so x = 2. Thus y = −3, and Q = (2,−3, 0) is
a point of intersection.

Set z = 1, so we have x + 2y = −3 and 2x − y = 4. Then y = 2x − 4, so
x+ 2(2x− 4) = −3, whence x = 1. Thus y = −2, so R = (1,−2, 1) is another point
of intersection.

Let ~v = Q−R = 〈1,−1,−1〉; this is a direction vector for the line of intersection,
and R is a point on it, so the parametric equation of the line is

(x, y, z) = R+ t~v = (1 + t,−2− t, 1− t).
�

Solution 2. The normal vectors are ~n1 = 〈1, 2,−1〉 and ~n2 = 〈2,−1, 3〉. The line
of intersection is on both planes, so it is perpendicular to both of these vectors; we
compute

~w = ~n1 × ~n2 = det

~i ~j ~k
1 2 −1
2 −1 3

 = 〈6− 1,−2− 3,−1− 4〉 = 〈5,−5,−5〉.

Now ~w is a direction vector for the line, and since ~v = 〈1,−1,−1〉 is parallel to
~w, it is also a direction vector. As above, a point on the plane is (1,−2, 1), so the
parametric equation of the line is

(x, y, z) = (1 + t,−2− t, 1− t).
�

The angle between two planes is the angle between their normal vectors.

Example 3.12. Find the angle between the planes x+2y−z = −4 and 2x−y+3z =
7 in R3.

Solution. The normal vectors are ~n1 = 〈1, 2,−1〉 and ~n2 = 〈2,−1, 3〉. Thus we have

cos θ =
~n1 · ~n2

‖~n1‖‖~n2‖
=

2− 2− 3√
1 + 4 + 1

√
4 + 1 + 9

=
−3

2
√

21
.

We take the absolute value to obtain the supplementary angle. Thus

θ = arccos
3

2
√

21
≈ 70.89◦.

�
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Given two vectors in R3, there is a unique plane which passes through their
tips and the origin. We call this the plane spanned by these vectors. Every linear
combination of the two vectors lies on the plane.

Example 3.13. Find the general equation of the plane spanned by ~v = 〈2,−1, 4〉
and ~w = 〈−2, 4, 3〉.

Solution. The vectors lie on the plane, so the normal vector is perpendicular to
both of them; it is

~n = ~v × ~w = det

 ~i ~j ~k
2 −1 4
−2 4 3

 = 〈−3− 16,−8− 6, 8 + 2〉 = 〈−19,−14, 10〉.

Since the plane passes through the origin, the constant on the right hand side of
its general equation is 0; thus the general equation is

−19x− 14y + 10z = 0.

�

Example 3.14. Let ~v = 〈1, 2, 2〉 and ~w = 〈2, 0, 1〉. Let Y be the plane spanned by

~v and ~j and let Z be the plane spanned by ~w and ~k. Find the line which is Y ∩ Z
and the angle between Y and Z.

Solution. Outline:

(1) Find the normal vectors using cross product;
(2) Cross the normals to find the direction vector of the line;
(3) Find a point on the line to produce the equation of the line;
(4) Dot the normals to find the angle between them.

�

Example 3.15. Let T be the plane given by 5x+ 3y+ z = 4 and let P = (6, 2, 7).
Find the distance from P to T .

Solution Method 1. Find the line through P in the direction of the normal vector
of the plane. This line intersects the plane at a point Q. Then find the distance
between P and Q. �

Solution Method 2. Find any point Q on the plane. Let ~v = P −Q. Find the unit
normal ~n to the plane. Project ~v onto ~n.

We find Q by plugging in arbitrary x and y and solving for z. It is easiest to
use x = 0 and y = 0, which gives that Q = (0, 0, 4) is on the plane.

Now find the unit normal vector of the plane. A normal vector is 〈5, 3, 1〉, so

the unit normal is ~n = 〈5,3,1〉√
35

.

Project the vector ~v = P − Q = 〈6, 2, 3〉 onto the unit normal. This will give
the distance.

proj~n(~v) = ~n · ~v =
30 + 6 + 3√

35
=

39√
35
.

�
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6. Planes in R3 via Parametric Equations

A plane in R3 may also be determined by one specific point on it, and two vec-
tors indicating directions emanating from that point. Each point on the plane may
then be reached by starting at the specified point, proceeding along the direction
of one vector the necessary distance, and then proceeding in the direction of the
other vector the necessary distance.

If P = (x, y, z) is an arbitrary point in space, P0 = (x0, y0, z0) is a point on
the plane, ~v = 〈v1, v2, v3〉 is a direction along the plane, and ~w = 〈w1, w2, w3〉 is a
different direction along the plane, then there exist real number r, s ∈ R such that

P = P0 + r~v + s~w;

this is the parametric equation of the plane. Expanding this, it reads

(x, y, z) = (x0, y0, z0) + r〈v1, v2, v3〉+ s〈w1, w2, w3〉.
This produces three equations

x = x0 + rv1 + sw1; y = y0 + rv2 + sw2; z = z0 + rv3 + sw3;

these are the coordinate parametric equations of the plane.

Example 3.16. Find a parametric equation for the plane in R3 passing through
the points A = (1, 2, 3), B = (3, 2, 1), and C = (2, 0, 2).

Solution. We have a point on the plane; we need two vectors in the direction of
the plane. Let ~v = A − C = 〈−1, 2, 1〉 and ~w = B − C = 〈1, 2,−1〉. Then the
parametric equation is

P = C+r~v+s~w = (2, 0, 2)+r〈−1, 2, 1〉+s〈1, 2,−1〉 = (2−r+s, 2r+2s, 2+r−s).
�

Example 3.17. Find the general equation of the plane in R3 passing through
P0 = (7,−3, 2) with direction vectors ~v = 〈2, 1,−1〉 and ~w = 〈3, 1, 1〉.
Solution. We have a point on the plane; we need a normal vector. Since ~v and ~w
lie in the direction of the plane, a normal vector is perpendicular to both of them,
so we use cross product to obtain it. We have

~n = ~v × ~w = det

~i ~j ~k
2 1 −1
3 1 1

 = 〈1 + 1,−3 + 2, 2− 3〉 = 〈2,−1,−1〉.

Now ~n · P0 = 2(7)− 3− 2 = 9, so the general equation of the plane is

2x− y − z = 9.

�

Example 3.18. Find a parametric equation of the plane in R3 with normal equa-
tion x+ 2y + 3z = 6.

Solution. We need to find a point on the plane, and two vectors in the direction
of the plane. Three points on the plane are A = (6, 0, 0), B = (0, 3, 0), and
C = (0, 0, 2). Let ~v = A− C = 〈6, 0,−2〉 and ~w = B − C = 〈0, 3,−2〉, so that the
plane is

(x, y, z) = A+ r~v + s~w = (6 + 6r, 3s,−2r − 2s).

�
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7. Lines and Planes in Rn via Parametric Equations

A line in Rn is determined by a point P0 on the line and a direction vector ~v;
the points on the line are those we encounter if we proceed from P0 in the direction
of v. Each such point is of the form P0 + t~v, where we think of the real number t as
being the time spent travelling in that direction. Thus the line is the set of points
P of the form

P = P0 + t~v where t ∈ R,
as t ranges through the real numbers; this is a parametric equation for the line.
Note that the distance between P and P0 is equal to |t|‖~v‖; we may think of ‖~v‖
as the velocity with which we proceed away from the point P0.

The parameter t is allowed to range throughout the entire set of real numbers.
The line itself is not the locus of this equation; it is the set

L = {P ∈ Rn | P = P0 + t~v for some t ∈ R}.
We can describe a plane in Rn if we know a point P0 on the plane and two

vectors ~v and ~w in the directions of the plane. Then the plane is the set of points
P of the form

P = P0 + r~v + s~w where r, s ∈ R;

this is a parametric equation for the plane. The plane itself is the set

Z = {P ∈ Rn | P = P0 + r~v + s~w for some r, s ∈ R}.

8. Hyperplanes in Rn via Normal Equations

The construction of a line in R2 and of a plane in R3 through the use of a
normal vector is easily generalized to any dimension.

Define a hyperplane in Rn to be the set of all points perpendicular to a given
vector ~a and passing through a given point P0. If H ⊂ Rn is such a hyperplane,
then

H = {P ∈ Rn | (P − P0) · ~a = 0}.
A hyperplane in R is a point; a hyperplane in R2 is a line, and a hyperplane in R3

is a plane in the standard sense. In general, a hyperplane in Rn is geometrically
identical to a copy of Rn−1 embedded in Rn.

The normal equation of a hyperplane is

(P − P0) · ~a = 0,

where ~a = 〈a1, . . . , an〉 is the normal vector perpendicular to the hyperplane,
P = (x1, . . . , xn) is a variable point on the plane, with x1, . . . , xn being coordi-
nate variables, and P0 is a specific point on the plane.

The general equation of this hyperplane is

a1x1 + · · ·+ anxn = b,

where b ∈ R is given by b = P0 · ~n.
There are two types of hyperplanes; those that pass through the origin and

those that do not. We will see that hyperplanes which pass through the origin
have the additional property that they are closed under vector addition and scalar
multiplication. In this way, they are both geometrically and algebraically identical
to a copy of Rn−1.
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9. Affine Space Theory

Before we proceed to higher dimensional affine spaces, we formalize some of
what we have begun to suspect with respect to their general properties.

Given a point and a line in a plane, there is a unique point on the line which
is closer to the given point that any other point on the line. The next proposition
says that this holds in general for affine spaces.

Proposition 3.19. Let L be an affine space in Rn and let P ∈ Rn. Then there
exists a unique point Q ∈ L such that d(P,Q) ≤ d(P,R) for every R ∈ L.

Proof. Beyond the scope of this class. �

The next proposition states that the nonempty intersection of affine spaces is
again an affine space.

Proposition 3.20. Let L,M ⊂ Rn be nondisjoint affine spaces. Then L ∩M is
an affine space.

Proof. If L∩M is a singleton, it is an affine space. Otherwise, let P,Q ∈ L∩M be
distinct. Then P,Q ∈ L and P,Q ∈ M , and since L and M are affine spaces, the
entire line through P and Q is contained in L and is also contained in M . Therefore
this line is contained in the intersection. �

We have described specific cases regarding two general methods of describing
an affine space. These are

(a) as the image of a parametric function;
(b) as the locus of a system of linear equations.

In case (a), the equations come from given direction vectors which lie along
the affine space; that is, they radiate from some point on it. The affine space is
built up from the given direction vectors; the more vectors we give, the larger the
space may be.

In case (b), the linear equations come from given normal vectors which are
perpendicular to the affine space. The affine space is the intersection of the hy-
perplanes with the given normal vectors; the more vector we give, the smaller the
space may be.

We now describe each of these representation techniques in more detail, and
discuss how to move from one to the other.
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10. Images of Parametric Transformations

We recall some definitions regarding sets. Let A and B be any sets and let
f : A → B be any function; A is the domain and B is the codomain. If a ∈ A, we
call f(a) the image of a. If C ⊂ A, the image of C is

f(C) = {b ∈ B | b = f(c) for some c ∈ C};
this is the subset of the codomain B consisting of the images of every c ∈ C. The
image of f is f(A).

Since affine spaces are defined as subsets of Rn which are closed under lines,
the natural functions to consider between them are those which send lines to lines;
that is, the image of a line is a line. For any two points P and Q, let PQ denote
the line through P and Q.

An affine transformation from Rn to Rm is a function

L : Rn → Rm satisfying L(AB) = L(A)L(B);

that is, the image of the line through A and B is the line through the images
of A and B. So, an affine transformation is one which sends lines to lines. We
will eventually see that affine transformations are exactly what we now describe as
parametric transformations.

A parametric transformation from Rn to Rm is a function

P : Rn → Rm of the form P (t1, . . . , tn) = P0 + t1~v1 + · · ·+ tn~vn.

where t1, . . . , tn are coordinate variables in the domain Rn, ~v1, . . . , ~vn are fixed
vectors in the codomain Rm, and P0 is a point in the codomain Rm.

First, consider the case where n = 1 and m = 3. Then we have P (t) = P0 + t~v,
which we discussed as the parametric equation of a line. We now view this as a
function; the variable t is on the copy of the real line which is the domain, and the
variables x, y, and z are coordinate variables in the codomain R3. The function
places the line into space. We may view this function as the path of a particle,
where P (t) is the particles location at time t. In this case, P0 is its initial position,
and ‖~v‖ is its speed. From this point of view, the direction vector ~v may be called
the velocity vector.

Next, consider the case where n = 2 and m = 3. Let r and s be the variables
in the domain, and x, y, and z the variables in the codomain. The function P
takes the plane with coordinates r and s and places it into space; P (r, s) is where
P sends the point (r, s).

The dimension of an affine space is smallest number of direction vectors which
can be used to describe the space as the image of a parametric transformation. We
need to be careful here, however, for some of the direction vectors may be a linear
combination of other direction vectors.

For example, consider the function P : R2 → R3 given by P (r, s) = P0 +r~v+s~w
where ~v = 〈6,−4, 2〉, ~w = 〈−9, 6,−3〉, and P0 = (1, 2, 3). Note that ~w = 3

2~v, so the
direction vectors lie on the same line; thus the image is a line and not a plane.

In general, the dimension of the image is less than or equal to the dimension of
the domain, and we have equality only if the direction vectors “point in different
directions”; in the next chapter, we will formalize the meaning of this through the
concept of linear independence.
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11. Loci of Systems of Linear Equations

A linear equation in n variables x1, . . . , xn is an equation of the form

a1x1 + . . . anxn = b.

Let P0 be any point in the locus of this equation, say P0 = (b1, . . . , bn). Then P0

satisfies the equation, so a1b1 + · · ·+a1bn = b. If we let P = (x1, . . . , xn) denote an
arbitrary point in the locus, and let ~n = 〈a1, . . . , an〉, then the equation becomes
~n · P = ~n · P0, so (P − P0) · ~n = 0, which we recognize as the normal equation of a
hyperplane in Rn. Thus, every linear equation describes a hyperplane.

To construct a system of m equations in n variables, it is convenient to using
double indexing of the coefficients. Thus we let aij denote the jth coefficient in the
ith equation. In the way, we can write down a generic system of equations as

a11x1 + a12x2 + · · ·+ a1nxn = b1;

a21x1 + a22x2 + · · ·+ a2nxn = b2;

...

am1x1 + am2x2 + · · ·+ amnxn = bn.

Each equation determines a hyperplane as its locus, and the locus of the system
of equations is the intersection of the hyperplane.

In general, each equation cuts the dimension by one. However, again we must
be careful; two of the equations may give the same hyperplane (this happens if
one is a multiple of the other), or more subtly, one hyperplane may contain the
intersection of some of the other hyperplanes.

For example, consider the system of equations

x+ z = 2;

x+ y = 3;

x− 2y + 3z = 0.

Subtracting the first from the second and third gives an equivalent system

x+ z = 2;

y − z = 1;

−2y + 2z = −2.

The third equation divided by −2 equals the second, so it gives no additional
information. If we move the z terms to the right hand side and insert the equation
z = 0 + z, we obtain

x = 2− z;
y = 1 + z;

z = 0 + z.

Writing these equations in vector form, we have 〈x, y, z〉 = 〈2, 1, 0〉 + z〈−1, 1, 1〉.
Note that the variable z here is free, in the sense that it can take any real value.
Letting t = z, we obtain a parametric form for the locus of the system of equations,
and see that it is not a point but the line which is the image of the parametric
function

〈x, y, z〉 = (2, 1, 0) + t〈−1, 1, 1〉.
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12. Exercises

Exercise 3.1. Find the parametric and normal equations of the following lines in
R2.

(a) The x-axis
(b) The line whose functional equation is y = − 3

2x+ 4
(c) The line whose general equation is 3x− 4y = 24
(d) The line through (2, 3) and (−2, 4)

(e) The line through (1, 2) parallel to the vector 2~i− 4~j
(f) The line through (−1, 1) perpendicular to the vector (8, 1)

Exercise 3.2. Find the parametric and symmetric equations of the following lines
in R3.

(a) The x-axis
(b) The line through (1, 2,−1) and (−1, 0, 1)

(c) The line through (1, 2, 3) parallel to the vector 3~i− 2~j + ~k
(d) The line through (−1, 2,−3) perpendicular to the plane x+ 2y − 4z = 8
(e) The intersection of the planes 2x− 3y + z = 3 and x+ 2y + z = −3

Exercise 3.3. Find the general equation of the following planes in R3.

(a) The plane through (1, 2, 1) normal to the vector (4,−1, 2)
(b) The plane through (1,−2,−1) parallel to the plane 2x+ 3y − z = 0
(c) The plane through (1, 1,−1), (2, 0, 2), and (0,−2, 1)
(d) The plane through (−2, 0, 1) perpendicular to the line (5 + t, 2− 2t, 3 + t)

Exercise 3.4. Find the general equation of the line which is the set of all points
in R2 equidistant between (5, 9) and (−4, 3).

Exercise 3.5. Find the general equation of the plane consisting of all points that
are equidistant from the two points (1, 1, 0) and (0, 1, 1).

Exercise 3.6. Find the general equation of the plane that is the set of all points
in R3 equidistant to (1, 3, 2) and (2, 0, 1).

Exercise 3.7. Find the parametric equations of the line in R3 which is the inter-
section of the planes 3x+ 6y − 2z = 0 and x+ 2y − z = 4.

Exercise 3.8. Find the distance from the point (6,−2) to the line 4x+ y = 12 in
R2.

Exercise 3.9. Find the distance from the point (4, 1,−3) to the plane 2x+3y−z =
2 in R3.

Exercise 3.10. Find the distance from the point (5, 2, 1) to the line (4 + 2t, 1 −
t,−3 + 3t) in R3.

Exercise 3.11. Find the area of the triangle in R2 with vertices (1, 2), (5,−2),
and (−3, 5).

Exercise 3.12. Find the area of the triangle in R3 with vertices (1, 2,−1), (4, 3, 2),
and (−2,−3, 4).

Exercise 3.13. Find the volume of the tetrahedron in R3 with vertices (1, 0, 2),
(0, 4, 1), (−2, 4, 0), and (3, 3, 3).
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Exercise 3.14. Determine the value for t such that (4, 0,−2), (0, 1,−5), (2, 3, 4),
and (5, t,−2) are on the same plane.

Exercise 3.15. Let A be the plane given by x + 2y + 3z = 6 and B be the
plane given by 3x + 2y + z = 6. Let L = A ∩ B be the line of intersection of A
and B. Let P = (1, 1, 1) and note that P ∈ L. Find the equation of the plane
which is perpendicular to L and passes through the point P , expressed in the form
ax+ by + cz = d.

Exercise 3.16. Let S be the solution set of the equation x2 + y2 + z2 = 16 Let
P = (4, 0, 0). Find the equation of a plane which passes through P and intersects
S is a circle of radius r for the following r:

(a) r = 4;
(b) r = 2;
(c) r = 3;
(d) r = 1.

Exercise 3.17. In R2, the set of points equidistant to two points is a line, and in
R3 it is a plane. In R4, it is a three-dimensional hyperplane. Find the equation of
the hyperplane in R4 which is the set of points equidistant to the points (1, 2, 3, 0)
and (2, 0,−1, 1).



CHAPTER 4

Vector Spaces in Rn

Abstract. Vector spaces in Rn are subsets of cartesian space which are closed

under vector addition and scalar multiplication. In this chapter, we see that
vector spaces are affine spaces which pass through the origin, and that affine

spaces are translations of vector spaces. The notions of span, linear indepen-
dence, and basis are introduced. We also begin the study of linear transfor-

mations, which are functions between vectors spaces which preserve the vector

operations.

1. Vector Spaces in Rn

A vector space in Rn is a subset V ⊂ Rn satisfying

(S0) V is nonempty;
(S1) ~v + ~w ∈ V for every ~v, ~w ∈ V ;
(S2) t~v ∈ V for every ~v ∈ V and t ∈ R.

Property (S1) says that V is closed under vector addition. Property (S2) says
that V is closed under scalar multiplication. In the presence of these properties,
property (S0) is equivalent to the assertion that the origin is an element of V . For if
~0 ∈ ~v, then V is certainly nonempty; on the other hand, suppose that V is nonempty
and let v ∈ V . Then −1v = −v ∈ V by property (S2), so ~0 = ~v + (−~v) ∈ V by
property (S1).

Example 4.1. Since Rn is nonempty and closed under vector addition and scalar
multiplication, it is a vector space.

Example 4.2. Let ~0 ∈ Rn denote the origin, and let V = {~0}. Then V is a vector

space, as ~0 +~0 = ~0 ∈ V , and t~0 = ~0 ∈ V for all t ∈ R.

Example 4.3. Let ~v, ~w ∈ R3 and let V = {a~v+ b~w | a, b ∈ R}. Then V is a vector

space in R3. To see this, first note that ~0 = 0~v+ 0~w ∈ V , so (S0) is satisfied. Next
select arbitrary vectors a1~v + b1 ~w and a2~v + b2 ~w from V and note that their sum
is (a1 + a2)~v + (b1 + b2)~w, which is also in V ; thus (S1) is satisfied. Moreover, if
a~v + b~w ∈ V and t ∈ R, we have t(a~v + b~w) = (ta)~v + (tb)~w ∈ V ; thus (S2) is
satisfied. In this example, the vector space V is a plane through the origin.

Let V be a vector space in Rn. A subspace of V is a subset W ⊂ V which is
itself a vector space. Since Rn is itself a vector space, every vector space in Rn is
a subspace of Rn. The notation W ≤ V means that W is a subspace of V .

Example 4.4. Let ~v, ~w, ~x ∈ R3 with ~x = ~v + ~w, V = {a~v + b~w | a, b ∈ R}, and
W = {c~x | c ∈ R}. Then W,V ≤ R3, and W ≤ V .

51
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We see that lines and planes through the origin are also vector spaces; in fact,
we have the following proposition.

Proposition 4.5. A subset of Rn is a vector space if and only if it is an affine
space which contains the origin.

Proof. We prove both directions of implication.
(⇒) Let V be a vector space; we wish to show that V is an affine space which

contains the origin.
Then V is nonempty, so it contains some ~v ∈ V . By (S2), −~v ∈ V , so by (S2),

~v + (−~v) = ~0 ∈ V . Thus V contains the origin.
Let ~v, ~w ∈ V ; we wish to show that the entire line through the tips of ~v and ~w

is contained in V . The parametric equation of the line through the tips of ~v and ~w
is P = ~v + t(~w − ~v). By (S1), ~w − ~v ∈ V , so by (S2), t(~w − ~v) ∈ V . Adding ~v to
this, (S1) says that P ∈ V .

(⇐) Let A be an affine space which contains the origin; we wish to show that
A is a vector space.

Let ~v ∈ A and t ∈ R; if ~v = ~0, then t~v = ~0 ∈ A. Otherwise, the entire line
through ~v and ~0 is in A; since t~v is on this line, it is in L, which shows (S2).

Let ~v, ~w ∈ A and assume that they are nonzero. The line through the tips of ~v
and ~w is contained in A; the midpoint of the line segment from the tip of ~v to the
tip of ~w is ~x = ~v+ 1

2 (~w−~v). Thus ~x ∈ A. Now 2~x ∈ A by the previous paragraph;
but 2~x = 2~v − (~w − ~v) = ~v + ~w, so ~v + ~w ∈ A, which shows (S1). �

Let A ⊂ Rn, and let ~v ∈ Rn be a vector. The translation of A by ~v is

~v +A = {~v + P | P ∈ A}.
We may also write A+ ~v to indicate {P + ~v | P ∈ A}; this is the same set.

Proposition 4.6. A translation of an affine space is an affine space.

Proof. Let ~v + A be a translation of an affine space, where A is an affine space in
Rn and ~v ∈ Rn. Let P,Q ∈ ~v +A, and let R be a point on the line through P and
Q. Then R = P + t(Q− P ) for some t ∈ R.

Now P −~v,Q−~v ∈ A, and (Q−P ) = ((Q−~v)− (P −~v)) is the vector between
them; thus R− ~v = (P − ~v) + t(Q− P ) is on the line through P − ~v and Q− ~v, so
R− ~v ∈ A. Thus R ∈ ~v +A. �

Translation produces a parallel linear set. For example, a translation of a line
is a parallel line, and a translation of a plane is a parallel plane.

If P0 is a point in Rn, translation by P0 means translation by the vector repre-
sented by the arrow in standard position with tip P0. Thus, we may translate by
points.

Proposition 4.7. A subset of Rn is an affine space if and only if it is a translation
of a vector space.

Proof. We prove both directions of implication.
(⇒) Let A be an affine space in Rn. Then A is nonempty; let ~x ∈ A, and let

~w = −~x. Let V = ~w+A; this is a translation of A, and ~0 ∈ V . Thus V is an affine
space which contains the origin, and therefore is a vector space.

(⇐) Let A be a translation of a vector space. Since a vector space is an affine
space, A is a translation of an affine space, and is therefore itself an affine space. �
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2. Spans

Let X ⊂ Rn be a set of vectors from Rn. A linear combination from X is an
expression of the form

a1~v1 + · · ·+ ar~vr,

where ~v1, . . . , ~vr ∈ X and a1, . . . , ar ∈ R. We do not place any restrictions in our
definitions regarding the relative size of r and n; however, this relative size will play
a role in what we will be able to conclude.

The span of X is the subset span(X) ⊂ Rn defined by

span(X) = {~v ∈ Rn | ~v is a linear combination from X}.
If ~v ∈ X, then ~v is a linear combination from X, with r = 1 and a1 = 1. Thus,
X ⊂ span(X). If X ⊂ Y , then span(X) ⊂ span(Y ), because any linear combination
from X is a linear combination from Y . The next proposition may seem almost as
clear, but as the proof shows, there is some work involved.

Proposition 4.8. Let Y ⊂ Rn. Then

X ⊂ span(Y )⇒ span(X) ⊂ span(Y ).

Proof. Suppose that X ⊂ span(Y ). Pick an arbitrary vector ~w ∈ span(X); it
suffices to show that ~w ∈ span(Y ).

Since ~w ∈ span(X), there exist vectors ~w1, . . . , ~ws ∈ X and real numbers
b1, . . . , br ∈ R such that ~w =

∑s
j=1 bj ~wj .

Since X ⊂ span(Y ), each vector ~wj is a linear combination from Y . Each such
linear combination may be written with finitely many vectors from Y ; taking the
union of sets of such vectors, there exists a finite set Z = {~v1, . . . , ~vr} ⊂ Y such
that each ~wj is a linear combination from Z.

Thus, for each j = 1, . . . , s, there exist real numbers a1j , . . . , arj ∈ R such that
~wj =

∑r
i=1 aij~vi. Then, with liberal use of associativity of vector addition,

~w =

s∑
j=1

bj ~wj =

s∑
j=1

bj

( r∑
i=1

aij~vi

)
=

s∑
j=1

r∑
i=1

bjaij~vi =

r∑
i=1

( s∑
j=1

aijbj

)
~vi

We have expressed ~w as a linear combination from Y . Therefore ~w ∈ span(Y ). �

Proposition 4.9. Let X ⊂ Rn be nonempty. Then span(X) ≤ Rn.

Proof. Since X is nonempty, so is span(X). Moreover, sums and scalar products
of linear combinations from X are linear combinations from X. Thus span(X) is
closed under vector addition and scalar multiplication. �

Proposition 4.10. Let X ⊂ Rn. Then X ≤ Rn if and only if span(X) = X.

Proof. Suppose X is a vector space in Rn. We wish to show that span(X) = X.
Since we already know that X ⊂ span(X), it suffices to show that span(X) ⊂ X.
Let ~w ∈ span(X). It suffices to show that ~w ∈ X. Now ~w is a linear combination
of vectors from X. Since X is a vector space, it is closed under addition and scalar
multiplication, so all sums and scalar multiples of vectors in X are also in X. Thus
linear combinations of vectors from X are also in X; thus ~w ∈ X.

Suppose that span(X) = X. Let ~x, ~y ∈ X and a ∈ R. Then ~x + ~y is a linear
combination of vectors from X, so ~x + ~y ∈ span(X) = X. Also a~x is a linear
combination of vectors from X, so a~x ∈ span(X) = X. Thus X is closed under
vector addition and scalar multiplication, i.e., X is a vector space in Rn. �
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3. Linear Independence

Let V be a vector space in Rn, and let X ⊂ V . We say that X spans V , or that
X is a spanning set for V , if span(X) = V . Since V = span(V ), we know that V
contains spanning sets. In fact, most of the vectors in V are a linear combination
of only a few vectors in V .

A subset X ⊂ V which spans V is minimal if no proper subset of X spans
V ; that is, if we remove any vector from X, it no longer spans V . Naturally, we
would like to get the smallest possible spanning set, so we ask ourselves, under what
conditions is a spanning set minimal?

Suppose that X is not minimal; then there is a vector ~x ∈ X such that if
we remove ~x, the span does not diminish; in that case, ~x is in the span of the
other vectors in X. Thus ~x is a linear combination of the other vectors in X;
~x =

∑r−1
i=1 ai~vi for some ~vi ∈ X and ai ∈ R. We can relabel ~x = ~vr and subtract it

from both sides of this equation to obtain
∑r
i=1 ai~vi = ~0.

Let X ⊂ Rn; a dependence relation from X is an equation of the form

a1~v1 + · · ·+ ar~vr = ~0,

where ~vi ∈ X and ai ∈ R. This dependence relation is trivial if ai = 0 for all i;
otherwise, it is nontrivial. We see that we can write one vector in X as a linear
combination of the other vectors if and only if X admits a nontrivial dependence
relation.

We say that X is linearly independent if, for every ~v1, . . . , ~vr ∈ X and
a1, . . . , ar ∈ R, we have

a1~v1 + · · ·+ ar~vr = ~0 ⇒ a1 = a2 = · · · = ar = 0.

That is, X does not admit a nontrivial dependence relation. We see that X is a
minimal spanning set for V if and only if X spans V and X is linearly independent.

Example 4.11. Let ~v = 〈2, 3〉 and ~w = 〈−4, 1〉. Let X = {~v, ~w}. Show that X is
linearly independent.

Solution. Let a~v+b~w = ~0 be a dependence relation; we wish to show that a = b = 0.
We obtain a system of two equations in two variables

2a+ 3b = 0;

−4a+ b = 0.

Multiplying the first equation by 2 and adding, we get 7b = 0, so b = 0, whence
a = 0. �
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4. Bases

Let V be a vector space and let B ⊂ V . We say that B is a basis for V if

(B1) span(B) = V ;
(B2) B is linearly independent.

The plural of basis is bases.

Proposition 4.12. Let V be a vector space, and let B = {~v1, . . . , ~vr} ⊂ V . Then
B is a basis for V if and only if every vector in V can be written as a linear
combination from B in a unique way.

Proof. Suppose that B is a basis. Let ~w ∈ V ; since B is a basis, B spans V , so ~w
can be written as a linear combination from B. Suppose we write ~w in two ways;
then there are real numbers a1, . . . , ar, b1, . . . , br ∈ R such that

~w =

r∑
i=1

ai~vi =

r∑
i=1

bi~vi.

Subtracting, we obtain
r∑
i=1

(ai − bi)~vi = ~0.

Since B is independent, ai − bi = 0 for all i, so ai = bi for all i; this shows that the
expression of ~w as a linear combination is unique.

Suppose that every vector in V can be written as a linear combination from B
in a unique way. Then B spans V . Suppose that

a1~v1 + · · ·+ ar~vr = ~0

is a dependence relation from B. This expresses ~0 as a linear combination, and so
it is unique. Since this equation is true for a1 = · · · = ar = 0, this must be the case
here. Thus B is linearly independent. �

The ith standard basis vector for Rn is denoted ~ei and is defined to be the
vector with 1 in the ith coordinate and zero in every other coordinate; that is,
~e1 = 〈1, 0, . . . , 0〉, ~en = 〈0, . . . , 0, 1〉, and

~ei = 〈0, . . . , 0, 1, 0, . . . , 0〉, where the 1 is in the ith slot.

The set {~ei ∈ Rn | i = 1, . . . , n} is called the standard basis for Rn. Now if
~v = 〈a1, . . . , an〉 = a1~e1 + · · · + an~en; the number ai is call the ith component of ~v
with respect to the standard basis.

For example, the standard basis for R4 is

{~e1, ~e2, ~e3, ~e4} = {〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉}.
This is indeed a basis; for example, we can write

〈1,−3, π,
√

2〉 = ~e1 − 3~e2 + π~e3 +
√

2~e4.
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5. Dimension

We now show that any two bases have the same size, which will be the dimension
of the vector space. First, we collect some observations in the form of lemmas.

Lemma 4.13. Let V be a vector space and let X,Y ⊂ V .
If X spans V and X ⊂ Y , then Y spans V .

Proof. Suppose that X spans V . Then every element of V is a linear combination
of elements from X. But since X ⊂ Y , all such linear combinations are also linear
combinations from Y . Thus Y spans V . �

Lemma 4.14. Let V be a vector space and let X,Y ⊂ V .
If Y is independent and X ⊂ Y , then X is independent.

Proof. Any nontrivial dependence relation among the elements of X would be a
nontrivial dependence relation among the elements of Y . �

Lemma 4.15. Let V be a vector space and let X ⊂ V be a spanning set.
If ~v ∈ V rX, then Y = X ∪ {~v} is dependent.

Proof. If ~v = ~0, then 1 · ~v = 0 is a nontrivial dependence relation from Y , so
Y is dependent; thus we may assume that ~v 6= ~0. Since X spans, we may write
~v =

∑m
i=1 ai~xi for some ai ∈ R and ~xi ∈ X. Not all of the ai’s are zero, because

~v 6= 0. Let ~xm+1 = ~v and am+1 = −1; then
∑m+1
i=1 ai~xi = 0 is a nontrivial

dependence relation from Y . Thus Y is dependent. �

Lemma 4.16. Let V be a vector space and let X = {~v1, . . . , ~vn} be a dependent
set. Then there exists k ∈ {1, . . . , n} such that ~vk is a linear combination from
{~v1, . . . , ~vk−1}.

Proof. Since X is dependent, there is a nontrivial dependence relation
n∑
i=1

ai~vi = 0,

where not all ai’s equal zero. Let k be the largest integer between 1 and n such
that ak 6= 0. Then

~vk =
1

ak

k−1∑
i=1

ai~vi

is a linear combination of the preceding elements. �
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Theorem 4.17. Let V be a vector space in Rn, and let X,Y ⊂ V be finite subsets
of V . If X is linearly independent and Y spans V , then

|X| ≤ |Y |.

Proof. Let |Y | = n and Y = {~y1, . . . , ~yn}.
By way of contradiction,suppose that |X| > n and let

Z = {~z1, . . . , ~zn+1} ⊂ X;

then Z is independent by Lemma 4.14. Label the elements of Y and Z so that all
of those contained in Y ∩ Z are in the front, with ~yi = ~zi for all i ≤ j:

Y = {~z1, . . . , ~zj , ~yj+1, . . . , ~yn}.
By Lemma 4.15, the set

{~z1, . . . , ~zj+1, ~yj+1, ~yk+2, . . . , ~yn}
is dependent. By Lemma 4.16, one of these vectors is dependent on the preceding
ones, and since the ~z′is are linearly independent, there exists k ∈ {j+1, . . . , n} such
that ~yk is a linear combination of {~z1, . . . , ~zj+1, ~yj+1, . . . , ~yk−1}. Thus if we remove
~yk from the set, it will still span:

span{~z1, . . . , ~zi+1, ~yi+1, . . . , ~yk−1, ~yk+1, . . . , ~yn} = V.

Continuing in this way, adding the next z and removing a y, we see that after
n− j replacements we have

span{~z1, . . . , ~zn} = V.

Thus the set Z = {~z1, . . . , ~zn} ∪ {~zn+1} is dependent by Lemma 4.15, producing a
contradiction. �

Corollary 4.18. Let V be a vector space in Rn, and let X,Y ⊂ V be finite bases
of V . Then

|X| = |Y |.

Proof. Since X and Y are basis, each spans and is independent. Since X is inde-
pendent and Y spans, we have |X| ≤ |Y |. But also, Y is independent and X spans,
so |Y | ≤ |X|. The result follows. �

If we know that V is spanned by a finite set, we can use Lemma 4.16 to throw
out one superfluous vector at a time, until we arrive at a spanning set which is also
independent. This is a basis for V . Thus, in this case, V has a basis.

Let V be a vector space in Rn The dimension of V is the cardinality of any
basis for V , and is denoted dim(V ).

Proposition 4.19. Let V,W ≤ Rn. If W ≤ V , then dim(W ) ≤ dim(V ).

Proof. Let C be a basis for W and let B be a basis for V . Then C ⊂ V , and C is
linearly independent, and B spans V . Thus |C| ≤ |B|, so dim(W ) ≤ dim(V ). �
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Let V ≤ Rn; we now show that any set of linearly independent vectors in V can
be completed to a basis for V , and consequently, V has a basis unless V is trivial.

Lemma 4.20. Let X ⊂ Rn be linearly independent, and let ~v ∈ Rn r span(X).
Then X ∪ {~v} is linearly independent.

Proof. Since Rn is spanned by the n standard basis vectors, Theorem 4.17 implies
that |X| ≤ n, say |X| = k ≤ n; let ~x1, . . . , ~xk be the distinct vectors in X, and set
~xk+1 = ~v. Then

X ∪ {~v} = {~x1, . . . , ~xk, ~xk+1}.
If this set is linearly dependent, one of these vectors is a linear combination of the
preceding vectors, by Lemma 4.16; but ~xk+1 is not a linear combination of the
preceding vectors, since ~v = ~xk+1 /∈ spanX, and since X is independent, ~xi is a not
linear combination of the preceding vectors for i = 1, . . . , k. So X ∪ {~v} cannot be
linearly dependent. �

Proposition 4.21. Let V ≤ Rn and let X ⊂ V be linearly independent. Then
there exists a set B ⊂ V with X ⊂ B such that B is a basis for V .

Proof. If span(X) = V , then X is a basis for V containing X. Otherwise, there
exists ~v ∈ V r span(X). Set Y = X ∪ ~v; then Y is independent. If span(Y ) = V ,
we have a basis containing X; otherwise, continue in this way until a basis for V
is linearly independent spanning set is obtained. This will happen in no more than
n− |X| steps, since any set of n+ 1 or more vectors in Rn is dependent. �

If V is a vector space, X ⊂ V is linearly independent, and B is a basis for V
containing X, we call B a completion of X to a basis for V .

Proposition 4.22. Let V ≤ Rn. Then V has a basis.

Proof. We consider the empty set to be linearly independent, and the span of the
empty set to be the {~0}. Thus if V = {~0}, its basis is the empty set.

Otherwise, the empty set can be completed to a basis for V . �
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6. Linear Transformations

A linear transformation from Rn to Rm is a function

T : Rn → Rm

which satisfies

(T1) T (~v + ~w) = T (~v) + T (~w) for all ~v, ~w ∈ Rn;
(T2) T (a~v) = aT (~v) for all ~v ∈ Rn and a ∈ R.

Example 4.23. Let a, b ∈ R be arbitrary constants. The function T : R2 → R1

given by T 〈x, y〉 = ax+ by is linear, where T 〈x, y〉 means T (〈x, y〉). To see this, let
~v = 〈x1, y1〉, ~w = 〈x2, y2〉 ∈ R2. Then ~v + ~w = 〈x1 + x2, y1 + y2〉, so

T (~v + ~w) = T 〈x1 + x2, y1 + y2〉
= a(x1 + x2) + b(y1 + y2)

= (ax1 + by1) + (ax2 + by2)

= T (~v) + T (~w).

Now let ~v = 〈x, y〉 ∈ R2 and c ∈ R; then

T (c~v) = T 〈cx, cy〉 = acx+ acy = c(ax+ by) = cT (~v).

Thus T is linear.

Example 4.24. The function Pi : Rn → R given by T 〈x1, . . . , xn〉 = xi is linear;
this is called projection onto the ith coordinate.

Example 4.25. Fix an arbitrary vector ~w ∈ Rn. Then the function T : Rn → R
given by T (~v) = ~v · ~v is linear.

Proposition 4.26. Let T : Rn → Rm be a linear transformation. Then

(a) T (~0n) = ~0m;
(b) T (span(X)) = span(T (X)), where X ⊂ Rn.

Proof. To prove (a), we use transformation property (T2) to see that

T (~0n) = T (0 ·~0n) = 0 · T (~0n) = ~0m,

because 0 scalar multiplied by any vector in Rm is ~0m.
To prove (b), let X ⊂ Rn; for simplicity assume that X = {~v1, . . . , ~vr} is a

finite set. Then

T (span(X)) = T

({ r∑
i=1

ai~vi

∣∣∣∣ ai ∈ R
})

by definition of span

=

{
T

( r∑
i=1

ai~vi

) ∣∣∣∣ ai ∈ R
}

by definition of image

=

{ r∑
i=1

aiT (~vi)

∣∣∣∣ ai ∈ R
}

since T is linear

= span({T (~v1), . . . , T (~vr)}) by definition of span

= span(T (X)) by definition of image

�



60 4. VECTOR SPACES IN Rn

Proposition 4.27. A linear transformation is completely determined by its effect
on the standard basis.

Proof. This means that if we know the effect of a linear transformation T : Rn →
Rm on the standard basis, then we know its effect on all of Rn. This follows from
the fact that if ~v ∈ Rn, then ~v = 〈a1, . . . , an〉 for some real numbers ai ∈ R. This
is the same as saying that ~v =

∑n
i=1 ai~ei; but since T is linear, we have

T (~v) = T

( n∑
i=1

ai~ei

)

=

n∑
i=1

T (ai~ei)

=

n∑
i=1

aiT (~ei).

Thus if we know T (~ei) for all i, then we completely understand T . �

The above argument shows that every vector in the image of a linear transfor-
mation is a linear combination of the images of the basis vectors. The argument
proceeds without change if we replace the standard basis by any spanning set.

Proposition 4.28. Let ~w1, . . . , ~wn ∈ Rm. Then there exists a unique linear trans-
formation T : Rn → Rm such that T (~ei) = ~wi for i = 1, . . . , n.

Proof. Define T by T (~v) =
∑n
i=1 ai ~wi, where v = (a1, . . . , an). This is linear and

sends ~ei to the vector ~wi. It is unique by the previous proposition. �

So, in order to define a linear transformation, we simply need to indicate where
the basis vectors are sent, and “extend linearly”, which means defining the trans-
formation T by the above formula.

The above argument proceeds without change if we replace the standard basis
by any finite spanning set.

Example 4.29. Define a linear transformation T : R3 → R3 by T (~e1) = 〈1, 2, 0〉,
T (~e2) = 〈0, 1, 2〉, and T (~e3) = 〈2, 0, 1〉. Let ~v = 〈1, 2, 3〉. What is T (~v)?

Solution. Note that ~v = ~e1 + 2~e2 + 3~e3. Thus

T (~v) = T (~e1) + 2T (~e2) + 3T (~e3) = 〈1, 2, 0〉+ 〈0, 2, 4〉+ 〈6, 0, 3〉 = 〈1, 4, 7〉.
�
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7. Standard Linear Transformations

Linear transformations fix the origin, so assume that the origin is fixed in the
following types of geometric transformations. The notation ~v 7→ ~w is read “~v maps
to ~w”, and it means that the transformation sends ~v to ~w.

Example 4.30. (Rotations)
In R2, a rotation is determined by a single angle θ. It can be defined by

~e1 7→ 〈cos θ, sin θ〉; ~e2 7→ 〈− sin θ, cos θ〉.
The full transformation is constructed by extending linearly.

In R3, a rotation is determined by a line through the origin, known as the axis
of rotation, and an angle of rotation about this line. For example, to rotate by 120◦

about the line (t, t, t). Then the rotation is defined by

~e1 7→ ~e2; ~e2 7→ ~e3; ~e3 7→ ~e1.

Example 4.31. (Reflections)
In R2, a reflection is determined by a line through the origin; the line is fixed by
the reflection. For example, to reflect across the line y = x, define a transformation
by

~e1 7→ ~e2; ~e2 7→ ~e1.

In R3, a reflection is determined by a plane through the origin; the plane is
fixed by the reflection. For example, reflection through the plane x = y is given by

~e1 7→ ~e2; ~e2 7→ ~e1; ~e3 7→ ~e3.

Example 4.32. (Projections)
Let V be a subspace of Rn. For each ~v ∈ Rn, there is a unique point on V which is
closest to the tip of ~v. Projection onto V is the transformation T : Rn → Rn which
maps ~v to the vector represented by this point.

For example, suppose V is a line through the origin with direction vector ~w.
Then the projection of ~v onto V is given by the vector projection of ~v onto ~w. Thus
we can define

T : Rn → Rn given by T (~v) =
~v · ~w
~w · ~w

~w.

It is more difficult to compute projections onto higher dimensional subspaces.

Example 4.33. (Dilations)
The transformation T : Rn → Rn given by T (~v) = a~v dilates Rn by a factor of a.

It is also possible to stretch Rn by different amounts in different directions.
For example, T : R2 → R2 given by T 〈x, y〉 = 〈2x, 3y〉 stretches by a factor of 2
horizontally and a factor of 3 vertically. This is not a dilation.

Example 4.34. (Sheering)
We can tilt Rn by fixing some standard basis directions and adding a multiple of
the fixed basis vectors to other basis vectors; this is known as sheering.

For example, consider the transformation of R2 given by

~e1 → ~e1; ~e2 → ~e2 + 2~e1.

This fixes the x-axis, but tilts the y-axis; the y-axis is stretched as it tilts, so that
the height of a point above the x-axis does not change.
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Example 4.35. Let T : R3 → R3 be the unique linear transformation define
by ~e1 7→ ~e2, ~e2 7→ ~e3, and ~e3 7→ ~e1. We see that the line 〈t, t, t〉 and the plane
x+ y + z = 0 are fixed by this transformation, and in fact, T is a rotation by 120◦

about this fixed line.

Example 4.36. Define T : R2 → R2 by T 〈x, y〉 = 〈x − y, x + y〉. Discuss the
geometric effect of T on R2.

Solution. Note that T (~e1) = T 〈1, 0〉 = 〈1, 1〉, and T (~e2) = T (0, 1) = 〈−1, 1〉. On
each of these vectors, T has the effect of rotating by π

4 radians and dilating by a

factor of
√

2. Thus, since T is determined by its effect on a basis, we suspect that
T has this effect on the entire plane. Let’s verify this.

Select an arbitrary vector ~v = 〈x, y〉 ∈ R2. Then

‖T (~v)‖ = ‖〈x+ y, x− y〉‖ =
√

(x+ y)2 + (x− y)2 =
√

2x2 + 2y2 =
√

2‖~v‖.
Thus T stretches ~v by a factor of

√
2.

Now consider ~v ·T (~v) = (x, y)·(x−y, x+y) = x2−xy+xy+y2 = x2+y2 = ‖~v‖2.
If θ is the angle between ~v and T (~v), we have

cos(θ) =
~v · T (~v)

‖~v‖‖T (~v)‖
=
‖~v‖2√
2‖~v‖2

=

√
2

2
.

Thus θ = π
4 , and this is independent of which nonzero vector ~v we choose. �

Example 4.37. Define T : R2 → R2 by T 〈x, y〉 = 〈x + y, x − y〉. Discuss the
geometric effect of T on R2.

Solution. We use ad hoc methods which we will later develop into a theory. By the
same computation, this stretches every vector by a factor of

√
2. Since T stretches

every vector by the same amount, intuition tells us that any additional action of T
is either as a rotation about the origin, or as a reflection across a line through the
origin.

But T 〈1, 0〉 = 〈1, 1〉 and T 〈0, 1〉 = 〈−1, 1〉; ~e1 is rotated by π
4 , but ~e2 is rotated

by − 3π
4 . Thus T cannot be a dilating rotation. We look for an line across which

T is a dilating reflection. This line would need to bisect the angle between ~e1 and
T (~e1), as well as the angle between ~e2 and T (~e2). The candidate is the line with
angle π

8 radians. Let’s verify this computationally.

Now if T is a dilating reflection, then T (~v) =
√

2~v, where ~v is the direction

vector of the line of reflection. For ~v = 〈x, y〉, this gives
√

2x = x + y and
√

2y =
x− y. Thus x+y

x = x−y
y , so xy + y2 = x2 − xy, whence y2 + 2xy − x2 = 0. Via the

quadratic formula,

y =
−2x±

√
4x2 + 4x2

2
= −x±

√
2x.

Thus T fixes (setwise) the lines y = (
√

2−1)x and y = −(
√

2+1)x. The orientation
of the line with positive slope is preserved, and the orientation of the line with
negative slope is reversed. So the reflection occurs across the line y = (

√
2−1)x. �
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8. Images and Preimages under Linear Transformations

Let T : Rn → Rm be a linear transformation and let V be a subspace of Rn.
The image of V under T is denoted by T (V ) and is defined to be the set of all
vectors in Rm which are “hit” by an element of V under the transformation T :

T (V ) = {w ∈ Rm | w = T (v) for some v ∈ V }.
Then T (V ) is actually a subspace of Rm.

Proposition 4.38. Let T : Rn → Rm be a linear transformation and let V ≤ Rn.
Then T (V ) ≤ Rm.

Proof. In order to show that something is a subspace, we need to verify properties
(S0), (S1), and (S2).

(S0) Since ~0 ∈ V and T (~0) = ~0, we see that ~0 ∈ T (V ).
(S1) Let ~w1, ~w2 ∈ T (V ). Then there exist vectors ~v1, ~v2 ∈ V such that ~w1 =

T (~v1) and ~w2 = T (~v2). We have ~w1 + ~w2 = T (~v1) + T (~v2) = T (~v1 + ~v2). Since V
is a subspace, ~v1 + ~v2 ∈ V ; thus ~w1 + ~w2 ∈ T (V ).

(S2) Let ~w ∈ T (V ) and a ∈ R. Then there exists ~v ∈ V such that T (~v) = ~w.
We have a~w = aT (~v) = T (a~v). Since V is a subspace, a~v ∈ V ; thus a~w ∈ T (V ). �

Example 4.39. Let V be the subspace of R2 spanned by the vector ~v = 〈1, 1〉;
that is, V = {〈t, t〉 | t ∈ R} is a line through the origin of slope 1. Let T : R2 → R2

be given by T 〈x, y〉 = 〈x − y, x + y〉; this is linear. Then T (V ) is the subspace of
R2 spanned by T (~v) = 〈1 − 1, 1 + 1〉 = 〈0, 2〉; that is, T (V ) is the y-axis. Thus T

rotates V by π
4 radians and expands it by a factor of

√
2. In fact, this is the effect

of T on the entire plane.

Let T : Rn → Rm be a linear transformation and let W be a subspace of Rm.
The preimage of W under T is denoted by T−1(W ) and is defined to be the set of
all vectors in Rn which “hit” elements in W under the transformation T :

T−1(W ) = {~v ∈ Rn | T (~v) = ~w for some ~w ∈W}.
Then T−1(W ) is actually a subspace of Rn.

Proposition 4.40. Let T : Rn → Rm be a linear transformation and let W ≤ Rm.
Then T−1(W ) ≤ Rn.

Proof. We verify properties (S0), (S1), and (S2).

(S0) Since ~0 ∈W and T (~0) = ~0, we see that ~0 ∈ T−1(W ).
(S1) Let ~v1, ~v2 ∈ T−1(W ); then T (~v1) and T (~v2) are elements of W . Now

T (~v1 +~v2) = T (~v1)+T (~v2), and since W is a subspace, this sum is also in W . Thus
~v1 + ~v2 ∈ T−1(W ).

(S2) Let ~v ∈ T−1(W ) and a ∈ R. Then T (a~v) = aT (~v); since T (~v) is in W
and W is a subspace, aT (~v) ∈W . Thus a~v ∈ T−1(W ). �

Example 4.41. Let T : R3 → R3 be the linear transformation given by T 〈x, y〉 =

〈x − y, y − z, z − x〉. Let W = {~0} ⊂ Rm be the trivial subspace of Rm; here, ~0
means the origin 〈0, 0, 0〉. The preimage is given by solving the equations

x− y = 0; y − z = 0; z − x = 0.

Any point of the form 〈t, t, t〉, where t ∈ R, is a solution. Thus T−1(W ) is the line
in R3 spanned by the vector 〈1, 1, 1〉.
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9. Kernels of Linear Transformations

The kernel of a linear transformation T : Rn → Rm is the set of all vectors in
the domain Rn which are sent to the origin in the range Rm. We denote this set
by ker(T ):

ker(T ) = {~v ∈ Rn | T (~v) = 0}.

Proposition 4.42. Let T : Rn → Rm be a linear transformation.
Then ker(T ) ≤ Rn.

Proof. We verify properties (S0), (S1), and (S2).

(S0) We know that T (~0) = ~0; thus ~0 ∈ ker(T ).

(S1) Let ~v1, ~v2 ∈ ker(T ); this means that T (~v1) = T (~v2) = ~0. Then T (~v1+~v2) =

T (~v1) + T (~v2) = ~0 +~0 = ~0, so ~v1 + ~v2 ∈ ker(T ).
(S2) Let ~v ∈ ker(T ) and a ∈ R. Then T (a~v) = aT (~v) = a · 0 = 0; thus

a~v ∈ ker(T ). �

Alternate Proof. Since W = {~0} is a subspace of Rm and ker(T ) is the preimage of
W , we know that W is a subspace by a Proposition 4.40. �

Example 4.43. Let T : R3 → R3 be given by T 〈x, y, z〉 = 〈x, y, 0〉. This is
projection onto the xy-plane, and is linear. The kernel is the z-axis.

Proposition 4.44. Let T : Rn → Rm be a linear transformation.
Then ker(T ) = {~0} if and only if T is injective.

Proof. We must show both sides of the implication. Recall that T is injective means
that whenever T (~v1) = T (~v2), we must have ~v1 = ~v2.

(⇒) Suppose that ker(T ) = {~0}. Let ~v1, ~v2 ∈ Rn such that T (~v1) = T (~v2);
we wish to show that ~v1 = ~v2. Then T (~v1) − T (~v2) = 0, so T (~v1 − ~v2) = 0, so

~v1 − ~v2 ∈ ker(T ). Since ker(T ) = {~0}, we have ~v1 − ~v2 = ~0, so ~v1 = ~v2. Therefore
T is injective.

(⇐) Suppose that T is injective. Let ~v ∈ ker(T ); we wish to show that ~v = ~0.

But T (~0) = ~0, so T (~v) = T (~0), and since T is injective, we must have ~v = ~0. �

If W ≤ Rn is a subspace and ~v ∈ Rn, the translate of W by v is the set

~v +W = {~v + ~w | ~w ∈W}.

Proposition 4.45. Let T : Rn → Rm be a linear transformation. Let ~w ∈ Rm be
in the image of T and let ~v ∈ Rn such that T (~v) = ~w. Then

T−1(~w) = ~v + ker(T ).

Proof. To show that two sets are equal, we show that each is contained in the other.
(⊂) Let ~x ∈ T−1(~w). Then T (~x) = ~w, so T (~x) − ~w = ~0. Since T (~v) = ~w, we

have T (~x)−T (~v) = T (~x−~v) = ~0. Thus ~x−~v ∈ ker(T ), so ~x = ~v+(~x−~v) ∈ ~v+ker(T ).
(⊃) Let ~x ∈ ~v + ker(T ). Then ~x = ~v + ~y, where ~y ∈ ker(T ). Thus T (~x) =

T (~v + ~y) = T (~v) + T (~y) = ~w +~0 = ~w, so ~x ∈ T−1(~w). �
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10. Sums and Scalar Products of Linear Transformations

Let S : Rn → Rm and T : Rn → Rm be linear transformations identical with
domains and identical ranges. We define the sum of these linear transformations
to be the function S + T given by adding pointwise:

S + T : Rn → Rm given by (S + T )(~v) = S(~v) + T (~v).

Proposition 4.46. Let S : Rn → Rm and T : Rn → Rm be linear transformations.
Then S + T : Rn → Rm is a linear transformation.

Proof. We verify properties (T1) and (T2).
(T1) Let ~v1, ~v2 ∈ Rn. Then

(S + T )(~v1 + ~v2) = S(~v1 + ~v2) + T (~v1 + ~v2)

= S(~v1) + S(~v2) + T (~v1) + T (~v2)

= S(~v1) + T (~v1) + S(~v2) + T (~v2)

= (S + T )(~v1) + (S + T )(~v2).

(T2) Let ~v ∈ Rp and a ∈ R. Then

(S + T )(a~v) = S(a~v) + T (a~v)

= aS(~v) + aT (~v)

= a(S(~v) + T (~v))

= a(S + T )(~v).

�

Let T : Rn → Rm be a linear transformation and let b ∈ R be a scalar. We
define the scalar product of b and T to be the function bT given by multiplying
pointwise:

bT : Rn → Rm given by (bT )(~v) = bT (~v).

Proposition 4.47. Let T : Rn → Rm be a linear transformation and let b ∈ R.
Then bT : Rn → Rm is a linear transformation.

Proof. We verify properties (T1) and (T2).
(T1) Let ~v1, ~v2 ∈ Rn. Then

bT (~v1 + ~v2) = b(T (~v1) + T (~v2)) = bT (~v1) + aT (~v2).

(L2) Let ~v ∈ Rp and a ∈ R. Then

bT (a~v) = baT (~v) = abT (~v) = a(bT (~v)).

�

Example 4.48. Let S〈x, y〉 = 〈x − y, x + y〉 and T 〈x, y〉 = 〈x + y, x − y〉. Then
(S + T )〈x, y〉 = 〈2x, 2x〉. This has the effect of plummeting 〈x, y〉 vertically onto
the line y = 0 and then stretching by a factor of 2.
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11. Compositions of Linear Transformations

Let S : Rp → Rn and T : Rn → Rm be linear transformations. The composition
of S and T is the function

T ◦ S : Rp → Rm given by (T ◦ S)(~v) = T (S(~v)).

Then T ◦ S is actually a linear transformation.

Proposition 4.49. Let S : Rp → Rn and T : Rn → Rm be linear transformations.
Then T ◦ S : Rp → Rm is a linear transformation.

Proof. We verify properties (T1) and (T2).
(T1) Let ~v1, ~v2 ∈ Rp. Then

T (S(~v1 + ~v2)) = T (S(~v1) + S(~v2)) = T (S(~v1)) + T (S(~v2)).

(T2) Let ~v ∈ Rp and a ∈ R. Then

T (S(a~v)) = T (aS(~v)) = aT (S(~v)).

�

The identity transformation on Rn is the function Jn = J : Rn → Rn which
sends every element to itself; that is, J(~v) = ~v for all ~v ∈ Rn. This is clearly linear.

Actually, given any arbitrary set A, we can define the identity function on it.
Let A be a set. The identity function on A is the function

idA : A→ A given by idA(a) = a.

Let f : A → B be a function. We say that f is invertible if there exists a
function g : B → A such that g ◦ f = idA and f ◦ g = idB . The function g is called
the inverse of f , and is denoted by f−1.

Proposition 4.50. Let f : A→ B. Then f is invertible if and only if f is bijective.

Proof. To show an if and only if statement, we show implication in both directions.
(⇒) Suppose that f is invertible. Then there exists a function f−1 : B → A

such that f−1(f(a)) = a for every a ∈ A, and f(f−1(b)) = b for every b ∈ B.
We wish to show that f is injective and surjective.
To show injectivity, we select arbitrary elements of A which go to the same

place under f and show that they must have been the same element in the first
place.

Let a1, a2 ∈ A such that f(a1) = f(a2). Then f−1(f(a1)) = f−1(f(a2)), so
a1 = a2. Therefore f is injective.

To show surjectivity, we select an arbitrary element of B and find an element
a ∈ A such that f(a) = b.

Let b ∈ B. Let a = f−1(b). Then f(a) = f(f−1(b)) = b. Therefore f is
surjective.

(⇐) Suppose that f is bijective. The for every b ∈ B there exists a unique
element a ∈ A such that f(a) = b. Define f−1 : B → A by f−1(b) = a. Clearly
f−1 is the inverse of f . �

A linear transformation T : Rn → Rm is called invertible if it is invertible as a
function. If T is invertible, we have a function S : Rm → Rn such that T ◦ S = Jm
and S ◦ T = Jn. We will see that this implies that m must equal n. For now, we
content ourselves to be reassured that if T is invertible, its inverse is also linear.
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Proposition 4.51. Let T : Rn → Rm be a bijective linear transformation and let
S : Rm → Rn be its inverse. Then S is a linear transformation.

Proof. We verify properties (T1) and (T2).
(T1) Let ~w1, ~w2 ∈ Rm. Since T is surjective, there exist ~v1, ~v2 ∈ Rn such that

T (~v1) = ~w1 and T (~v2) = ~w2. Then S(~w1) = ~v1 and S(~w2) = ~v2. Now

S(w1 + w2) = S(T (v1) + T (v2)) = S(T (v1 + v2)) = v1 + v2 = S(w1) + S(w2).

(T2) Let ~w ∈ Rm and a ∈ R. There exists ~v ∈ Rn such that T (~v) = ~w. Then
S(~w) = ~v. Now

S(a~w) = S(aT (~v)) = S(T (a~v)) = a~v = aS(~w).

�

Example 4.52. Let S〈x, y〉 = 〈x − y, x + y〉 and T 〈x, y〉 = 〈x + y, x − y〉. Then
(T ◦ S)〈x, y〉 = 〈2x,−2y〉. This has the effect of reflecting the plane across the
x-axis and stretching by a factor of 2.
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12. Exercises

Exercise 4.1. Let ~v1 = 〈3,−1〉 and ~v2 = 〈−2, 5〉. Show that span{~v1, ~v2} = R2 by
writing and arbitrary vector 〈x, y〉 ∈ R2 as a linear combination of ~v1 and ~v2.

Exercise 4.2. Let X = {~v1, . . . , ~vr} ⊂ Rn. Let ~w1, ~w2 ∈ span(X).

(a) Let t ∈ R. Show that t(~w1 − ~w2) + ~w1 ∈ span(X).
(b) Conclude that the line through ~w1 and ~w2 is contained in span(X).

Exercise 4.3. Let T : R2 → R2 be a linear transformation of the plane. Suppose
that T (~e2) = aT (~e1) for some a ∈ R. Show that the image of T is a line through
the origin in R2.

Exercise 4.4. Let ~v1 = 〈1,−2, 1〉, ~v2 = 〈−1,−2, 2〉, and ~v3 = 〈5,−2,−1〉, and let
X = {~v1, ~v2, ~v3}.

(a) Show that X is linearly dependent set of vectors.
(b) Find a parametric equation for spanX.
(c) Find a general equation for spanX.

Exercise 4.5. Let ~w ∈ Rn and set

V = {~v ∈ Rn | ~v · ~w = 0}.
Show that V is a vector space.

Exercise 4.6. Let V and W be vector spaces in Rn. Show that V ∩W is a vector
space in Rn.

Exercise 4.7. Let X = {~v1, . . . , ~vr}, and let V = spanX. Show that X is a basis
for V if and only if every vector in V can be written as a linear combination from
X in a unique way; that is,

∑r
i=1 ai~vi =

∑r
i=1 bi~vi implies ai = bi for all i.

Exercise 4.8. Let ~w ∈ Rn and define a function

T : Rn → R by T (~v) = ~v · ~w.
Show that T is a linear transformation.

Exercise 4.9. Let ~w ∈ Rn and define a function

T : Rn → Rn by T (~v) =
~v · ~w
~w · ~w

~w.

Show that T is a linear transformation, and interpret it geometrically.

Exercise 4.10. Let ~w ∈ R3 and define a function

T : R3 → R3 by T (~v) = ~v × ~w.

Show that T is a linear transformation, and interpret it geometrically.



CHAPTER 5

Matrix Algebra

1. Matrices

1.1. Motivation. Let T : Rn → Rm be a linear transformation. We use the
notation ~ej to denote the jth standard basis vector in the domain Rn of T , and the
notation ~ei to denote the ith standard basis vector in the range Rm. Any ambiguity
here can be resolved from the context.

We have seen that T is completely determined by its effect on the standard
basis for Rn, so that if we know T (~ej) for j = 1, . . . , n, we understand T . Now
T (~ej) is a vector in the range Rm, and as such, is a linear combination of the
standard basis vectors in Rm. We let aij ∈ R denote the ith component of T (~ej),
so that

T (~ej) =

m∑
i=1

aij~ei.

Let us see more explicitly how the numbers aij , together with their manner of
indexing, determine T .

Let ~b ∈ Rn be an arbitrary vector, and call T (~b) the destination of ~b under T .

To understand the transformation T , we wish to find a formula for T (~b). Since ~b is
in the domain of T , it is a linear combination of the standard basis vectors in the

domain Rn. Thus ~b =
∑n
j=1 bj~ej for some real numbers bj ∈ R. Moreover, T (~b) is

a linear combination of the standard basis vectors for Rm, so T (~b) =
∑m
i=1 ci~ei for

some ci ∈ R. We wish to find a formula for the ci’s in terms of the bj ’s and the
a′ijs. We compute

T (~b) =

n∑
j=1

bjT (~ej) =

n∑
j=1

bj

( m∑
i=1

aij~ei

)
=

m∑
i=1

( n∑
j=1

aijbj

)
~ei.

The final expression in the above equation reveals that the components of T (~b) are
given by

ci =

n∑
i=1

aijbj = 〈ai1, . . . , ain〉 · 〈b1, . . . bn〉;

that is, T (~b) is the vector whose ith coordinate is obtained by collecting the ith

coordinates of the destinations of the standard basis vectors into one vector, and

dotting that vector with ~b.
Thus T is completely described by the numbers aij , as i runs from 1 to m and

j runs from 1 to n. These numbers form a mathematical object known as a matrix.

69
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1.2. Matrices. Let m,n be positive integers. An m × n matrix with real
entries is an array of real numbers with m rows and n columns. We put brackets
around the numbers; thus if A is an m× n matrix, we write

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 ,
where aij is the real number in the ith row and the jth column. This can become
a lot of writing; we use an abbreviated notation

[number]slot.

In our case,
A = [aij ]ij .

This notation means that aij is in the ijth slot. You may ask, “why would we ever
need to repeat the ij”? The reason is, the number in the ijth slot is not always
indexed by ij. For example, if A is a 2× 3 matrix written as A = [2]ij and B is a
3× 2 matrix written as B = [3j − i]ij , then

A =

[
2 2 2
2 2 2

]
and B =

2 5
1 4
0 3

 .
The transpose of an m × n matrix A = [aij ]ij is the n ×m matrix A∗ whose

rows are the columns of A and whose columns are the rows of A:

A∗ = [aji]ij .

Note that (A∗)∗ = A. An m × n matrix is called square if m = n. A matrix A is
symmetric if A∗ = A; note that only square matrices can be symmetric.

A row vector is an 1× n matrix, and a column vector is a m× 1 matrix. Note
that if ~v is a column vector, then ~v∗ is a row vector. From now on, whenever we
need to consider a vector from Rn as a matrix, we consider it to be a column vector.

Let A be an m×n matrix. Denote the ith row of A by A(i) and the jth column

of A by A(j). Thus A(i) is a 1× n row vector and A(j) is an m× 1 column vector.
For convenience when we have not already labeled the entries of a matrix, let Aij
denote the entry in the ith row and jth column

Let ~v1, . . . , ~vn ∈ Rm. We consider these to be column vectors. Let

A = [~v1 | · · · | ~vn]

denote the matrix whose jth column is vj ; thus A(j) = ~vj .
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1.3. Matrix of a Linear Transformation. Let T : Rn → Rm be a linear
transformation. Let i range from 1 to m and j range from 1 to n. For each standard
basis vector ~ej in the domain of T , its image T (~ej) under T is a linear combination
of the standard basis vectors from Rm in a unique way. Thus there exist unique
real numbers aij such that

T (~ej) =

m∑
i=1

aij~ei.

The matrix of T is the m× n matrix defined by

AT = [aij ]ij .

Fixing j and letting i ranges over the rows of AT , we see that the entries in the jth

column are the component of T (~ej); that is, the jth column is the destination of ~ej
under the transformation T . Thus

AT = [T (~e1) | T (~e2) | · · · | T (~ej)].

We emphasize, in words,

The columns of AT are the destinations of the standard basis vectors .

Example 5.1. Let T : R2 → R2 be the linear transformation which stretches the
x-axis by 2 and stretches the y-axis by 3. Find the matrix of T .

Solution. We find where T sends the standard basis vectors. We have ~e1 7→ 2~e1

and ~e2 7→ 3~e2. Thus the first column of AT is 2~e1 and the second column is 3~e2:

AT = [T (~e1) | T (~e)2] = [2~e1 | 3~e2] = [〈2, 0〉 | 〈0, 3〉] =

[
2 0
0 3

]
.

�

Example 5.2. Find the matrix of the linear transformation which rotates R3 by
90◦ around the y-axis.

Solution. Since the axis of rotation is fixed, we have ~e2 7→ ~e2. We assume the 90◦

means clockwise from the perspective of the positive y-axis. Thus ~e1 7→ −~e3 and
~e3 7→ ~e1. This gives

AT = [T (~e1) | T (~e)2 | T (~e3)] = [−~e3 | ~e2 | ~e1] =

 0 0 1
0 1 0
−1 0 0

 .
�

1.4. Matrix Addition and Scalar Multiplication. Let A = [aij ]ij and
B = [bij ]ij be m× n matrices. We define the matrix sum A+B by

A+B = [aij + bij ]ij .

We can only add matrices of the same size.
Let A = [aij ]ij be an m × n matrix and let c ∈ R. We define the scalar

multiplication cA by

cA = [caij ]ij .

We define −A to be the scalar product of −1 and A.
Note that the sum of column vectors is a column vector, and a scalar multiple

of a column vector is a column vector. Indeed, for the case of column vectors, the
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definitions of matrix addition and scalar multiplication agree with the definitions
we previously gave for vectors in Rn.

The zero matrix of size m× n, denoted by Zm×n or simply by Z, is the m× n
matrix for which every entry is equal to zero: Zm×n = [0]ij .

Proposition 5.3 (Properties of Matrix Addition and Scalar Multiplication). Let
A and B be m× n matrices and let c ∈ R be a scalar. Then

(a) A+B = B +A;
(b) (A+B) + C = A+ (B + C);
(c) A+ Z = A;
(d) A+ (−A) = Z;
(e) c(A+B) = cA+ cB.

Remark. These properties are proved directly from the definitions. �

The definitions of matrix addition and scalar multiplication have been designed
so that they correspond to the analogous operations for linear transformations.

Proposition 5.4. Let S : Rn → Rm and T : Rn → Rm. Then

AS+T = AS +AT and aAT = AaT .

Remark. These follows fairly immediately from linearity. �

Complicated linear transformations can be broken down into simpler, more
easily understood transformations. Sometimes we use sums and scalar products,
but more significantly, we can decompose a transformation into a composition of
other transformations.

For example, we may rotate space around some axis, then stretch it in various
directions, then reflect it across some plane, then again rotate it around another
axis. We would like to compute the the destinations of the standard basis vectors of
this composition. Thus we wish to define matrix multiplication so that the product
of matrices of transformations produces the matrix of the composition.

1.5. Matrix Multiplication. Let T : Rn → Rm and S : Rp → Rn; we intend
to compose these, first applying S, and then T . Let i range from 1 to m, j range
from 1 to n, and k range from 1 to p. Let aij denote the ith component of T (~ej), and
bjk denote the jth component of S(~ek). Finally, let cik denote the ith component
of (T ◦ S)(~ek). The matrix of T is [aij ]ij , the matrix of S is [bjk]jk, the matrix of
T ◦ S is [cik]ik, and

T (~ej) =

m∑
i=1

aij~ei; S(~ek) =

n∑
j=1

bjk~ej ; and (T ◦ S)(~ek) =

k∑
i=1

cik~ei.

We wish to find a formula the cdik’s in terms of the a′ijs and the bjk’s. Compute

(T ◦ S)(~ek) =

n∑
j=1

bjkT (~ej) =

n∑
j=1

bjk

m∑
i=1

aij~ei =

m∑
i=1

( n∑
j=1

aijbjk

)
~ei.

Thus

cik =

n∑
j=1

aijbjk.
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Let A = [aij ]ij be an m×n matrix and let B = [bjk]jk be an n× p matrix. We
define the matrix product of A and B to be the m× p matrix AB given by

AB = [cik]ik, where cik =

n∑
j=1

aijbjk.

From this definition, we have

cik = A(i)B
(k).

The ith row of A may be viewed as a row vector, so its transpose is a column vector.
Then cik is the dot product of A∗(i) and B(k). That is, the (ik)th entry of AB is

computed by dotting the ith row of A with the kth column of B.
We have no definition for the product of an m× n matrix with a p× q matrix

unless n = p. If ~v, ~w ∈ Rn are considered as column vectors, then ~v∗ ~w = ~v · ~w.

Example 5.5. Let

A =

[
1 2 3
4 5 6

]
and B =

1 2
3 4
5 6

 ,
then

AB =

[
1 2 3
4 5 6

]9 8
7 6
5 4

 =

[
1 · 9 + 2 · 7 + 3 · 5 1 · 8 + 2 · 6 + 3 · 4
4 · 9 + 5 · 7 + 6 · 5 4 · 8 + 5 · 6 + 6 · 4

]
=

[
38 32
101 86

]
.

The identity matrix of dimension n, denoted by In or simply by I, is the
n × n matrix whose entries are one along the diagonal and zero everywhere else:
In = (δij)ij , where δij is the “Kronecker delta” defined by

δij =

{
1 if i = j;

0 otherwise .

Proposition 5.6 (Properties of Matrix Multiplication). Let A and C be m × n
matrices, B and D be n × p matrices, and E be a p × q matrix. Let c ∈ R be a
scalar. Then

(a) A(BE) = (AB)E;
(b) ImA = A;
(c) AIn = A;
(d) (A+ C)B = AB + CB;
(e) A(B +D) = AB +AD;
(f) c(AB) = A(cB);
(g) (AB)∗ = B∗A∗

(h) (AB)(i) = A(i)B;

(i) (AB)(k) = AB(k);

(j) (AB)
(k)
(i) = A(i)B

(k).

Remark. These properties may be proved directly from the definitions, although in
some cases this could lead to a lot of notation. Of paramount importance to us are
properties (e) and (f), and we will soon examine them more closely. �

Matrix multiplication is NOT commutative.
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Example 5.7. Let

A =

[
1 2
3 4

]
and B =

[
9 8
7 6

]
.

Then

AB =

[
9 + 14 8 + 12
27 + 28 24 + 24

]
=

[
23 20
55 48

]
, but BA =

[
9 + 24 18 + 32
7 + 18 14 + 24

]
=

[
33 50
25 38

]
.

Let ~x = 〈x1, . . . , xn〉 be a vector in Rn. We view ~x as a column vector, that
is, as an n × 1 matrix. Thus if A = [aij ]ij is an m × n matrix, the product A~x is
defined to be an m× 1 matrix:

A~x =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn



x1

x2

...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .
Using the distributive property of scalar multiplication over matrix addition, we
see that

A~x = x1A
(1) + · · ·+ xnA

(n).

This m× 1 column vector is a linear combination of the columns of A.

1.6. Matrices and Linear Transformations. To complete our geometric
interpretation of the product of a matrix and a column vector, we first prove that
this operation is linear.

Proposition 5.8. Let A be an m × n matrix. Then A~ej = A(j), where ~ej is the
jth standard basis vector in Rn.

Proof. Since ~ej = 〈0, . . . , 1, . . . , 0〉, with 1 in the jth slot, we have

A~ej = 0 ·A(1) + · · ·+ 1 ·A(j) + · · ·+ 0 ·A(n) = A(j).

�

Proposition 5.9. Let A be an m× n matrix, and let ~x, ~y ∈ Rn. Then

(a) A(~x+ ~y) = A~x+A~y for all ~x, ~y ∈ Rn;
(b) A(a~x) = a(A~x) for all ~x ∈ Rn, a ∈ R.

Proof. Let ~x, ~y ∈ Rn. Then ~x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 for some xi, yi ∈
R. By definition of vector addition and matrix multiplication,

A(~x+ ~y) = (x1 + y1)A(1) + · · ·+ (xn + yn)A(n)

= (x1A
(1) + · · ·+ xnA

(n)) + (y1A
(1) + · · ·+ ynA

(n))

= A~x+A~y.

Now let a ∈ R. Then

A(a~x) = ax1A
(1) + · · ·+ axnA

(n)

= a(x1A
(1) + · · ·+ xnA

(n))

= a(A~x).

�
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Proposition 5.10. Let A be an m× n matrix. Define a function

TA : Rn → Rm by TA(~x) = A~x.

Then T is a linear transformation.

Proof. This is immediate from the previous proposition. �

Proposition 5.11. Let T : Rn → Rm be a linear transformation. Define a matrix

AT = [T (~e1) | · · · | T (~en)].

Then

(a) T (~x) = AT~x for all ~x ∈ Rn;
(b) TAT

= T ;
(c) ATA

= A.

Proof. A linear transformation is completely determined by its effect on the stan-
dard basis. The effect of AT on the standard basis is the same as that of T ; but
AT induces a linear transformation, so it must be the transformation T . �

Thus m×n matrices correspond to linear transformations from Rn to Rm. The
zero matrix corresponds to the zero transformation (that transformation which
sends every element to the origin), and the identity matrix corresponds to the
identity transformation (that transformation which sends every element to itself).

We emphasize that the columns of a matrix A are the destinations of the
standard basis vectors.

Example 5.12. Find the matrix Rθ of the linear transformation T : R2 → R2

which rotates the plane by an angle of θ radians.

Solution. We only need to discover what T does to the standard basis vectors. We
see that T (~e1) = 〈cos θ, sin θ〉 and T (~e2) = 〈− sin θ, cos θ〉. Then

Rθ = AT =

[
cos θ − sin θ
sin θ cos θ

]
.

Select a point on the unit circle to test this: Then

Rθ

[
cosα
sinα

]
=

[
cos θ cosα− sin θ sinα
sin θ cosα+ cos θ sinα

]
=

[
cos(θ + α)
sin(θ + α)

]
;

this is what we would expect. �

Example 5.13. Find the matrix Fθ of the linear transformation T : R2 → R2

which reflects the plane across a line whose angle with the x-axis is θ.

Solution. We see that
T (~e1) = 〈cos 2θ, sin 2θ〉

and that

T (~e2) = −
〈

cos

(
2θ +

π

2

)
, sin

(
2θ +

π

2

)〉
= 〈sin 2θ,− cos 2θ〉.

Thus

Fθ =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

�



76 5. MATRIX ALGEBRA

1.7. Matrices and Compositions of Linear Transformations. We now
investigate the geometric interpretation of matrix multiplication. Recall that if
T : Rn → Rm and S : Rp → Rn are linear transformations, then the composition
T ◦ S : Rp → Rm given by T ◦ S(~x) = T (S(~x)) is a linear transformation.

Proposition 5.14. Let T : Rn → Rm and S : Rp → Rn be linear transformations.
Then

AT◦S = ATAS .

Remark. This means that the matrix associated to a composition of transformations
is the product of the associated matrices. We defined matrix multiplication in the
way we did precisely for this to be true, and it was demonstrated in the derivation.

�

Proposition 5.15. Let A be an m×n matrix and let B be an n× p matrix. Then

TAB = TA ◦ TB .

Remark. This means that the transformation associated to a product of matrices
is the composition of the associated transformations. This is true because the
matrix of TA ◦ TB is computed to be AB, and the matrix completely determines
the transformation. �

Example 5.16. Let S : R2 → R2 be the linear transformation which stretches the
plane horizontally by a factor of 2, and let T : R2 → R2 be the linear transformation
which rotates the plane by 90 degrees (all rotations are counterclockwise). Then

A = AS =

[
2 0
0 1

]
and B = AT =

[
0 −1
1 0

]
.

Note that intuitively we see that T ◦S and S ◦T have different effects on the plane.
Indeed,

BA =

[
0 −1
2 0

]
but AB =

[
0 −2
1 0

]
.

This is another example where matrix multiplication is not commutative.

Example 5.17. Show that the composition of rotations is a rotation whose angle
is the sum of the original angles.

Solution. We compute with matrices:

RαRβ =

[
cosα − sinα
sinα cosα

] [
cosβ − sinβ
sinβ cosβ

]
=

[
cosα cosβ − sinα sinβ − cosα sinβ − sinα cosβ
sinα cosβ + cosα sinβ sinα sinβ + cosα cosβ

]
=

[
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

]
.

�
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1.8. Matrices and Invertible Linear Transformations. Recall that the
identity transformation Jn : Rn → Rn is the function that has no effect on Rn; it
is given by Jn(~v) = ~v. Since the identity matrix In has no effect on the standard
basis (viewed as column vectors), we see that

AJn = In and TIn = Jn.

Recall that a linear transformation T : Rn → Rm is invertible if it is bijective,
in which case there is an inverse function T−1 : Rm → Rn such that T−1 ◦ T = Jn.

Suppose that T : Rn → Rm is an invertible linear transformation. We will
see that this implies m = n; for now, just assume m = n. Then the matrix
corresponding to T is an n× n matrix; that is, it is square. Here, we let J = Jn be
the identity transformation on Rn, and let I = In be the identity n× n matrix.

If T is invertible, then T ◦T−1 = T−1◦T = J , so ATAT−1 = AT−1AT = AJ = I.
A matrix A is called invertible if there exists a matrix B such that

AB = BA = I.

We see that two matrices are invertible if and only if the corresponding linear
transformations are bijective. The matrix B is called the inverse of A, and is
denoted by A−1. Note that A−1 is invertible (with inverse A).

Proposition 5.18 (Properties of Matrix Inverses). Let A, B, C, and D be square
matrices of the same size.

(a) Inverses are unique.
(b) If A and B are invertible, then so is AB, with (AB)−1 = B−1A−1.
(c) If AC = DA = I, then C = D.
(d) If AB = I, then BA = I, so A and B are invertible.

Proof. To prove (a), suppose that B and C are inverses for A. Then B = BI =
B(AC) = (BA)C = IC = C.

To prove (b), note that (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 =
I. Similarly, (B−1A−1)(AB) = I, so AB is invertible with inverse B−1A−1.

The proof of (c) goes as follows. If AC = I and DA = I, then DAC = DI = D
and DAC = UC = C. Thus C = DAC = D.

The proof of (d) is postponed for now. �

Now if T : Rn → Rn is bijective, then for every ~b ∈ Rn there exists a unique

~x ∈ Rn such that T (~x) = ~b; indeed, we have ~x = T−1(~b). In matrix form, this says

that the matrix equation A~x = ~b has a unique solution, given by ~x = A−1~b.
We would like a method to find A−1. The idea is to “dissolve” A by multiplying

both sides of the equation AX = I with invertible matrices: E1AX = E1I = E1,
then E2E1AX = E2E1, et cetera, at each step getting closer to the identity
(e.g. E2E1A looks more like the identity than E1A), until finally we obtain
En · · ·E1AX = En · · ·E1, where En · · ·E1A = I, so X = En · · ·E1. Now X is
the product of invertible matrices, so it is invertible, and it is the inverse of A since
AX = I.
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2. Gaussian Elimination

2.1. Elementary Row Operations and Elementary Invertible Matri-
ces. The invertible matrices Ei mentioned above are called “elementary”; they
correspond to elementary row operations. A row operation is a way of modifying
a row of a matrix to change it into a different matrix. Tradition demands that we
list three elementary row operations:

Ri + cRj Type E Multiply jth row by c and add to ith row

cRi Type D Multiply ith row by c

Ri ↔ Rj Type P Swap the ith row and the jth row

For each of these three row operations, there is an invertible matrix E such
that EA is the result of the row operation applied to A. To find E, just perform
the row operation on the identity matrix.

E(i, j; c) is I except aij = c; E(i, j; c)−1 = E(i, j;−c).
D(i; c) is I except aii = c; D(i; c)−1 = D(i; c−1).
P (i, j) is I except aii = ajj = 0 and aij = aji = 1; P (i, j)−1 = P (i, j).
We give an organized algorithm for applying row operations to attempt to find

the inverse of a matrix.

Algorithm for Row Reduction to Find an Inverse

• Make all entries below the diagonal into zero, starting with the second
entry in the first column, proceeding downward, then doing the third
column, etc.

• Make all diagonal entries equal to one.
• Make all entries above the diagonal zero, starting with the lowest entry

in the last column, working upward in that column, then starting on the
next to last column, etc.

Step one is always possible; it may be necessary to swap some rows to do this.
Use only type E and P row operations.

Step two is possible if all diagonal entries are nonzero, via use of type D row
operations; otherwise, the matrix is not invertible. To see why, let Q be the matrix

obtained after step one, and suppose that Q
(i)
(i) = 0 is the first zero diagonal entry.

Then all entries in column i below the diagonal are also zero, so Q(i) is a linear
combination of the previous columns (to see this may take some effort, but it is
true); say Q(i) = a1Q

(1) + · · ·+ ai−1Q
(i−1). Then a1~e1 + · · ·+ ai−1Q

(i−1) − ~ei is in
the kernel of TA, so TA is not injective, and A is not invertible.

Step three is possible whenever step two is possible. Use only type E row
operations.

Thus every invertible matrix is a product of elementary invertible matrices.
To see this, let A be invertible and suppose that X is its inverse. Then AX = I.
Following the above algorithm, we obtain elementary invertible matrices E1, . . . , Er
such that

X = Er · · ·E1AX = Er · · ·E1I = Er · · ·E1.
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Example 5.19. Let

A =

 1 2 −1
2 3 −2
−2 −4 1

 .
Write A as a product of elementary invertible matrices, and find A−1.

Solution. We represented the equation AX = I with an augmented matrix [A | I],
and apply row operations which correspond to multiplying both sides of this equa-
tion by the same elementary invertible matrix. When we attain [I | B], we know
that B = A−1. Keeping track of the row operations used allows us to reconstruct
A−1 as a product of elementary invertible matrices; then A is the product, in the
reverse order, of the inverses of the matrices. 1 2 −1 | 1 0 1

2 3 −2 | 0 1 0
−2 −4 1 | 0 0 1

 R2−2R1−→
R3+2R1

1 2 −1 | 1 0 1
0 −1 0 | −2 1 0
0 0 −1 | 2 0 1


−R2−→
−R3

1 2 −1 | 1 0 1
0 1 0 | 2 −1 0
0 0 1 | −2 0 −1


R1+R3−→
R1−2R2

1 0 0 | −5 2 −1
0 1 0 | 2 −1 0
0 0 1 | −2 0 −1


If E1 through E6 are the matrices corresponding to these row operations, then

A−1 = E6E5E4E3E2E1 =

−5 2 −1
2 −1 0
−2 0 −1

 ,
so A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 , which we write as

A =

 1 0 0
−2 1 0
0 0 1

1 0 0
0 1 0
2 0 1

1 0 0
0 −1 0
0 0 1

1 0 0
0 1 0
0 0 −1

1 0 −1
0 1 0
0 0 1

1 2 0
0 1 0
0 0 1

 .
�

If A and X are square and AX = I, then we can write A as a product of
elementary invertible matrices. Therefore A is itself invertible, so if AB = I, we
automatically have BA = I.
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2.2. Introduction to Linear Equations. Consider the system of linear
equations

3x1 − 4x2 = 11;

x1 + 2x2 = 7.

Solving this system means finding x1 and x2 which make the equations true.
The loci of the equations 3x1 − 4x2 = 11 and x1 + 2x2 = 7 are lines in R2

(we have replaced the standard x and y by x1 and x2 because we want to use the
variables x and y to indicate vectors). So we interpret this problem as finding the
intersection of two lines.

A second geometric interpretation of the problem comes from forming the ma-
trix of coefficients and the column vectors

A =

[
3 −4
1 2

]
, x =

[
x1

x2

]
, b =

[
b1
b2

]
,

and considering the matrix equation Ax = b. Since A corresponds to a linear
transformation, solving the system of equations is equivalent to finding the preimage
of the point b under this linear transformation.

To solve this system, we can multiply the second equation by 2 and add it to
the first to get 5x1 = 25, so x1 = 5; then plug this into the second equation to get
5 + 2x2 = 7, so x2 = 1.

Generalizing this solution technique to many equations in many unknowns
could lead to a lot of confusion and difficulty without a more organized approach.
We now search for a failsafe algorithm for finding the solution.

2.3. Linear Equations. A linear equation in n variables x1, . . . , xn is an
equation of the form

a1x1 + · · ·+ anxn = b1,

where a1, . . . , an, b1 ∈ R are fixed constants.
Let a = 〈a1, . . . , an〉, x = 〈x1, . . . , xn〉, and q = 〈 b1a1 , 0, . . . , 0〉. The above

equation becomes ~a · ~x = ~a · ~q, or

(~x− ~q) · ~a = 0.

We recognize this as the equation of a hyperplane in Rn through the tip of vector
~q with normal vector ~a.

Consider an arbitrary system of linear equations

a11x1 + · · ·+ a1nxn = b1

... =
...

ai1x1 + · · ·+ ainxn = bi

... =
...

a1nx1 + · · ·+ amnxn = bm

where aij , bi ∈ R are constants and xi are indeterminates.
Our goal is to use row reduction to help us solve such systems of linear equation;

that is, we wish to find all vectors x ∈ Rn such that when we plug their coordinates
into the equations, all of the resulting equations are true.
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One geometric interpretation of this problem is to find the intersection of the
hyperplanes in Rn which are the loci of the given equations.

A second geometric interpretation comes from forming the matrix A = (aij)ij .

Then setting ~x = 〈x1, . . . , xn〉 and ~b = 〈b1, . . . , bm〉, we see that the solution set

of the matrix equation A~x = ~b is exactly the solution set of the system of equa-

tions. This matrix equation, stated in terms of linear transformations, is TA(~x) = ~b;

solving means finding T−1
A (~b), the preimage of the point ~b under the linear trans-

formation TA.
Our approach to the problem uses matrices; we seek column vectors ~x such

that A~x = ~b.
A general solution is the set of all such column vectors ~x.
A particular solution is a specific such column vector ~x.
The system is called homogeneous if bi = 0 for i = 1, . . . ,m. In this case,

solving the system of equations means finding the kernel of TA. Otherwise, the
system is nonhomogeneous.

We have seen that if ~b is in the image of TA, say TA(~v) = ~b for some ~v ∈ Rn,

then T−1(~b) = ~v + ker(TA). If TA is injective, then ker(TA) consists of a single

point (the origin), so T−1(~b) = {~v}. Otherwise, ker(TA) is a nontrivial subspace,
so ~v+ ker(TA) at least one line, and possibly a plane or more. Thus there are three
possibilities:

(1) there are no solutions (~b is not in the image of TA);
(2) there is exactly one solution (TA is injective);
(3) there are infinitely many solutions (TA has a nontrivial kernel).

If we have infinitely many solutions, they are of the form

~v0 + c1~v1 + · · ·+ ck~vk,

where ~v0, . . . , ~vk are vectors which span the kernel of TA, c1, . . . , ck are free scalars,

~v0 is a particular solution to A~x = ~b, and c1~v1 + · · · + ck~vk is the general solution
to the homogeneous equation A~x = 0 (the kernel of TA).

Suppose that there exists an invertible matrix E such that the matrix EA has

a particularly nice form. Then A~x = ~b⇒ EA~x = E~b; since E is invertible, we have

EA~x = E~b ⇒ E−1EA~x = E−1E~b ⇒ A~x = ~b. Thus the solution set of A~x = ~b
is exactly the solution set of EA~x = E~b, so is suffices to find the solution set of

EA~x = E~b.
The nice form we refer to here is known as reduced row echelon form.
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2.4. Reduced Row Echelon Form. Row operations are used to put matri-
ces into standard forms.

A matrix is said to be in row echelon form if

i. All zero rows lie below nonzero rows;
ii. The first nonzero entry in any row appears in a column to the right of the

first nonzero entry in any preceding row.

The first nonzero entry in a row is called a pivot.
Given a matrix A, there is a sequence of row operations which brings A into

row echelon form. The final product is not unique.
A matrix is said to be in reduced row echelon form if

i. It is in row echelon form;
ii. All the pivots equal 1;
iii. All nonpivot entries in a column containing a pivot are equal to 0.

Given a matrix A, there is a sequence of row operations which brings A into
row echelon form. Although the sequence of row operations is not unique, the final
product is unique.

Gaussian elimination is an algorithm for using elementary row operations to
bring a matrix into reduced row echelon form. There are two stages: forward
elimination brings the matrix into row echelon form, and backward elimination
brings the row echelon matrix into reduced row echelon form.

Forward elimination:

(1) Start with the first column, and proceed through all columns in order.
(2) If the pivot in the column is zero, permute with the first available lower

row so that the diagonal entry is nonzero (use P ). If this is impossible,
continue to the next column.

(3) Eliminate all entries below this one in order (use E).

Note that forward elimination does not use D. Also note that this algorithm is
so specific, the sequence of elementary matrices and the row echelon form obtained
is unique.

Backward elimination:

(1) Make all pivots equal to one (use D).
(2) Starting from the right, working upward then leftward, make all entries

above a pivot equal to zero (use E).

To solve a system of linear equations A~x = ~b, form the augmented matrix

[A | ~b] and work on A and ~b simultaneously. Perform forward elimination and
backward elimination on A, and then read off the solution. We describe this last
step momentarily.
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Once the matrix is in reduced row echelon form, it is easy to read off the general
solution. We give an example, then list the exact steps to take.

Example 5.20. Consider the matrix equation


1 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 5 0
0 0 0 0 0 1



x1

x2

x3

x4

x5

x6

 =


1
2
3
4


Computing the matrix product on the left gives

x1 + 2x2

x3

x4 + 5x5

x6

 =


1
2
3
4


The solution set of this equation is a subset of R6, so we actually seek six dimensional
vectors. Insert the free variables into the equation in an appropriate fashion to
arrive at 

x1 + 2x2

x2

x3

x4 + 5x5

x5

x6

 =


1
x2

2
3
x5

4


By the definition of vector addition, this is the same as

x1

x2

x3

x4

x5

x6

+ x2


2
0
0
0
0
0

+ x5


0
0
0
5
0
0

 =


1
0
2
3
0
4

+ x2


0
1
0
0
0
0

+ x5


0
0
0
0
1
0


Subtract the free columns from both sides and use the distributive property to
obtain 

x1

x2

x3

x4

x5

x6

 =


1
0
2
3
0
4

+ x2


−2
1
0
0
0
0

+ x5


0
0
0
−5
1
0


Notice that this writes the solution space as the image of a parametric trans-

formation; in this example, we let P = (x1, x2, x3, x4, x5) be a variable point,
P0 = (1, 0, 2, 3, 0, 5), ~v = 〈−2, 1, 0, 0, 0, 0〉, and ~w = 〈0, 0, 0,−5, 1, 0〉. With r = x2

and s = x5 (which are free to vary over all of R), we have

P = P0 + r~v + s~w.
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2.5. Solution Method. Let A = [aij ]ij be an m×n matrix, ~x = [x1, . . . , xn]∗

an n-dimensional variable column vector, and ~b = [b1, . . . , bm]∗ an m-dimensional

constant column vector. Then the solution set of the matrix equation A~x = ~b is
the solution set of a system of linear equations.

Let O be the product of all the elementary matrices whose corresponding row
operations bring the matrix A into row echelon form, that is, those used in forward
elimination. Set Q = OA, where Q is in row echelon form. Let ~c = O~c. Then the

solution set of A~x = ~b is equal to the solution set of OA~x = O~b, i.e., Q~x = ~c.
At this point, we can tell if there is no solution: this happens when the a row

of the nonaugmented matrix contains only zeros, but the corresponding entry of
the augmentation column is nonzero. We can also tell if the solution is unique: this
happens when the number of nonzero rows equals the number of columns.

Let U be the product of all the elementary matrices whose corresponding row
operations bring the matrix A into reduced row echelon form; that is, R = UA,

where R is in reduced row echelon form. Let ~d = U~b. Then the solution set of
A~x = ~b is equal to the solution set of UA~x = U~b, i.e., R~x = ~d. We describe how to

read off the general solution from the matrix equation R~x = ~d.
We say that R(j) is a basic column if R(j) (or Q(j)) contains a pivot; otherwise

R(j) is a free column.
We say that xj is a basic variable if A(j) contains a pivot; otherwise xj is a free

variable.
The general solution will be of the form

~v0 + c1~v1 + · · ·+ ck~vk,

where k is the number of free variables; we have k = n− r, where r is the number
of nonzero rows.

The vector ~v0 is the particular solution obtained by setting the free variables
equal to 0 and solving for the basic variables.

The vectors ~vi are found by replacing ~d by the zero vector, setting the ith free
variable equal to 1 and the other free variables equal to 0, and solving for the basic
variables.

We can read off the general solution from the reduced matrix as follows:

(1) Eliminate any zero rows at the bottom of the reduced matrix.
(2) Multiply each free column by −1.
(3) Insert a zero row at row i for every free variable xi.
(4) Add ~ei to each free column for every free variable xi.
(5) The particular solution is now the augmentation column.
(6) The homogeneous solution is now the span of the adjusted free columns.
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Example 5.21. Solve the system of linear equations

x+ 2z − w = 3

y + 2z + 3w = 5

2x+ 3y + 11z = 7

Solution. Let A be the matrix of coefficients and ~b the column vector of constants.
We form the augmented matrix [A | ~b] and row reduce it. Then we use solution
readoff. 1 0 2 −1 | 3

0 1 2 3 | 5
2 3 11 0 | 7

 R3−2R1−→

1 0 2 −1 | 3
0 1 2 3 | 5
0 3 7 2 | 1


R3−3R2−→

1 0 2 −1 | 3
0 1 2 3 | 5
0 0 1 −7 | −14


R2−2R3−→

1 0 2 −1 | 3
0 1 0 17 | 33
0 0 1 −7 | −14


R1−2R3−→

1 0 0 13 | 31
0 1 0 17 | 33
0 0 1 −7 | −14

 .
Columns 1,2, and 3 are basic, and column 4 is free, so the free variable is x4. The
adjusted readoff matrix is 

1 0 0 −13 | 31
0 1 0 −17 | 33
0 0 1 −7 | −14
0 0 0 1 | 0

 .
The solution is 

x
y
z
w

 =


31
33
−14

0

+ w


−13
−17
−7
1

 .
The solution is a line, which we may write parametrically as

(x, y, z, w) = (31, 33,−14, 0)− t〈13, 17, 7,−1〉.
�
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2.6. Review and Example. Gaussian elimination is an algorithm for using
elementary row operations to bring a matrix into reduced row echelon form. There
are two stages: forward elimination brings the matrix into row echelon form, and
backward elimination brings the row echelon matrix into reduced row echelon form.
The algorithm is so specific that each stage is completely determined.

To solve a system of linear equations A~x = ~b, form the augmented matrix

[A | ~b] and work A and~b simultaneously. Perform forward elimination and backward
elimination, and then read off the solution.

Consider the system of linear equations

x1 + 2x2 + 2x3 = −7

3x1 + 6x2 = 9

−2x1 − 4x2 − x3 = −1

Let A be the matrix of coefficients, ~b be the column vector of values, and ~x be the

column vector of variables. The matrix equation A~x = ~b is 1 2 2
3 6 0
−2 −4 −1

x1

x2

x3

 =

−7
9
−1


In augmented form, we write this as 1 2 2 | −7

3 6 0 | 9
−2 −4 −1 | −1

 .
Forward elimination:

(1) Start with the first column, and proceed through all columns in order.
(2) If the diagonal entry in the column is zero, permute with the first available

lower row so that the diagonal entry is nonzero (use P : Ri ↔ Rj).
(3) Eliminate all entries below this one in order (use E : Ri + cRj).

In our example, the row operations R2 − 3R1 and R3 + 2R1 produce1 2 2 | −7
0 0 −6 | 30
0 0 3 | −15

 .
This completes the requirements for column one. Now do column two via R3 + 1

2R2

to obtain 1 2 2 | −7
0 0 −6 | 30
0 0 0 | 0

 ;

this is in row echelon form, so this is the end of forward elimination. The row
of zeros on the bottom tells us that the general solution contains infinitely many
solutions.
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Backward elimination:

(1) Make all pivots equal to one (use D : cRi).
(2) Starting from the right, working upward then leftward, make all entries

above a pivot equal to zero (use E : Ri + cRj).

Apply row operation − 1
6R2 to obtain1 2 2 | −7

0 0 1 | −5
0 0 0 | 0

 .
Now all of the pivots are equal to one. Finally, row operation R1 − 2R2 produces1 2 0 | 3

0 0 1 | −5
0 0 0 | 0

 .
This is reduced row echelon form.

Solution readoff:

(1) eliminate any zero rows at the bottom of the reduced matrix;
(2) insert a zero row at row i for every free variable xi;
(3) multiply each free column by −1;
(4) add ~ei to each free column for every free variable xi;
(5) the particular solution is now the augmentation column;
(6) the homogeneous solution is now the span of the adjusted free columns.

The basic variables are x1 and x3 and the free variable is x2.
Step (1): [

1 2 0 | 3
0 0 1 | −5

]
.

Step (2): 1 2 0 | 3
0 0 0 | 0
0 0 1 | −5

 .
Step (3): 1 −2 0 | 3

0 0 0 | 0
0 0 1 | −5

 .
Step (4): 1 −2 0 | 3

0 1 0 | 0
0 0 1 | −5

 .
Step (5): A particular solution is (3, 0,−5)
Step (6): The homogeneous solution is the subspace of R3 spanned by the

vector (−2, 1, 0).
The general solution is

x =

 3
0
−5

+ x2

−2
1
0

 .
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How this works

Row operations on matrices correspond to operations performed on the system
of linear equations which produce equivalent systems; that is, systems with the
same solution set. Therefore the original system

x1 + 2x2 + 2x3 = −7

3x1 + 6x2 = 9

−2x1 − 4x2 − x3 = −1

has the same solution set as the system given by the reduced row echelon form,
which is

x1 − 2x2 = 3

x3 = −5

0 = 0

Now solution readoff proceeds as follows.
Step (1): the last equation contains no information, so we eliminate it.
Step (2) and Step (4): Insert an equation x2 = x2; this is certainly true.
Step (3): Solve equation i for variable xi. We subtract −2x2 from both sides

of equation one; this corresponds to multiplying a free column by −1.

x1 = 3 + 2x2

x2 = 0 + 1x2

x3 = −5 + 0x2

In matrix form, this is

x =

 3
0
−5

+ x2

−2
1
0

 .
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3. Geometric Interpretations

3.1. Geometric Interpretation of Systems of Linear Equations. We
have two geometric interpretations for solving a system of linear equations: as the
intersection of the loci of the equations, and as the preimage of a linear transfor-
mation.

Reconsider the system of linear equations

3x1 − 4x2 = 11;

x1 + 2x2 = 7.

There are two ways of viewing this problem geometrically:
We want to find a point (x1, x2) which satisfies both equations, that is, which

lies on both lines. This is an AND condition, and AND corresponds to the set
operation of intersection (just as OR corresponds to the set operation of union);
so we intersect the lines (which are, after all, subsets of R2) and find that the only
point of intersection is (11, 7).

The second geometric interpretation comes from putting the coefficients on the
left hand side of the system of equations into a matrix A, the indeterminates into
a column vector x and the values on the left hand side into a column vector b:

A =

[
3 −4
1 2

]
; ~x =

[
x1

x2

]
; and ~b =

[
11
7

]
.

We see that solving the system of equations is equivalent to solving the matrix
equation

A~x = ~b.

But A corresponds to a linear transformation TA; thus we seek the preimage of ~b
under the linear transformation TA.

How do these two geometric interpretations coincide?
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3.2. Component Functions. Let f : Rn → Rm. For each i ∈ {1, . . . ,m},
define a function

fi : Rn → R by fi(~v) = proj~eif(~v);

this is called the ith component function of f .

Example 5.22. Let f : R → R2 be given by f(t) = 〈cos t, sin t〉. Then f1 = cos
and f2 = sin. Note that the image of the function f is a circle in R2.

As this example shows, we may turn our definition around; that is, given m
functions f1, . . . , fm : Rn → R, we construct a function f : Rn → Rm by defining
f(~v) = 〈f1(~v), . . . , fm(~v)).

Now let f1 : R2 → R be given by f1(x, y) = 3x−4y and let f2 : R2 → R be given
by f2(x, y) = x+ 2y. The line in R2 which is the locus the equation 3x1− 4x2 = 11
is the preimage of 11 under the function f1; the second line is the preimage of 7
under f2. A solution 〈x1, x2〉 for the system of equations is an element of the set
f−1

1 (11) ∩ f−1
2 (7).

Define f : R2 → R2 by f(x) = 〈f1(x), f2(x)〉; that is, f(x1, x2) = 〈3x1 −
4x2, x1 + 2x2〉. Then the solution to the system of linear equations we started out
with is the preimage of the point (11, 7) under this new function; that is, we wish
to find ~v such that f(v) = (11, 7), which is the same as saying that we wish to
discover the set f−1〈11, 7〉 = f−1

1 (11) ∩ f−1
2 (7).

By a previous proposition, we see that the function f is a linear transformation;
let us relabel it by T .

Solving the system of equations is equivalent to finding the preimage of the
point (11, 7) under the linear transformation T : R2 → R2 given by T 〈x1, x2〉 =
〈3x1 − 4x2, x1 + 2x2〉. What is the effect of T on the standard basis, and what is
the matrix associated to T?

We have T (~e1) = T 〈1, 0〉 = 〈3, 1〉 and T (~e2) = T 〈0, 1〉 = 〈−4, 2〉. Thus the
matrix which corresponds to T is

A =

[
3 −4
1 2

]
,

and finding the preimage of 〈11, 7〉 under T is equivalent to solving the matrix
equation

A~x = ~b, where ~x =

[
x1

x2

]
and ~b =

[
11
7

]
.
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In general, we have m equations in n unknowns. We obtain an m × n matrix
A of coefficients, an n × 1 column vector ~x of variables, and an m × 1 column

vector ~b of values. Solving the system is equivalent to solving the matrix equation

A~x = ~b. The associated transformation T = TA is obtained by creating m linear
functions Ti : Rn → R given by the left hand sides of our equations; these become
the component functions of T : Rn → Rm. The preimage of each Ti at bi is a
hyperplane in Rn. The solution set is the intersection of the hyperplanes, which is

the same as the preimage of the point ~b under the linear transformation T .
We may also view this as follows. Recall that if f : A→ B is any function, and

C,D ⊂ B, then f−1(C ∩D) = f−1(C) ∩ f−1(D).
Let Hi be the hyperplane in Rm (the range of T ) given by

Hi = {(y1, . . . , ym) ∈ Rm | yi = bi}.
Then

{~b} = ∩mi=1Hi.

Let Li be the hyperplane in Rn (the domain of T ) which is the locus of the equation

ai1xi + · · ·+ ainxn = bi.

Then if X is the solution set to our system of linear equations, we have

X = ∩mi=1Li.

But Li = T−1(Hi), and

X = ∩mi=1T
−1(Hi) = T−1(∩mi=1Hi) = T−1(~b).

3.3. Geometric Interpretation of the Solution Process. We have the

matrix equation A~x = ~b, where A is an m×n matrix. We know that A corresponds
to a linear transformation T : Rn → Rm. The columns of A are the destinations of
the standard basis vectors in Rn under the transformation T . We ask if ~b is a linear
combination of these destinations, in which case there is a solution to the equation.

When row reducing the augmented matrix [A | ~b], we are in theory multiplying

both sides of the equation A~x = ~b by elementary invertible m×m matrices. Each
such multiplication corresponds to an invertible linear transformation of Rm, which
is the range space of the linear transformation T . What in fact we are doing
is transmuting Rm so that the labeling of the destinations of the standard basis

vectors is more to our liking; in the process, ~b is also moved to a new location.
That is, we are relabeling the points in Rm so that we can see more clearly the

manner in which ~b is a linear combination of the destinations of the standard basis
vectors.
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4. Exercises

Exercise 5.1. Let d, e ∈ R and set

A =

2 1 2
1 1 1
0 1 2

 , B =

2 2
1 2
0 4

 , E =

1 0 0
e 1 0
0 0 1

 , D =

1 0 0
0 1 0
0 0 d

 .
Compute
(a) AB;
(b) DEB;
(c) AD;
(d) A−1.

Exercise 5.2. Let

A =

[
3 −2
−1 4

]
.

(a) Find the inverse of A.
(b) Use (a) to solve the system of linear equations

3x1 − 2x2 = 3

x1 + 4x2 = 5

Exercise 5.3. Find the general solution to the system of linear equations

x1 + x2 + 2x4 + x5 = 4

2x1 + x2 − x3 + x5 = 5

4x1 + 3x2 − x3 + 4x4 + 4x5 = 13

Exercise 5.4. Consider the system of linear equations

2x1 + 2x2 + x3 = 3

3x3 = −7

5x2 = 2

(a) Form the matrix A of coefficients, the column vector ~b of values, and the
column vector ~x of variables.

(b) Find the matrix A−1.

(c) Use (b) to solve the matrix equation A~x = ~b.

Exercise 5.5. Consider the system of linear equations

x1 − 2x2 + x3 = 2

−2x1 + 4x2 − x3 = −5

x1 − 2x2 + 2x3 = 1

Let A be the matrix of coefficients, ~b the column vector of values, and ~x the col-
umn vector of variables. Use Gaussian elimination (forward elimination, backward
elimination, and solution readoff) to find the general solution to this system.
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Exercise 5.6. Let T : R3 → R3 be the linear transformation whose corresponding
matrix is

A =

 1 −2 1
−2 4 −1
1 −2 2

 .
Let ~b = 〈2,−5, 1〉 ∈ R3. Viewing this as a column vector, we have

~b =

 2
−5
1

 .
(a) Use forward elimination to put A into row echelon form Q. Record all

row operations. Perform these row operations on the identity matrix I
to obtain the matrix O which is the product of the elementary invertible
matrices which correspond to the row operations. Now OA = Q. Does T
have a kernel?

(b) Use backward elimination to put Q into reduced row echelon form R.
Record all row operations. Perform these row operations on O to obtain
a matrix U . Now UA = R.

(c) Use solution readoff to find the kernel of T .

(d) Compute ~d = U~b and use solution readoff of find the preimage under T of
the vector 〈2,−5, 1〉.

(e) Find the general solution to the system of linear equations

x1 − 2x2 + x3 = 2

−2x1 + 4x2 − x3 = −5

x1 − 2x2 + 2x3 = 1

Exercise 5.7. Let R3 = {(x, y, z) | x, y, z ∈ R} and view R2 = {(x, y) | x, y ∈ R}
as a subspace of R3.
Let T : R3 → R2 be the linear transformation which first rotates R3 by 90 degrees
around the z-axis, then rotates R3 by 60 degrees around the x-axis, and then
projects R3 onto the xy-plane.
(a) Find the matrix AT corresponding to T (its columns are the destinations of the
standard basis vectors).
(b) Find T (x, y, z) (plug the column vector ([x, y, z]∗ into AT ).
(c) Find ker(T ) = {(x, y, z) ∈ R3 | T (x, y, z) = (0, 0)}.
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Exercise 5.8. Each 3 × 3 elementary matrix E corresponds to a linear transfor-
mation TE : R3 → R3.
Describe its geometric effect on 3-space.

Exercise 5.9. Let A be an m× n matrix.
We say that A is right invertible if there exists a n × m matrix B such that

AB = Im.
We say that A is left invertible if there exists a n × m matrix B such that

BA = In.
Let TA : Rn → Rm be the linear transformation corresponding to A. Exactly

two of the following statements are true:
(a) A is right invertible if and only if TA is injective;
(b) A is right invertible if and only if TA is surjective;
(c) A is left invertible if and only if TA is injective;
(d) A is left invertible if and only if TA is surjective.
Decide which two statements are true and explain why they are true.



CHAPTER 6

Matrix Geometry

Abstract. In this chapter, we use matrix techniques to find tests for linear

independence and spanning, and to find bases for the kernel and the image of
a linear transformation.

We define and study direct sums and perpendicular spaces, eventually
studying to four fundamental spaces of a matrix to decompose a space into

the direct sum of a subspace and its perpendicular space.

Finally, we cut loose from the ambient space by slightly generalizing
our definition of linear transformation to include those whose domain and

codomain are arbitrary vector spaces. We see how to describe linear transfor-

mations on arbitrary vector spaces using matrices, written with respect to the
some basis for the domain and range.

1. Matrix Techniques

1.1. Basic and Free Columns. Let A be an m × n matrix. Let U be a
matrix such that R = UA is in reduced row echelon form.

The basic columns of R consist of distinct standard basis vectors in Rm, and
as such, they are linearly independent. On the other hand, it is clear that the free
columns of R are linear combinations of the preceding basic columns.

We say that A(j) is a basic column if R(j) is a basic column.
We say that A(j) is a free column if R(j) is a free column.
We now claim that the basic columns of A are linearly independent, and that

the free columns of A are linear combinations of the preceding basic columns. This
follows from the next proposition.

Proposition 6.1. Let T : Rn → Rm be a linear transformation, and let X ⊂ Rn.

(a) If X is linearly independent and T is injective, then T (X) is linearly
independent.

(b) If ~v is a linear combination from X, then T (~v) is a linear combination
from T (X).

Proof. Suppose that X is linearly independent and T is injective. Let

k∑
i=1

aiT (~xi) = ~0

be an arbitrary linear dependence relation from T (X). Since T is linear,

T (
∑k
i=1 ai~xi) = ~0. Thus

∑k
i=1 ai~xi ∈ ker(T ), and since T is injective, ker(T ) = {~0}.

Therefore
∑k
i=1 ai~xi = 0, and since X is linearly independent, ai = 0 for all i. Thus

T (X) is linearly independent.

Suppose that ~v =
∑k
i=1 ai~xi is an arbitrary linear combination from X. Then

T (~v) =
∑k
i=1 aiT (~xi) is a linear combination from T (X). �

95
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To apply this to our situation where UA = R, we realize that U is invertible,
so R = U−1A. The columns of R are the column vectors R(j) = U−1A(j).

Let X ⊂ Rm denote the set of basic columns of R, and let T : Rm → Rm be
the linear transformation corresponding to U−1. Then the set of basic columns of
A is T (X), and since X is independent, so is T (X). Moreover, the free columns of
R are linear combinations from X, so the free columns of A are linear combinations
from T (X).

1.2. Rank and Nullity. Let A be an m× n matrix. The rank of A, denoted
rank(A), is the number of basic columns. The nullity of A, denoted null(A), is the
number of free columns. Clearly, since A has n columns, n = rank(A) + null(A).

Proposition 6.2. (Rank Plus Nullity Theorem)
Let A be an m × n matrix, and let T : Rn → Rm be the corresponding linear
transformation. Then

(a) the basic columns of A form a basis for the image of T ;
(b) the adjusted free columns of A form a basis for the kernel of T ;
(c) dim(img(T )) = rank(A);
(d) dim(ker(T )) = null(A);
(e) dim(Rn) = dim(img(T )) + dim(ker(T )).

Proof. Since span(T (X)) = T (span(X)), and the columns of A are the destination
of the standard basis vector under T , the image of T is the span of the columns
of A. Every free column of A is a linear combination of the basic columns, so the
basic columns span the image. Also, the basic columns are linearly independent,
so they form a basis for img(T ). We have seen that the adjusted free columns are
span the kernel, and they are linearly independent, so they form a basis for the
kernel. The rest follows. �

1.3. Tests for Spanning and Linear Independence.
1.3.1. Test for Linear Independence. Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n > m, then X is dependent.
Form the m× n matrix A = [~w1 | · · · | ~wn].
Reduce A; if n = r = rank(A), then X is independent, otherwise it is not.
This works because if n = r, every column is basic, so the set of columns is

linearly independent.
1.3.2. Test for Spanning. Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n < m, then X does not span Rm.
Form the m× n matrix A = [~w1 | · · · | ~wn].
Reduce A; if m = r = rank(A), then X spans Rm; otherwise it does not.
This works because if m = r, then there are m linearly independent vectors in

the columns of A, and any set of m linearly independent vectors necessarily spans
Rm.

1.3.3. Test for a Basis. Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n > m, then X is not a basis.
If n < m, then X is not a basis.
If n = m, then X is a basis if and only if X spans.
If n = m, then X is a basis if and only if X is independent.
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1.4. Finding a Basis for the Kernel and the Image. Let A be an m× n
matrix and consider the matrix equation Ax = 0, where 0 is the zero n× 1 column
vector. The solution to this equation is the kernel of the corresponding linear
transformation TA : Rn → Rm.

Let B be A in reduced row echelon form. Row reduction of A corresponds to
warping m-space by invertible transformations. Then ker(TB) = ker(TA), because
B = UA, where U is a product of elementary invertible matrices and so it is
invertible; then TU is injective. Therefore ker(TB) = ker(TU ◦ TA) = ker(TA).

Moreover, the basic columns of B are clearly linearly independent. Then
the pullback of these basic columns via U−1 gives linearly independent vectors
in img(T ) = TA(Rn), the image of TA.

A basis for the kernel of TA is given by modifying the free columns of B in the
manner prescribed in solving Ax = 0.

A basis for the image of TA is given by the columns of A corresponding to the
basic columns of B.

Example 6.3. Let ~e1, . . . , ~e4 be the standard basis vectors for R4. Let

~v1 = 〈2,−4, 4〉, ~v2 = 〈1,−1, 3〉, ~v3 = 〈3,−7, 5〉, ~v4 = 〈0, 2, 5〉 ∈ R3.

Let T : R4 → R3 be the unique linear transformation given by T (~ei) = ~vi. Find a
basis for the image and the kernel of T .

Solution. Set

A =

 2 1 3 0
−4 −1 −7 2
4 3 5 5

 .
Row reduce A; the corresponding reduced row echelon matrix is

B =

1 0 2 0
0 1 −1 0
0 0 0 1

 .
The basic variables are x1, x2, and x4. The free variable is x3. So the solution to
Ax = 0 is

x3


−2
1
1
0

 ;

thus {〈−2, 1, 1, 0〉} is a basis for ker(T ), and {〈2,−4, 4〉, 〈1,−1, 3〉, 〈0, 2, 5〉} is a basis
for img(T ), the image of T . �

Let Y = {~v1, . . . , ~vn} ∈ Rm. We wish to determine whether or not the set Y
is independent. If n > m, we know they cannot be independent, so assume that
n ≤ m.

Form the matrix A = [~v1 | · · · | ~vn]. Corresponding to A is a linear transforma-
tion TA : Rn → Rm. We know that n = dim(Rn) = dim(ker(TA)) + dim(img(TA)).
Now X is independent if and only if the span of X in Rm is a vector space of
dimension n. This span is exactly img(TA). Thus X is independent if and only if
dim(img(TA)) = n. This is the case if and only if dim(ker(TA)) = 0.

Row reduce A to obtain a matrix B; only forward elimination is necessary. Now
X is dependent if and only if B has a free column, which is the case if and only if
B has a zero row (since n ≤ m).
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1.5. Retake on Linear Independence. Let X = {~v1, . . . , ~vn} be a subset
of Rm. Form the m× n matrix A by putting the vectors in columns:

A = [~v1 | · · · | ~vn].

If ~v = [x1, . . . , xn]∗ is a column vector in Rn, we have seen that

A~x = x1A
(1) + · · ·+ xnA

(n)

= x1~v1 + · · ·+ xn~vn;

that is, A~x is a linear combination of the columns of A. Now A~x = 0 has a solution
other than ~x = (0, . . . , 0) if and only if there is a nontrivial dependence relation
among the ~vi’s.

A nontrivial solution of A~x = ~0 is an element of the kernel of the linear trans-
formation corresponding to A. Thus, the vector are independent if any only if the
kernel is trivial, which occurs when A has no free columns.

Example 6.4. Let V = R3 and let

~v1 = 〈1, 2,−3〉, ~v2 = 〈2, 0, 1〉, ~v3 = 〈4,−4, 9〉 ∈ R3.

Show that the set {~v1, ~v2, ~v3} is dependent.

Solution. Put the vectors in columns of a matrix A, so that

A =

 1 2 4
2 0 −4
−3 1 9

 .
Perform forward elimination on A is arrive at

Q =

1 2 4
0 −4 −12
0 0 0

 .
Since Q has a free column, the vectors are not independent. �
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2. Direct and Perpendicular Sums

2.1. Sums and Intersections. Let V be a vector space and let X,Y ⊂ V .
Define the sum of these sets to be the subset of V given by

X + Y = {x+ y | x ∈ X, y ∈ Y }.

Proposition 6.5. Let V be a vector space and let W1,W2 ≤ V .
Then W1 +W2 ≤ V .

Proof. We verify the three properties of a subspace.
(S0) Since ~0 ∈W1 and ~0 ∈W2, we see that ~0 = ~0 +~0 ∈W1 +W2.
(S1) Let ~w1, ~w

′
1 ∈ W1 and ~w2, ~w

′
2 ∈ W2 so that ~w1 + ~w2 and ~w′1 + ~w′2 are

arbitrary members of W1+W2. Then (~w1+ ~w2)+(~w′1+ ~w′2) = (~w1+ ~w′1)+(~w2+ ~w′2) ∈
W1 +W2, by property (S1) of W1 and W2.

(S2) Let ~w1 ∈ W1 and ~w2 ∈ W2 so that ~w1 + ~w2 is an arbitrary member of
W1 +W2 Let a ∈ R. Then a(~w1 + ~w2) = a~w1 + a~w2 ∈W1 +W2, by property (S2)
of W1 and W2. �

It follows that any finite sum of subspaces is a subspace.

Proposition 6.6. Let V be a vector space and let W1,W2 ≤ V .
Then W1 ∩W2 ≤ V .

Proof. We verify the three properties of a subspace.
(S0) Since 0 ∈W1 and 0 ∈W2, we have 0 ∈W1 ∩W2.
(S1) Let ~v1, ~v2 ∈W1 ∩W2. Then ~v1, ~v2 ∈W1 and ~v1, ~v2 ∈W2, so ~v1 +~v2 ∈W1

and ~v1+~v2 ∈W2, because both of these sets are subspaces. Thus ~v1+~v2 ∈W1∩W2.
(S2) Let ~v ∈ W1 ∩W2 and let a ∈ R. Then ~v ∈ W1 and ~v ∈ W2, and since

these are subspaces, we see that a~v ∈W1 and a~v ∈W2. Thus a~v ∈W1 ∩W2.
Therefore W1 ∩W2 ≤ V . �

This argument generalizes so that the intersection of any number (even infinitely
many) of subspaces is a subspace.

Recall from the theory of sets that if A and B are finite sets, then

|A ∪B| = |A|+ |B| − |A ∩B|;
this is because the elements of the intersection are counted twice in |A|+ |B|.

The next result can be viewed as an expression of this idea, only where the sets
of bases for vector spaces.
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Proposition 6.7. (Subspace Dimension Formula)
Let V be a finite dimensional vector space and let W1,W2 ≤ V . Then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

Proof. Let dim(W1) = p, dim(W2) = q, and dim(W1 +W2) = n.
Let X = {~x1, . . . , ~xn} be a basis for W1 ∩W2. We complete this to a basis

Y = {~x1, . . . , ~xn, ~y1, . . . , ~yp−n} for W1 and Z = {~x1, . . . , ~xn, ~z1, . . . , ~zq−n} for W2.
We see that B = {~x1, . . . , ~xn, ~y1, . . . , ~yp, ~z1, . . . , ~zq} spans W1 +W2. But this is an
independent set. To see this, let a1, . . . , an, b1, . . . , bp, c1, . . . , cq ∈ R such that

n∑
i=1

ai~xi +

p−n∑
j=1

bj~yj +

p−n∑
k=1

ck~zk = 0.

Then
p−n∑
j=1

bj~yj = −
n∑
i=1

ai~xj −
q−n∑
k=1

ck~zk.

The sum on the left is in W1 and the sum on the right is in W2, so the sum on the
left is actually in W1 ∩W2. Thus we have d1, . . . , dn such that

p−n∑
j=1

bj~yj =

n∑
i=1

di~xi.

This is a dependence relation among the members of Y , which is a linearly inde-
pendent set; thus

b1, . . . , bp = 0.

Similarly the ck’s are all zero, whence the ai’s are all zero. Thus B is linearly
independent. Therefore

dim(W1 +W2) = |B|
= n+ (p− n) + (q − n)

= p+ q − n
= dim(W1) + dim(W2)− dim(W1 ∩W2),

because B is a basis for W1 +W2. �

Corollary 6.8. Let V be a vector space and let U ≤ V . Then U = V if and only
if dim(U) = dim(V ).

Proof. Exercise. �

Example 6.9. Let V = R3.
Let U = span{(1, 2, 0), (2, 1, 0)}, and W = span{(1, 0, 2), (2, 0, 1)}. We see that U
is the xy-plane and W is the xz-plane. The sum of U and W is all of R3. Their
intersection is the x-axis. We see that

dim(U +W ) = 3 = 2 + 2− 1 = dim(U) + dim(W )− dim(U ∩W ).

The proof above indicates that we can change our bases for U and W :
U = span{(1, 0, 0), (0, 1, 0)} and W = span{(1, 0, 0), (0, 0, 1)}, so that the union of
these bases is a basis for U +W .
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2.2. Direct and Perpendicular Sums. Let V be a vector space and let
W1,W2 ≤ V . We say that V is a direct sum of W1 and W2, and write V = W1⊕W2,
if

(D1) V = W1 +W2;

(D2) W1 ∩W2 = {~0}.

Example 6.10. Let V = R3, W1 = span{~e1, ~e2} be the xy-plane, and W2 =
span{~e3}. Then V = W1 ⊕W2.

Now let W3 = span{〈1, 1, 1〉}. Then it is still the case that V = W1 ⊕ W3,
except in this case, the vectors of W3 are not normal to those of W1.

Let U ≤ Rn. The perpendicular space of U , or simply the perp space of U , is

U⊥ = {~v ∈ Rn | ~u · ~v = 0 for all ~u ∈ U}.

Proposition 6.11. Let U ≤ Rn. Then

(a) U⊥ ≤ Rn;

(b) U ∩ U⊥ = {~0};
(c) U ⊂ (U⊥)

⊥
.

Proof. Exercise. �

Result 6.12. Let W ≤ Rn and let ~v ∈ Rn. Then there exist unique vectors ~w ∈W
and ~x ∈W⊥ such that ~v = ~w + ~x.

Proof. This will follow from the Gram-Schmidt Orthonormalization Process, which
we may study later. It can also be concluded through an application of the four
fundamental subspaces, which we pursue next. �

Result 6.13. Let U ≤ Rn. Then

Rn = U ⊕ U⊥.

Proof. This follows from the previous Result. �

Result 6.14. Let U ≤ Rn. Then (U⊥)
⊥

= U .

Proof. This is a corollary of the previous Result and the previous Proposition. �



102 6. MATRIX GEOMETRY

3. The Four Fundamental Subspaces of a Matrix

3.1. Transpose Transformations. Let A be an m×n matrix. The transpose
of A, which we denote by A∗, is the n×m matrix whose jth row is the jth column
of A.

Let T : Rn → Rm be a linear transformation. The transpose of T is the linear
transformation T ∗ : Rm → Rn given by T ∗(~w) = A∗ ~w, where

A = [T (~e1) | · · · | T (~en)].

Let A be an m×n matrix. Recall that A corresponds to a linear transformation
TA : Rn → Rm which is given by TA(v) = Av. Then A∗ corresponds to a linear
transformation TA∗ : Rm → Rn which is given by TA∗(~w) = A∗(~w). Thus T ∗A = TA∗ .

Let T = TA be the transformation corresponding to A. We know that the
columns of A are the destinations of the standard basis vectors of Rn under the
transformation T . Thus the image of T is spanned by these vectors. On the other
hand, the columns of T ∗ are the rows of A, so the image of T ∗ is a subspace of Rn
which is spanned by the rows of A. We now investigate the relationship between
the image of T ∗ and the kernel of T .

3.2. Column Spaces and Row Spaces. Let A be an m× n matrix.
The image of A is the image of TA.
The kernel of A is the kernel of TA.
The column space of A is the subspace of Rm spanned by the columns of A,

and is denoted by col(A).
The row space of A is the subspace of Rn spanned by the rows of A, and is

denoted by row(A).
The null space of A is the set {x ∈ Rn | Ax = 0}, and is denoted by ker(A).
The rank of A is the dimension of the column space of A.
The nullity of A is the dimension of the null space of A.
Let A be an m × n matrix. The four fundamental subspaces associated to A

are col(A), row(A), ker(A), and ker(A∗).
The next proposition reviews what we have learned about bases for the kernel

and image of the linear transformation corresponding to a matrix, rephrased in
terms of the stages of Gaussian elimination. Only part (j) is completely new, and
it is an optional technique to find all four fundamental subspaces with one Gaussian
elimination.
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Proposition 6.15. Let A be an m×n matrix. Perform forward elimination on the
matrix A to achieve B = OA, where O is invertible and B is in row echelon form.
Perform backward elimination on B to achieve C = UA, where U is invertible and
C is in reduced row echelon form. Then

(a) col(A) = row(A∗);
(b) col(A) = img(TA);
(c) row(A) = img(T ∗A);
(d) the rank of A is equal to the number of basic columns of B (or of C);
(e) the nullity of A is equal to the number of free columns of B (or of C);
(f) ker(A) = ker(B) = ker(C);
(g) row(A) = row(B) = row(C);
(h) dim(col(A)) = dim(row(A));
(i) the nonzero rows of B (or of C) form a basis for row(A);
(j) the last m − r rows of O (or of U) form a basis for ker(A∗), where r is

the rank of A.

Proof.
(a) col(A) = row(A∗)
This follows from the definition of transpose.

(b) col(A) = img(TA)
This follows fact that the image of TA is spanned by the destinations of the

standard basis vectors; these destinations are the columns of A.

(c) row(A) = img(T ∗A)
This follows from (a) and (b).

(d) the rank of A is equal to the number of basic columns of B (or of C)
The rank of B is clearly equal to the number of basic columns of B. The rank

of A equals the rank of B because B = UA, where U is an invertible matrix. The
transformation TU is an isomorphism, so a basis for the image of TA is sent by TU
to a basis for the image of TB .

(e) the nullity of A is equal to the number of free columns of B (or of C)
The nullity of A is the number of free columns by the Rank Plus Nullity Theo-

rem: dim(ker(A)) = dim(ker(TA)) = n− dim(img(TA)); since dim(img(TA)) is the
number of basic columns, n− dim(img(TA)) must be the number of free columns.

(f) ker(A) = ker(B) = ker(C)
This is given by the fact that composing on the left with an injective transfor-

mation does not change the kernel of a transformation. Since B = OA, we have
ker(A) = ker(TA) = ker(TO ◦ TA) = ker(TOA) = ker(OA) = ker(B). Similarly,
ker(A) = ker(C).
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(g) row(A) = row(B) = row(C)
If E is an elementary invertible matrix and D is any compatibly sized matrix,

then the rows of ED are a linear combination of the rows of D; one sees this
by considering the effect of the corresponding elementary row operation on D.
Thus row(ED) ⊂ row(D). But E−1 is also an elementary invertible matrix, so
row(D) = row(E−1ED) ⊂ row(ED), which shows that row(ED) = row(D) and E
does not change the row space.

Since B = OA and O is a product of elementary invertible matrices, we see
that row(B) = row(OA) = row(A). Similarly, row(C) = row(A).

(h) dim(col(A)) = dim(row(A))
It is apparent from the definition of row echelon form that the nonzero rows of

B form a basis for the row space of B.
By (d), dim(col(A)) = dim(col(B)). The dimension of col(B) is equal to the

number of pivots in B (or C), which is equal to the number of nonzero rows of B (or
C), which is equal to the dimension of row(B). Thus dim(col(A)) = dim(col(B)) =
dim(row(B)) = dim(row(A)).

(i) the nonzero rows of B (or of C) form a basis for row(A)
The nonzero rows of B (respectively C) form a basis for row(B) (respectively

row(C)). By (g), row(A) = row(B), and the result follows.

(j) the last m− r rows of O (or of U) form a basis for ker(A∗)
We show this for O; the proof for U is the identical.
Set k = m − r and note that dim(ker(A∗)) = k. This follows from the Rank

Plus Nullity Theorem and (g): we have r = dim(col(A)) = dim(row(A∗)) =
dim(col(A∗)). Thus dim(ker(A∗)) = m− dim(col(A∗)) = m− r.

Since O is invertible, its rows are linearly independent. Indeed, TO is an
isomorphism, so ker(O) = {0}; thus dim(row(O)) = dim(col(O)) = dim(Rm) −
dim(ker(O)) = m, since dim(ker(O)) = 0. Then row(O) = Rm, so the rows of O
are a basis for Rm.

Thus the last k rows of O are linearly independent, so if these vectors are in
ker(A∗), they are a basis for it. We only need to show that they are in ker(A∗).

Since B = OA, we have B∗ = A∗O∗. The last k rows of B are zero, so the last
k columns of B∗ are zero. If ~x∗ is one of the last k rows of O, then ~x is one of the
last k columns of O∗, and A∗~x is one of the last k columns of B∗; that is, it is zero.
Thus ~x is in the kernel of A∗. �
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3.3. Perpendicular Decompositions. We now show how to find the per-
pendicular space of a subspace.

Proposition 6.16. Let A be an m× n matrix. Then

(a) row(A) = ker(A)
⊥

and Rn = row(A)⊕ ker(A);

(b) col(A) = ker(A∗)
⊥

and Rm = col(A)⊕ ker(A∗).

Proof. In light of the fact that col(A) = row(A∗), if we prove (a), then (b) will
follow simply by replacing A with A∗. Thus we prove (a).

By the Rank Plus Nullity Theorem, dim(col(A)) + dim(ker(A)) = dim(Rn).
Also, dim(row(A)) = dim(col(A)), so dim(Rn)− dim(ker(A)) = dim(row(A)).

The coordinates of A~x are the dot products of the rows of A with the vector
~x. If ~x ∈ ker(A), the A~x = ~0 (the zero vector). Thus each of the coordinates of
A~x is equal to 0 (the zero scalar). This shows that each row of A is perpendicular
to any vector in the kernel of A. Then any vector in the span of these rows is also

perpendicular, because dot product is linear. Thus row(A) ⊂ ker(A)
⊥

. It follows

that dim(row(A)) ≤ dim(ker(A)
⊥

.

Now ker(A) ∩ ker(A)
⊥

= {~0}, and ker(A) + ker(A)
⊥ ≤ Rn, so dim(ker(A)

⊥ ≤
dim(Rn)− dim(ker(A)) = dim(row(A)).

Thus dim(row(A)) = dim(ker(A)
⊥

, and since row(A) ⊂ ker(A)
⊥

, they must be

equal. That is, row(A) = ker(A)
⊥

.
Since the row space of A is perpendicular to the kernel of A, we see that

row(A) ∩ ker(A) = {~0}, so dim(row(A) ∩ ker(A)) = 0. To summarize,

dim(row(A) + ker(A)) = dim(row(A)) + dim(ker(A))− dim(row(A) ∩ ker(A))

= dim(row(A)) + dim(ker(A)) + 0

= dim(col(A)) + dim(ker(A))

= dim(Rn).

Since row(A) + ker(A) is a subspace of Rn with the same dimension, it must be all
of Rn. Therefore Rn = row(A)⊕ ker(A). �

Corollary 6.17. Let U ≤ Rm. Then Rm = U ⊕ U⊥.

Proof. Let {u1, . . . , ur} be a basis for U . Form the matrix

A = [u1 | · · · | ur | 0 | · · · | 0].

Then col(A) = U , and col(A)
⊥

= ker(A∗) with Rm = col(A)⊕ ker(A∗). �

Example 6.18. Let U be the subspace of Rm spanned by the vectors {v1, . . . , vn}.
(a) Find a basis for U .
(b) Find a basis for U⊥.

Method of Solution. Form the m × n matrix A = [v1 | · · · | vn]. Use forward
elimination only to row reduce the augmented matrix [A | I] to an augmented
matrix [B | O]. A basis for U is given by the columns of A which correspond to the
basic columns of B. Since U = col(A), a basis for U⊥ is given by the last m − r
rows of O, where r = dim(U). �
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4. Linear Transformations

4.1. Linear Transformations between Vector Spaces. Let V and W be
vector spaces. A linear transformation between V and W is a function T : V →W
satisfying

(T1) T (~v1 + ~v2) = T (~v1) + T (~v2), for all ~v1, ~v2 ∈ V ;
(T2) T (a~v) = aT (~v), for all ~v ∈ V and a ∈ R.

Thus, we now allow the domain to be any vector space in Rn.
If T : V →W is a linear transformation, the kernel of T is

ker(T ) = {~v ∈ V | T (~v) = ~0}.
The following facts remain true regarding linear transformations whose domain

is any vector space. The proofs are virtually identical to those already given.

• The image of the zero vector is the zero vector.
• The image of a subspace in the codomain is a subspace of the domain.
• The preimage of a subspace in the domain is a subspace of the codomain.
• The composition of linear transformations is a linear transformation.
• The kernel is a subspace of the domain.
• The transformation is injective if and only if the kernel is trivial.

Proposition 6.19. Let V and W be vector spaces. Let X = {~v1, . . . , ~vn} ⊂ V
be a basis for V . Let Y = {~w1, . . . , ~wn} ⊂ W . Then there exists a unique linear
transformation T : V →W such that T (~vi) = ~wi.

Proof. For each ~v ∈ V , there exist unique real numbers a1, . . . , an such that ~v =∑n
i=1 ai~vi. Define T (~v) =

∑n
i=1 ai ~wi. It is clear that T (~vi) = ~wi, and it is easy

to verify that T is linear. Uniqueness comes from the necessity of this definition,
given that we require T to be linear. �

Proposition 6.20. Let T : V →W be a linear transformation. Then T is injective
if and only if for every independent subset X ⊂ V , T (X) is independent.

Proof. We prove the contrapositive in both directions.
(⇒) Suppose that X ⊂ V is independent but that T (X) is dependent. Then

there exists a nontrivial dependence relation

a1T (~x1) + · · ·+ anT (~xn) = 0,

where ~xi ∈ X and ai ∈ R, not all zero. Then T (
∑n
i=1 ai~xi) = 0, so

∑n
i=1 ai~xi is a

nontrivial member of ker(T ). Thus T is not injective.
(⇐) Suppose that T is not injective. Then its kernel is nontrivial, so there

exists an nonzero vector ~v ∈ V such that T (~v) = 0. Since ~v 6= 0, the set {~v} is
independent. But its image T (~v) is dependent. �
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4.2. Images of Direct Sums. We examine the image of a linear transforma-
tion when the domain is expressed as a direct sum.

Proposition 6.21. Let T : V →W be a linear transformation and let U1, U2 ≤ V .
Then T (U1 + U2) = T (U1) + T (U2).

Proof. We write this proof as a chain of logical equivalences.

~w ∈ T (U1 + U2)⇔ ~w = T (~u1 + ~u2) for some ~u1 ∈ U1, ~u2 ∈ U2

⇔ ~w = T (~u1) + T (~u2) because T is linear

⇔ ~w ∈ T (U1) + T (U2) by definition of image.

�

Proposition 6.22. Let V be a vector space and let X be a basis for V .
Let Y1 ⊂ X and let Y2 = X r Y1. Let U1 = span(Y1) and let U2 = span(Y2). Then
V = U1 ⊕ U2.

Proof. We verify the two properties of direct sum.
(D1) We always have U1+U2 ≤ V ; we need to show that V ⊂ U1+U2. If v ∈ V ,

then V is a linear combination from X because X spans V . Since X = Y1 ∪ Y2,
v can be written as a linear combination of some vectors from Y1 plus a linear
combination some vectors from Y2. Such an element is in U1 + U2.

(D2) Let v ∈ U1 ∩ U2. Then v is a linear combination from Y1 and also v is a
linear combination from Y2. The difference of these is a linear combination from X
which equals zero; since X is linearly independent, all of the coefficients must be
zero. Thus v = 0. �

Proposition 6.23. Let V be a vector space.
Let U1, U2 ≤ V such that V = U1 ⊕ U2. Let Y1 be a basis for U1 and Y2 be a basis
for U2. Then Y1 ∪ Y2 is a basis for V .

Proof. Exercise. �

Corollary 6.24. Let V be a finite dimensional vector space and let U1, U2 ≤ V
such that V = U1 ⊕ U2. Then dim(V ) = dim(U1) + dim(U2).

Proposition 6.25. Let T : V → W be a linear transformation. Let K = ker(T ).
Then

(a) there exists U ≤ V such that V = K ⊕ U ;
(b) T �U : U →W is injective.

Proof. Let Y1 be a basis for K and let X be a completion of Y1 to a basis for X.
Let Y2 = X r Y1. Let U = span(Y2). Then by Proposition 6.22, V = K ⊕ U . This
proves (a).

Recall that T �U : U → W is the restriction of T to the set U ; that is, we only
consider what T does to elements of U . Let u ∈ ker(T �U ). Then T (u) = 0, so
u ∈ K. Thus u ∈ K ∩ U = {0}, so u = 0. Thus the kernel of T �U is trivial, so
T �U is injective. �
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4.3. Rank and Nullity. Let V be a finite dimensional vector space and let
T : V → W be a linear transformation. Let img(T ) = T (V ) denote the image of
T . The rank of T is the dimension of the image of T : rank = dim(img(T )). The
nullity of T is the dimension of the kernel of T : nullity = dim(ker(T )).

Theorem 6.26. (Rank plus Nullity Theorem)
Let V be a finite dimensional vector space and let T : V →W be a linear transfor-
mation. Then dim(V ) = dim(ker(T )) + dim(img(T )).

Proof. Let K = ker(T ). By Proposition 6.25 (a), there exists a subspace U ≤ V
such that V = K ⊕ U . Thus dim(V ) = dim(K) + dim(U). By Proposition 6.25
(b), the linear transformation T �U : U →W is injective, so dim(T (U)) = dim(U).
Thus

dim(V ) = dim(K) + dim(U) = dim(ker(T )) + dim(img(T )).

�

Corollary 6.27. Let V and W be a finite dimensional vector spaces of the same
dimension. Let T : V → V be a linear transformation. Then T is injective if and
only if T is surjective.

Proof. Exercise. �

Let Y = {~v1, . . . , ~vn} ∈ Rm. We wish to determine whether or not the set Y
is independent. If n > m, we know they cannot be independent, so assume that
n ≤ m.

Form the matrix A = [~v1 | · · · | ~vn]. Corresponding to A is a linear transforma-
tion TA : Rn → Rm. We know that n = dim(Rn) = dim(ker(TA)) + dim(img(TA)).
Now X is independent if and only if there span in Rm is a vector space of di-
mension n. This span is exactly img(TA). Thus X is independent if and only if
dim(img(TA)) = n. This is the case if and only if dim(ker(TA)) = 0.

Row reduce A to obtain a matrix B; only forward elimination is necessary. Now
X is dependent if and only if B has a free column, which is the case if and only if
B has a zero row (since n ≤ m).
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4.4. Isomorphisms. Let V and W be vector spaces. An isomorphism from V
to W is a bijective linear transformation T : V →W . We say that V is isomorphic
to W , and write V ∼= W , if there exists an isomorphism T : V →W .

Proposition 6.28. Let V be a vector space.
Then idV : V → V is an isomorphism.

Proof. Clear. �

Proposition 6.29. Let T : V →W be an isomorphism.
Then T−1 : W → V is an isomorphism.

Proof. Since T is bijective, T−1 : W → V is a function. We verify the properties
of a linear transformation.

(T1) Let ~w1, ~w2 ∈W . Since T is bijective, there exist unique elements ~u1, ~u2 ∈
U such that T (~u1) = ~w1 and T (~u2) = ~w2. Now T (~u2 + ~u2) = T (~u1) + T (~u2) =
~w1 + ~w2, so T−1(~w1 + ~w2) = ~u1 + ~u2 = T−1(~w1) + T−1(~w2).

(T2) Let ~w ∈ W and a ∈ R. There exists a unique element ~u ∈ U such that
T (~u) = ~w. Then T (a~u) = aT (~u) = a~w, so T−1(a~w) = a~u = aT−1(~w). �

Proposition 6.30. Let S : U → V and T : V →W be isomorphisms.
Then T ◦ S : U →W is an isomorphism.

Proof. We have seen that the composition of linear transformations is linear, and
we always have that the composition of bijective functions is bijective. �

Let U , V , and W be vector spaces. Then

(a) V ∼= V ;
(b) V ∼= W ⇔W ∼= V ;
(c) U ∼= V and V ∼= W ⇒ U ∼= W .

This says that isomorphism is an equivalence relation.

Proposition 6.31. Let T : V → W be a linear transformation. Then T is an
isomorphism if and only if for every basis X of V , T (V ) is a basis for W .

Proof.
(⇒) Suppose that T is an isomorphism, and let X be a basis for V . Then T

is surjective, so W = T (V ) = T (span(X)) = span(T (X)); that is, T (X) spans W .
Moreover, T is injective, so by Proposition 6.20, T (X) is independent. Thus T (X)
is a basis for W .

(⇐) Then either T is not surjective, or T is not injective. If T is not surjective
and X is any basis for V , then T (X) cannot span W , so T (X) cannot be a basis
for W . If T is not injective, then there exists a nontrivial kernel for T . We may
take a basis for this kernel, and complete it to a basis for V . The image of this
basis for V will contain the zero vector, and thus cannot be independent. �

In light of Proposition 6.19, we may construct an isomorphism between spaces
by sending a basis to a basis.
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Let V be a finite dimensional vector space of dimension n. An ordered basis for
V is an ordered n-tuple (~x1, . . . , ~xn) ∈ V n of linearly independent vectors from V .

Note that if (~x1, . . . , ~xn) is an ordered basis, then X = {~x1, . . . , ~xn} is a basis.
With this understanding, we may say: “let X be an ordered basis”, by which we
mean that X is the basis which corresponds to an ordered basis.

Theorem 6.32. Let V be a finite dimensional vector space of dimension n. Let
X = {~x1, . . . , ~xn} be an ordered basis for V . Define a linear transformation

ΓX : V → Rn by ΓX(~xi) = ~ei.

Then ΓX is an isomorphism.

Description. We have already essentially proven this, so let us describe it in more
detail.

Every element of V may be written in a unique way as a linear combination of
elements from X: if ~v ∈ V , then ~v =

∑
i=1 ai~xi for some real numbers a1, . . . , an.

Then

ΓX(~v) =

n∑
i=1

aiΓX(~xi) =

n∑
i=1

n∑
i=1

ai~ei = 〈a1, . . . , an〉;

this is the linear transformation that sends the basis X of V to the standard basis
for Rn, whose existence, uniqueness, and linearity is guaranteed by Proposition
6.19. It is an isomorphism by Proposition 6.31. �

Corollary 6.33. Let V and W be vector spaces of dimension n. Then V ∼= W .

Proof. Every finite dimensional vector space has a basis. Let X be an ordered basis
for V and let Y be an ordered basis for W . Since ΓY : W → Rn is an isomorphism,
it is invertible, and its inverse is also an isomorphism. Since the composition of
isomorphisms is an isomorphism, we see that

Γ−1
Y ◦ ΓX : V →W

is an isomorphism, so V ∼= W . �

Even though two vector spaces of the same dimension are isomorphic, there
are many ways in which they are isomorphic. Indeed, each basis X for V gives a
different isomorphism ΓX : V → Rn. Controlling this is one of the challenges of
linear algebra.
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4.5. Computing Linear Transformations via Matrices. Let V be a vec-
tor space of dimension n and let W be a vector space of dimension m. Let
T : V → W be a linear transformation. If we know a basis for V and for W ,
we can use matrices to compute information about T .

Let X be a basis for V and let Y be a basis for W . Then ΓX : V → Rn is an
isomorphism and ΓY : W → Rm is an isomorphism. These isomorphisms pick off
the coefficients of any vector in V and W and allow us to think of them as vectors in
Rn and Rm, respectively. Actually, what we are doing is defining a transformation
S : Rn → Rm given by S = ΓY ◦ T ◦ ΓX . In this case,

T = Γ−1
Y ◦ S ◦ ΓX .

This can be written in diagram form:

V
T−−−−→ W

ΓX

y yΓY

Rn −−−−→
S

Rm

This says that to compute T (~v), it suffices to push ~v into Rn via ~u = ΓX(~v),
compute S(~u), then pull this result back to W via ΓY .

But S : Rn → Rm corresponds to a matrix A, and we can compute A~u by
matrix multiplication. This also allows us to compute kernels, images, and so forth
via matrices.

Example 6.34. Let ~v1 = 〈1, 0, 0, 0〉, ~v2 = 〈1, 0, 1, 0〉, ~v3 = 〈1, 0, 0, 1〉 ∈ R4. Let
V be the subspace of R4 spanned by {~v1, ~v2, ~v3}; these form a basis for V . Let
W = R2 Let ~w1 = 〈1, 2〉, ~w2 = 〈−1, 0〉, ~w3 = 〈3, 2〉 ∈ W . Let T : V → W be the
unique linear transformation given by T (~vi) = ~wi. Find a basis for the kernel of T .

Solution. Let ~e1, ~e2, ~e3 be the standard basis vectors for R3. Let S : V → R3 be
given by T (~vi) = ~ei. Then S is an isomorphism. Let R : R3 → R2 be given by
T (~ei) = ~wi. The matrix for R is

A =

[
1 −1 3
2 0 2

]
.

Row reduce A to get

UA =

[
1 0 7
0 1 4

]
.

The kernel of R is spanned by the vector 〈−7,−4, 1〉.
Now T = S−1RS. Thus ST = RS. Then

ker(T ) = ker(ST ) = ker(RS) = S−1(ker(R)).

Thus to find ker(T ), pull the vector 〈−7,−4, 1〉 back through S (find its preimage).
This is −7〈1, 1, 0, 0〉 − 4〈1, 0, 1, 0〉 + 〈1, 0, 0, 1〉 = 〈−10,−7,−4, 1〉. The kernel of T
is the span of this vector. �
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5. Linear Operators

Let V be a vector space. A linear operator on V is a linear transformation
T : V → V .

If S, T : V → V are linear operators, then the composition T ◦ S : V → V is a
linear operator. Let us drop the ◦ from the notation and think of composition of
linear operators as multiplication, so that TS is the transformation T ◦ S.

This multiplication distributes over addition of operators:

T (S +R) = TS + TR; (T + S)R = TR+ SR.

Let a ∈ R. Define Na : V → V to be dilation by a: Na(v) = av for all v ∈ V .
Then Na is a linear operator. Note that Na commutes with any other operator:

NaT = TNa.

Also note that NaT is exactly the transformation which we previously described
by aT . When Na occurs on the left, we drop the N from the notation, and simply
write aT instead of NaT .

Let T 2 = TT , T 3 = TTT , and in general, let Tn denote the composition of T
with itself n times. This is T applied to the space V over and over. For example,
if T is rotation of R2 by an angle of 45 degrees, then T 4 is rotation by 180 degrees
and T 8 is the identity transformation J = idV .

Let T : V → V be a linear operator. We see that any polynomial in T

L = Tn + an−1T
n−1 + · · ·+ a1T + a0

is a linear operator. Its effect on ~v ∈ V is given by distributing ~v into the polyno-
mial:

L(~v) = Tn(~v) + an−1T
n−1(~v) + · · ·+ a1T (~v) + a0~v.

If J : V → V is the identity transformation, we set T 0 = J . Thus we view a0 as
the linear transformation a0J , which stretches every vector by a factor of a0.

In this way, we can form and factor polynomials such as

L = T 2 − 4T + 3 = (T − 3)(T − 1);

thus L(~v) = T (T (~v))− 4T (~v) + 3~v. Here, (T − 3)(T − 1) = (T − 3J) ◦ (T − J).
Let V be a vector space of dimension n, and let X = {~x1, . . . , ~xn} be a basis

for V . The linear transformation ΓX : V → Rn given by ~xi 7→ ~ei may be used
to compute a linear transformation T : V → V by setting S = ΓX ◦ T ◦ Γ−1

X . In
diagram form:

V
T−−−−→ V

ΓX

y yΓX

Rn −−−−→
S

Rn

Since S : Rn → Rn, it has a matrix with respect to the standard basis.
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6. Exercises

Exercise 6.1. Let U ≤ Rn. Show that

(a) U⊥ ≤ Rn;
(b) U ∩ U⊥ = {0};
(c) U ⊂ U⊥⊥.

Exercise 6.2. Let

A =

 2 0 −1 4 1
−2 0 2 −2 0
0 0 1 2 2

 .
Let T : R5 → R3 be the linear transformation given by T (~v) = A~v.

(a) Find a basis for img(T ) and for ker(T ).

(b) Find a basis for img(T )
⊥

and for ker(T )
⊥

.

Exercise 6.3. Let U be the subspace of R4 spanned by the vectors

~v1 = 〈1, 0,−1, 1〉, ~v2 = 〈2, 1, 1, 0〉, and ~v3 = 〈0,−1,−3, 2〉.
(a) Find a basis for U .
(b) Find a basis for U⊥.
(c) Find a matrix A such that U = ker(A).

Exercise 6.4. Let

A =


1 2 0 2 1
0 1 1 1 0
2 1 1 0 1
0 4 0 5 1

 .
Find a basis for each of the four fundamental spaces associated to A.

Exercise 6.5. Let V be a vector space.
Let U1, U2 ≤ V such that V = U1 ⊕ U2. Let Y1 be a basis for U1 and Y2 be a basis
for U2. Show that Y1 ∪ Y2 is a basis for V .

Exercise 6.6. Let V be a vector space and let W ≤ V . Let v1, v2 ∈ V .

(a) Show that V = ∪v∈V (v +W ).
(b) Show that (v1 +W ) ∩ (v2 +W ) 6= ∅⇒ (v1 +W ) = (v2 +W ).

Exercise 6.7. Let V be a vector space and let W ≤ V .
Show that v1 +W = v2 +W if and only if v2 − v1 ∈W .

Exercise 6.8. Let V be a finite dimensional vector space.
Let U ≤ V and let T : V → V be a linear transformation.

(a) Show that U = V if and only if dim(U) = dim(V ).
(b) Show that T is injective if and only if T is surjective.

Exercise 6.9. Let T : V →W be a linear transformation.
Show that T is invertible if and only if T is bijective.

Exercise 6.10. Let T : U → V be a linear transformation.
Let S : V →W be an injective linear transformation.
Show that ker(S ◦ T ) = ker(T ).
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Exercise 6.11. Let T : V →W be a linear transformation and let U1, U2 ≤ V . In
each case, prove or give a counterexample.

(a) T (U1 ∩ U2) = T (U1) ∩ T (U2);
(b) V = U1 ⊕ U2 ⇒ T (V ) = T (U1)⊕ T (U2).

Exercise 6.12. Let T : V → W be a linear transformation and let U1, U2 ≤ W .
In each case, prove or give a counterexample.

(a) T−1(U1 ∩ U2) = T−1(U1) ∩ T−1(U2);
(b) W = U1 ⊕ U2 ⇒ T−1(W ) = T−1(U1)⊕ T−1(U2).

Exercise 6.13. Let Pn denote the vector space of polynomial functions of degree
less than or equal to n with real coefficients:

Pn = {f(x) = a0 + a1x+ · · ·+ anx
n | ai ∈ R}.

Let Γ : P4 → R5 be given by Γ(xi−1) = ei for i = 1, . . . , 5.

Let D : P4 → P4 be given by D(f) = df
dx .

Let T : R5 → R5 be given by T = Γ ◦D ◦ Γ−1.

(a) Describe why Γ is an isomorphism.
(b) Find the matrix corresponding to the linear transformation T .
(c) Find a basis for the image and the kernel of T .
(d) Find a basis for the image and the kernel of D.

Exercise 6.14. Let D(R) denote the set of all smooth functions on R.

Let D : D(R)→ D(R) be given by D(f) = df
dx .

Let Dn : D(R)→ D(R) denote D composed with itself n times.
Find ker(Dn); justify your answer.



CHAPTER 7

Orthogonality

Abstract. This chapter discusses the relationship between isomorphisms,

which are transformations preserving algebraic structures, and isometries,
which are transformations which preserve distance. We define the concept

of an orthonormal basis, discover its role in this discussion, and describe the
Gram-Schmidt process for taking a basis for a subspace of Rn and producing

a orthonormal basis.

1. Isometries

1.1. Distance. Our study of Rn has, to this point, focused primarily on its
algebraic structure. We have used dot product, cross product, and perpendicularity
to understand some of the geometry of these spaces. At this point, we wish to study
the relationship between linear algebra and distance.

Any element of the set Rn may be viewed as a point, or as a vector; a point is
the tip of a vector whose representative arrow starts at the origin, and an vector
is the difference between a point and the origin. So, let us restate our definition of
distance in the notation of vectors.

Recall that the norm of a vector ~x = (x1, . . . , xn) ∈ Rn is

‖~x‖ =

√√√√ n∑
i=1

x2
i .

We define a distance function on Rn by

d : Rn × Rn → R given by d(~x, ~y) = ‖~x− ~y‖;
that is, the distance from ~x to ~y is the norm of the vector between their tips. If
~x = (x1, . . . , xn) and ~y = (y1, . . . , yn), we have

d(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2.

The distance function satisfies these properties:

• d(~x, ~y) ≥ 0 and d(~x, ~y) = 0 if and only if ~x = ~y;
• d(~x, ~y) = d(~y, ~x);
• d(~x, ~y) + d(~y, ~z) ≥ d(~x, ~z).

We wish to investigate functions which preserve distance, and their relationship to
linear algebra.

115



116 7. ORTHOGONALITY

1.2. Isometries.

Definition 7.1. Let A ⊂ Rn and B ⊂ Rm. An isometry (or congruence) from A
to B is a surjective function

f : A→ B such that, for all a1, a2 ∈ A, we have d(a1, a2) = d(f(a1), f(a2)).

If there exists an isometry from A to B, we say that A and B are isometric, or
congruent.

An isometry of A is an isometry from A to itself.

For example, two triangles lying in a plane are congruent if and only if there
exists an isometry from one to the other. Any to circles of the same radius are
isometric. Any two lines are isometric, as are any two planes.

We begin with a few preliminary results regarding isometries in general.

Proposition 7.2. Let f : A→ B be an isometry. Then f is bijective.

Proof. As part of the definition, we know f is surjective. Let a1, a2 ∈ A such that
f(a1) = f(a2) Then d(a1, a2) = d(f(a1), f(a2)) = 0, so a1 = a2. �

Proposition 7.3. Let f : A → B be an isometry. Then f−1 : B → A is an
isometry.

Proposition 7.4. Let f : A→ B and g : B → C be isometries. Then g◦f : A→ B
is an isometry.

We will focus on isometries of the form f : Rn → Rn, or more generally,
f : V → W , where V and W are vector spaces. In this context, an isometry is
a rigid motion of a line, plane, space, or higher dimensional space. Let us list
some the isometries of low dimensional spaces. To understand these, we need the
following proposition.

Isometries of R include the following.

• Identity
• Reflection through a point
• Translation by a number

For example, f(x) = x− 5 shifts the line left by 5, and g(x) = −(x− 5) + 5 reflects
across 5.

Isometries of R2 include the following.

• Identity
• Rotation by an angle around a point
• Reflection across a fixed line
• Translation by a vector

Isometries of R3 include the following.

• Identity
• Rotation by an angle around an oriented line
• Reflection through a plane
• Translation by a vector

We postpone a precise and general definition of rotation and reflection, but we
can at least define translation.
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Definition 7.5. Let V be a vector space. A translation of V is a function

τ : V → V defined by τ(~x) = ~x+ ~v,

where ~v ∈ V . This function is known as translation by ~v, and may be denoted by
τ~v.

Proposition 7.6. Let τ : V → V be a translation. Then τ is an isometry.

Proof. Suppose that the translation is given by τ(~x) = ~x + ~v, where ~v ∈ V . We
note that since V is a vector space, τ(~x) ∈ V .

Let ~x1, ~x2 ∈ X. Then

d(~x1, ~x2) = ‖~x1 − ~x2‖ = ‖(~x1 + ~v)− (~x2 + ~v)‖ = ‖τ(~x1)− τ(~x2)‖ = d(τ(~x1), τ(~x2)).

Thus, τ is an isometry. �

Definition 7.7. Let V and W be vector spaces, and let f : V →W . We say that
f fixes the origin if f(~0V ) = ~0W .

We have previously made extensive use of the fact that every linear transfor-
mation fixes the origin.

Proposition 7.8. Let V and W be vector spaces, and let f : V →W be an isometry
that fixes the origin. Then, for all ~v ∈ V , we have

‖~v‖ = ‖f(~v)‖.

Proof. The norm is the distance from the tip of ~v to the origin:

‖~v‖ = d(~v,~0V ) = d(f(~v), f(~0V )) = d(f(~v),~0W ) = ‖f(~v)‖.
�

Proposition 7.9. Let V and W be vector spaces and let f : V →W be an isometry.
Then there exists a unique translation τ : W → W such that τ ◦ f is an isometry
which fixes the origin.

Proof. Let ~w = −f(~0) and set τ~w(~x) = ~x + ~w. Then τ~w ◦ f is the composition of
isometries, and thus is an isometry. Also,

τ~w ◦ f(~0) = τ~w(f(~0)) = f(~0) + ~w = f(~0)− f(~0) = ~0,

so τ~w ◦ f fixes the origin.
For uniqueness, suppose that ~w ∈W and τ~w is translation by ~w such that τ~w ◦f

fixes the origin. Then τ~w ◦ f(~0) = f(~0) + ~w = ~0, which implies that ~w = −f(~0). �

We will show that isometries not only preserve distance, but also preserve
angles. Moreover, we will show that isometries are affine functions, and we will
characterize the types of matrices which represent isometries.
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1.3. Dilations. A concept related to isometry is that of dilation, the definition
of which we give now.

Definition 7.10. Let A ⊂ Rn and B ⊂ Rm. A dilation (or similarity) from A to
B is a surjective function

f : A→ B such that, for all a1, a2 ∈ A, we have λd(a1, a2) = d(f(a1), f(a2)),

where λ ∈ R is a fixed positive real number, call the dilation factor. If there exists
a dilation from A to B, we say that A and B are similar.

Proposition 7.11. Let f : A→ B be a dilation. Then f is bijective.

Proof. As part of the definition, we know f is surjective. Let λ be the dilation factor
of f . Let a1, a2 ∈ A such that f(a1) = f(a2) Then λd(a1, a2) = d(f(a1), f(a2)) = 0.
Since λ > 0, d(a1, a2) = 0, so a1 = a2. �

Proposition 7.12. Let f : A → B be an dilation. Then f−1 : B → A is an
dilation.

Proposition 7.13. Let f : A→ B and g : B → C be dilations. Then g◦f : A→ B
is an dilation.

Proposition 7.14. Let V and W be vector spaces, and let f : V →W be a dilation
with factor λ 6= 1. Then f has a unique fixed point.

Idea of proof. The full proof requires the concepts of Cauchy sequences and com-
plete metric spaces, however, the basic idea can be summarized.

First assume that λ < 1. Pick x1 ∈ Rn, let x2 = f(x1), x3 = f(x2), and so
forth, to construct a sequence (xn) whose terms get closer together. This sequence
eventually converges.

Now, if λ > 1, note that f−1 is a dilation with factor
1

λ
< 1, which has a fixed

point. The fixed point of f−1 is necessarily a fixed point of f .
To see that the fixed point is unique, suppose that y1 and y2 are distinct fixed

points of f . Then λd(y1, y2) = d(f(y1), f(y2)) = d(y1, y2); thus λ = 1, violating
our premise. �

It turns out that a dilation is completely determined by a fixed point and a
dilation factor.
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2. Orthogonal Transformations

Definition 7.15. Let V and W be vector spaces, and let f : V →W . We say that
f is orthogonal if f preserves dot products; that is, if

~v1, ~v2 ∈ V ⇒ ~v1 · ~v2 = f(~v1) · f(~v2).

Proposition 7.16. Let V and W be vector spaces, and let f : V →W . Then f is
an isometry which fixes the origin if and only if f is orthogonal.

Proof.
(⇒) Suppose that f is an isometry which fixes the origin. Recall that f pre-

serves the norm of each vector in V , since

‖~v‖ = d(~v,~0) = d(f(~v), f(~0)) = d(f(~v),~0) = ‖f(~v)‖.
Let ~v1, ~v2 ∈ V . If two distances are the same, then so are their squares; thus

‖~v1 − ~v2‖2 = d(~v1, ~v2)2 = d(f(~v1), f(~v2))2 = ‖f(~v1)− f(~v2)‖2

which, using that ‖~x‖2 = ~x · ~x, implies that

(~v1 − ~v2) · (~v1 − ~v2) = (f(~v1)− f(~v2)) · (f(~v1)− f(~v2)).

Square both sides and expanding gives

~v1 · ~v1 − 2~v1 · ~v2 + ~v2 · ~v2 = f(~v1) · f(~v1)− 2f(~v1) · f(~v2) + f(~v2) · f(~v2).

Again, using that ~x · ~x = ‖~x‖2, we get

‖~v1‖2 − 2~v1 · ~v2 + ‖~v2‖2 = ‖f(~v1)‖2 − 2f(~v1) · f(~v2) + ‖f(~v2)‖2.
But ‖~x‖ = ‖f(~x)‖, so

‖~v1‖2 − 2~v1 · ~v2 + ‖~v2‖2 = ‖~v1‖2 − 2f(~v1) · f(~v2) + ‖~v2‖2.
Cancelling and dividing by −2 produces the result,

~v1 · ~v2 = f(~v1) · f(~v2).

(⇐) Suppose that f is orthogonal. Then

‖f(~0)‖2 = (f(~0) · f(~0)) = ~0 ·~0 = 0,

so f(~0) = ~0, and f fixes the origin.
Now let ~v1, ~v2 ∈ V . We have

d(f(~v1), f(~v2))2 = ‖f(~v1)− f(~v2)‖2

= f(~v1) · f(~v1)− 2f(~v1) · f(~v2) + f(~v2) · f(~v2)

= ~v1 · ~v1 − 2~v1 · ~v2 + ~v2 · ~v2

= (~v1 − ~v2) · (~v1 · ~v2)

= ‖~v1 − ~v2‖2

= d(~v1, ~v2)2.

Thus f is an isometry. �
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Proposition 7.17. Let V and W be vector spaces, and let f : V → W be an
isometry which fixes the origin. Then f is a linear transformation.

Proof.
(T1) Let ~v1, ~v2 ∈ V . Let ~x = ~v1 + ~v2. We wish to show that f(~x) = f(~v1) +

f(~v2); it suffices to show that the length L of f(~v1) + f(~v2) − f(~x) is zero. This
length is

L = (f(~v1) + f(~v2)− f(~x)) · (f(~v1) + f(~v2)− f(~x)).

By Proposition 7.16, we know that f is orthogonal, so expanding this dot product
gives

L = f(~v1) · f(~v1) + f(~v2) · f(~v2) + f(~x) · f(~x)

+ 2f(~v1) · f(~v2)− 2f(~v1) · f(~x)− 2f(~v2) · f(~x)

= ~v1 · ~v1 + ~v2 · ~v2 + ~x) · ~x
+ 2~v1 · ~v2 − 2~v1 · ~x− 2~v2 · ~x
= (~v1 + ~v2 − ~x) · (~v1 + ~v2 − ~x)

= ~0 ·~0
= 0

Thus f(~v1 + ~v2) = f(~v2) + f(~v2).
(T2) Let ~v ∈ V and a ∈ R. To show that f(a~v) = af(~v), we show that the

length L of the difference is zero. Let

L = (f(a~v)− af(~v)) · (f(a~v)− af(~v)).

Then

L = f(a~v) · f(a~v)− 2f(a~v) · (af(~v)) + (af(~v)) · (af(~v))

= f(a~v) · f(a~v)− 2af(a~v) · f(~v) + a2(f(~v) · f(~v))

= (a~v) · (a~v)− 2a(a~v) · ~v + a2(~v · ~v)

= a2~v · ~v − 2a2~v · ~v + a2~v) · ~v
= 0

So, f(a~v) = af(~v).
Therefore, f is linear. �

Definition 7.18. A linear isometry is an orthogonal linear transformation.

In light of what we have just shown, every isometry which fixes the origin is a
linear isometry, and every linear isometry is an orthogonal isomorphism.

Let V and W be vector spaces, and let f : V → W . Recall that f is an affine
transformation if f is of the form f = τ ◦ T , where T is a linear transformation,
and τ is a translation. Combining Proposition 7.9 and Proposition 7.17, we have
the following theorem, which is a special case of the Mazur-Ulam Theorem.

Theorem 7.19. Let f : V → W be an isometry. Then f is an affine transforma-
tion.
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3. Orthonormal Bases

Let ~v, ~w ∈ Rn. Recall that we have said that ~v and ~w are orthogonal if ~v · ~w = 0;
this occurs exactly when ~w is perpendicular to ~v. We now generalize this to sets of
vectors.

Definition 7.20. A subset X ⊂ Rn is orthogonal if X is a set of nonzero vectors
such that for every distinct ~x1, ~x2 ∈ X, we have ~x1 · ~x2 = 0.

Proposition 7.21. Let X = {~x1, . . . , ~xr} ⊂ Rn be an orthogonal set of vectors.
Then

~xi · ~xj =

{
‖~xj‖2 if i = j ;

0 if i 6= j .

Proof. The dot product is zero if ~xi and ~xj are distinct. If i = j, then ~xi · ~xj =
~xj · ~xi = ‖~xj‖2. �

Proposition 7.22. Let X ⊂ Rn be orthogonal. Then X is independent.

Proof. Let X = {~x1, . . . , ~xr}. Let
∑r
i=1 ai~xi = ~0 be a dependence relation from X.

Let j be between 1 and r, and take the dot product of both sides of the dependence
relation with ~xj : ( r∑

i=1

ai~xi

)
· ~xj = ~0 · ~xj = 0.

Since dot product is linear, this gives
r∑
i=1

ai(~xi · ~xj) = 0.

Since X is orthogonal, this becomes

ai~xj · ~xj = ai|~xj | = 0.

Since ~xj is nonzero, we conclude that aj = 0. Since j was arbitrary, ai = 0 for all
i. This shows independence. �

Definition 7.23. Let X ⊂ Rn. We say that X is an orthonormal set of vectors if
X is orthogonal, and ‖~x‖ = 1 for all ~x ∈ X.

Proposition 7.24. Let X{~x1, . . . , ~xr} ⊂ Rn be an orthonormal set of vectors.
Then

~xi · ~xj =

{
1 if i = j ;

0 if i 6= j .

Definition 7.25. Let V ≤ Rn and let X ⊂ Rn. We say that X is an orthonormal
basis for V if X is an orthonormal set of vectors such that spanX = V .

Proposition 7.26. Let T : Rn → Rn be a linear isometry, and let X is the standard
basis for Rn. Then T (X) is an orthonormal basis for Rn.

Proof. A linear isometry is an orthogonal isomorphism; that is, it sends a basis to
a basis, and preserves dot product. Thus for ~x ∈ X, since X is the standard basis,
‖~x‖ = 1, so ‖T (~x)‖ = 1. Moreover, if ~x1, ~x2 ∈ X are distinct,

T (~x1) · T (~x2) = ~x1 · ~x2 = 0;

thus T (X) is orthonormal. �
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Proposition 7.27. Let T : V → W be a linear isometry, and let X be an or-
thonormal basis for V . Then T (X) is an orthonormal basis for W .

Proof. A linear isometry is an orthogonal isomorphism; that is, it sends a basis to
a basis, and preserves dot product; it also preserves norms. Thus for ~x ∈ X, since
X is an orthonormal basis, ‖~x‖ = 1, so ‖T (~x)‖ = 1. Moreover, if ~x1, ~x2 ∈ X are
distinct,

T (~x1) · T (~x2) = ~x1 · ~x2 = 0;

thus T (X) is orthonormal. �

Proposition 7.28. Let X = {~x1, . . . , ~xr} ⊂ Rn be an orthonormal set. Let

~v1 =

r∑
i=1

ai~xi and ~v2 =

r∑
i=1

bi~xi

be arbitrary vectors in span(X). Then

~v1 · ~v2 =

r∑
i=1

aibi.

Proof. Since X is orthonormal, ~xi · ~xj equals zero, unless i = j, in which case it
equals one. This, in addition to the fact that dot product is linear, allows us to
compute:

~v1 · ~v2 =

( r∑
i=1

ai~xi

)
·
( r∑

j=1

bj~xj

)

=

r∑
i=1

(
ai~xi ·

( r∑
j=1

bj~xj

))

=

r∑
i=1

r∑
j=1

aibj(~xi · ~xj)

=

r∑
i=1

aibi.

�

Proposition 7.29. Let T : V →W be an isomorphism, and let X be an orthonor-
mal basis for V . If T (X) is an orthonormal basis for W , then T is an isometry.

Proof. In light of Proposition 7.16, it suffices to show that T is orthogonal. Let

~v1 =

r∑
i=1

ai~xi and ~v2 =

r∑
i=1

bi~xi

be arbitrary vectors in V . Then

T (~v1) =

r∑
i=1

aiT (~xi) and ~v2 =

r∑
i=1

biT (~xi).

Since X and T (X) are orthonormal,

~v1 · ~v2 =

r∑
i=1

aibi = T (~v1) · T (~v2).

�
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We describe the Gram-Schmidt process for taking a basis for a subspace of Rn
and producing a orthonormal basis.

Proposition 7.30. Let V ≤ Rn and set X = {~x1, . . . , ~xm} ⊂ V be an orthonormal
basis for V . Then every for v ∈ V , we have

~v =

m∑
i=1

(~v · ~xi)~xi.

Proof. Let ~v ∈ V and X is a basis for V , then ~v is a linear combination of the
elements of X; that is,

~v =

m∑
i=1

ai~xi

for some a1, . . . , am ∈ R. Let ~xj ∈ X. Taking the dot product of both sides of this
equation with ~xj , we have

~v · ~xj =

( m∑
i=1

ai~xi

)
· ~xj

= aj(~xj · ~xj) ( because ~xi · ~xj = 0 for i 6= j)

= aj (because |~xj | = 1)

This is all we needed to show. �

Proposition 7.31 (Gram-Schmidt Process). Let V ≤ Rn. Then V has an or-
thonormal basis.

Proof. Let Y = {~y1, . . . , ~ym} be a basis for V . Set ~x1 = ~y1. The vector projection

of ~y2 onto ~x1 is ~x1·~y2
|~x1|2 ~x1. The difference between this and ~y2 is perpendicular to ~x1;

thus let ~x2 = ~y2 − ~x1·~y2
|~x1|2 ~x1. Continuing in this way, inductively define

~xk = ~yk −
( k−1∑

i=1

~xi · ~yk
|~xi|2

~xi

)
.

Let X = {~x1, . . . , ~xm}. We claim that X is an orthogonal basis for V . It is
easy to see that span(X) = span(Y ), and since they have the same cardinality, we
must have that X is a basis for Y .

To check that X is an orthogonal set of vectors, we apply dot product. Let
~xk ∈ X and select j < k. By the principle of induction, we may assume that
~xi · ~xj = 0 for i < k; we wish to show that this implies that ~xk · ~xj = 0. Thus
compute:

~xk · ~xj =

[
~yk −

( k−1∑
i=1

~xi · ~yk
|~xi|2

~xi

)]
· ~xj

= ~yk · ~xj −
( k−1∑

i=1

~xi · ~yk
|~xi|2

~xi · ~xj

)
= ~yk · ~xj − (

~xj · ~yk
|~xj |

~xj · ~xj)

= ~yk · ~xj − ~xj · ~yk
= 0.

Thus ~xk ⊥ ~xj . To obtain an orthonormal basis from X, divide each element ~x ∈ X
by its length. �
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4. Orthogonal Matrices

Definition 7.32. Let A be an n× n matrix. We say that A is orthogonal if

AA∗ = A∗A = I.

Proposition 7.33. Let A be an n× n matrix. Then A is orthogonal if and only if
the columns of A form an orthonormal basis for Rn.

Proof. For any matrix C, let Ci denote the ith row of C, and Cj denote the jth

column of C.
Let B = A∗A, and write B = (bij)ij . Then bij = (A∗)i ·Aj ; but the rows of A∗

are the columns of A, so bij = Ai ·Aj .
Now B = I i and only if

Ai ·Aj =

{
bii = 1 if i = j ;

bij = 0 if i 6= j .

So if A is orthonormal, B = I, so this equation holds, so the set of columns of A
are orthonormal, and thus indepenent. Since there are n of them, they must span
Rn.

On the other hand, if the asetr of columns of A are an orthonormal set, the
equation will hold, and it will be the case that B = I, so that A is orthogonal. �

Proposition 7.34. Let T : Rn → Rn be a linear transformation. Then T is an
isometry if and only if the matrix corresponding to T is orthogonal.

Proof. Let A be the matrix corresponding to T . Then

T is an isometry ⇔ T sends the standard basis to an orthonormal basis

⇔ the columns of A are an orthonormal set

⇔ A is orthogonal.

�



CHAPTER 8

Determinants and Eigenvectors

1. Transformations of a Vector Space

Let T : Rn → Rn be a linear transformation. Transformations of this type
(from a vector space into itself) are particularly interesting because they can be
composed with themselves. Let A be the corresponding matrix; then composing T
with itself corresponds to taking powers of A. Also, T is an isomorphism if and
only if A is invertible. In this case, we think of T as a warping of n-space.

Let A be an n× n matrix given by A = (aij)ij .
We say that A is singular if it is not invertible.
We say that A is scalar if it is of the form aI, where a ∈ R and I is the n× n

identity matrix. This has the effect on n-space of dilating it by a factor of a in
every direction.

We say that A is diagonal if all of its nondiagonal entries are zero, that is, if
aij = 0 whenever i 6= j. This has the effect on n-space of expanding the ith axis by
a factor of aii.

We say that A is upper triangular if aij = 0 whenever i > j.
We say that A is lower triangular if aij = 0 whenever i < j.
We say that A is triangular if it is either upper triangular or lower triangular.
If A is triangular and invertible, then A can be reduced to a diagonal matrix

by a sequence of row operations of type Ri + cRj .
The process of Gaussian elimination shows that a matrix A is invertible if

and only if it is the product of elementary invertible matrices. Such a product is
definitely invertible. On the other hand, if A is invertible, we may find its inverse
by row reducing the equation AX = I to obtain X = U , where U is the product of
the matrices corresponding to the row operations we used. To examine this more
closely, note that if A is invertible, then for any ~x ∈ Rn, there is a unique solution to

the equation A~x = ~b, namely ~x = A−1~b, and this solution can be found by Gaussian
elimination. In particular, if ~xi is the unique solution to A~x = ~ei for i = 1, . . . , n,
then A−1 = [~x1 | · · · | ~xn].

Thus if A and B are invertible matrices, we see that AB is invertible if and
only if both A and B are invertible.

125
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2. Multilinear Functions

Let V be a vector space and let V m denote the cartesian product of V with
itself m times; this is the set of all ordered m-tuples of vectors from V .

A function f : V m → R is called multilinear if it is linear in each of its coordi-
nates; that is, if

f(~v1, . . . , ~vi−1, ~vi + ~wi, ~vi+1, . . . , ~vm)

= f(~v1, . . . , ~vi−1, ~vi, ~vi+1, . . . , ~vm) + f(~v1, . . . , ~vi−1, ~wi, ~vi+1, . . . , ~vm);

and

f(~v1, . . . , ~vi−1, a~vi, ~vi+1, . . . , ~vm) = af(~v1, . . . , ~vi−1, ~vi, ~vi+1, . . . , ~vm).

Let f : V n → R be multilinear and let X be a basis for V . Then the value of
f is completely determined by the values of f(~xi1 , . . . , ~xim), where the ~xi’s range
over all ordered choices of m basis vectors.

A function f : V m → R is called alternating if exchanging positions changes
the sign; that is, if

f(~v1, . . . , ~vi, . . . , ~vj , . . . , ~vm) = −f(~v1, . . . , ~vj , . . . , ~vi, . . . , ~vm).

Let f : V m → R be alternating. Suppose that two positions of an n-tuple are
the same, say ~vi = ~vj . Then switching them gives the same value for f ; but it
must also give the negative value, since f is alternating. Thus f(~v1, . . . , ~vm) = 0
whenever two positions are the same.

Example 8.1. Let V = R2 and let f : R2 → R be given by f(~v, ~w) = ad − bc,
where ~v = 〈a, b〉 and ~w = 〈c, d〉. Then f is an alternating multilinear function.

Note that f(~e1, ~e2) = 1 · 1− 0 · 0 = 1.

Let V be a finite dimensional vector space of dimension n = m and let f : V n →
R be an alternating multilinear function. Let X = {~x1, . . . , ~xn} be a basis for V .
Then f is completely determined by the value of f(~x1, . . . , ~xn). To see this, pick an
arbitrary ordered n-tuple (~v1, . . . , ~vn). Write each of these as a linear combination
of the vectors in X. Use multilinearity to break f(~v1, . . . , ~vn) into a sum of things
of the form f(xi1 , . . . , xin). Use alternation to rearrange this into a sum of things
of the form ±f(x1, . . . , xn).

A function f : V m → R is called normalized with respect to an ordered basis
{~x1, . . . , ~xn} if m = n and f(~x1, . . . , ~xn) = 1.

Proposition 8.2. Let V be a vector space of dimension n with ordered basis X.
Then there exists a unique alternating multilinear function

f : V n → R
which is normalized with respect to X.

Idea of Proof. First one examines uniqueness. Suppose that f and g are alternat-
ing multilinear functions. By using multilinearity and alternation, one sees that
the value of f and g on any order n-tuple (~v1, . . . , ~vn) of vectors is completely de-
termined by their value on the ordered basis. This is a single real number. If the
functions are normalized, then they must be the same.

Next one constructs a specific function which is multilinear, alternating, and
normalized. We will do this momentarily. �
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3. The General Determinant

Let Mm×n be the set of all m× n matrices. If m = n, shorten this to Mn.
A function f : Mn → R may be considered to be a multilinear function by

considering its rows to be the coordinates of V n, where V = Rn.

Proposition 8.3. There exists a unique alternating multilinear function

det : Mn → R,
which is normalized with respect to the standard basis. This function is called the
determinant function.

We now describe how to construct such a function; the construction is inductive,
which means that we construct the determinant of a 1×1 matrix, and then construct
the determinant of an n × n matrix in terms of determinants of (n − 1) × (n − 1)
matrices.

Define the determinant of the 1× 1 matrix [a] to be a.
Let A = (aij)ij be an n × n matrix. Assume that the determinant of an

(n− 1)× (n− 1) function has been defined.
Let Aij denote the matrix obtained from A by deleting the ith row and the jth

column. This matrix is called the ijth minor of A.
Let a′ij = det(Aij). This number is called the ijth cofactor of A.
To compute the determinant of A, select any row or column of A. For each

entry in the row of column, compute the cofactor of that entry. Then take the
alternating sum of these cofactors. This process is called expansion by minors.

If we choose the ith row to expand along, the formula is

det(A) =

n∑
j=1

(−1)j−1a′ij .

If we choose the jth column to expand along, the formula is

det(A) =

n∑
i=1

(−1)i−1a′ij .

It is tedious and somewhat uninformative, but not terribly difficult, to use
induction to show that this formula gives an alternating multilinear function which
is normalized with respect to the standard basis. We move on.
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4. Properties of the Determinant

Let det : Mn → R be the unique function with the properties

(a) Multilinearity
(b) Alternation
(c) Normalization

From these properties, one can show

(d) If any row of A is zero, then det(A) = 0;
(e) If any two rows of A are the same, then det(A) = 0;
(f) If one row of A is a scalar multiple of another, then det(A) = 0;
(g) If B is obtained from A by a row operation of type Ri+cRj , then det(B) =

det(A);
(h) If A is diagonal, then det(A) is the product of the nonzero entries;
(i) If A is triangular, then det(A) is the product of the diagonal entries.

Property (d) comes from multilinearity.
Property (e) comes from alternation, as we have already noted.
Property (f) comes from multilinearity and (e).
Property (g) results from multilinearity and (e):

det[~x1 | · · · | ~xi + c~xj | · · · | ~xj | · · · | ~xn]

= det[~x1 | · · · | ~xi | · · · | ~xj | · · · | ~xn] + cdet[~x1 | · · · | ~xj | · · · | ~xj | · · · | ~xn]

= det[~x1 | · · · | ~xi | · · · | ~xj | · · · | ~xn] + 0.

Property (h) comes from multilinearity and normalization.
Property (i) comes from (g) and (h) by noting that any triangular matrix

can be obtained from a diagonal one by a sequence of row operations of the form
Ri + cRj .

We can now compute the determinants of the elementary invertible matrices.

• det(I) = 1 by (c);
• det(E(i, j; c)) = 1 by (i);
• det(D(i; c)) = c by (h);
• det(P (i, j)) = −1 by (b) and (c).

Since we know the effects of elementary invertible matrices on the rows of a
matrix A, we can compute the following products.

If E = E(i, j; c), then det(EA) = det(A) by (g).
If E = D(i; c), then det(EA) = cdet(A) by (a).
If E = P (i, j), then det(EA) = −det(A) by (b).
In each of these cases, we have det(EA) = det(E)det(A). Thus if U is a

product of elementary invertible matrices, its determinant is the product of the
determinants of the factors, and by sequential application of the above observation,
we have det(UA) = det(U)det(A).
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From this analysis of the determinant for elementary invertible matrices, we
derive the following general properties.

(j) A is invertible if and only if det(A) 6= 0;
(k) det(AB) = det(A)det(B);

Let R = OA be the result of forward elimination on A, where O is the product
of elementary invertible matrices. Then det(R) = det(O)det(A). Indeed, since
forward elimination uses only E and P type matrices, det(O) = ±1, where the sign
is determined by the number of permutations used.

Since A is square, A is noninvertible if and only if R has a zero row.
Suppose A is noninvertible. Then R has a zero row, so det(R) = 0 by (d), so

det(A) = 0. If B is another matrix, then AB is noninvertible, so det(AB) = 0 =
det(A)det(B).

Suppose A is invertible. Then its determinant is the product of elementary
invertible matrices, so det(A) 6= 0. If B is another matrix, then det(AB) =
det(A)det(B), as we previously noted. This proves (j) and (k).

This also shows something more:

(l) det(A) = (−1)pq, where p is the number of permutations used in forward
elimination, and q is the product along the diagonal of R;

(m) det(A∗) = det(A).

We have det(R) = det(O)det(A). But det(R) = q, and det(O) = (−1)p. This
gives (l).

If A is invertible, then so is A∗:

(A∗(A−1)∗)∗ = A−1A = I = I∗,

so (A∗)−1 = (A−1)∗.
If E is an elementary invertible matrix, then det(E) = det(E∗). Suppose that

E and F are matrices satisfying (m), then

det(EF ) = det(E)det(F ) = det(E∗)det(F ∗) = det(E∗F ∗) = det((EF )∗).

If A is invertible, then A is the product of elementary invertible matrices, and the
result follows.

If A is not invertible, then neither is A∗ thus det(A) = 0 = det(A)∗. This
proves (m).
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5. Geometric Interpretation of Determinant

The n-box in Rm determined by the vectors ~v1, . . . , ~vn ∈ Rm is the set

{t1~v1 + · · ·+ tn~vn | ti ∈ [0, 1]}.
We define the n-volume of a box inductively by defining the 1-volume of a vector

to be its length, and the n-volume of the box to be the height of the box times
the (n− 1)-volume of its base, where the height is the distance between ~vn and the
span of {~v1, . . . , ~vn−1}, and the base is the (n− 1)-box determined by ~v1, . . . , ~vn−1.
Let vol{~v1, . . . , ~vn} denote this quantity.

If m = n, this definition of volume corresponds to the result we get by inte-
grating the box via multiple integration.

The orientation of an ordered collection of vectors is determined by the n-
dimension right hand rule. There are two distinct orientations (right and left
handed); interchanging two vectors in an ordered collection switches the orien-
tation.

The primary geometric interpretation of the determinant function is that det(A)
is equal to the n-dimensional signed volume of the box determined by the columns
of A, where A is an n × n matrix. The sign is positive for right orientation and
negative for left orientation.

This is the same thing as saying that det(A) is equal to the signed distortion
of volume induced by the transformation TA : Rn → Rn. That is,

vol(TA(X)) = ±det(A)vol(X),

where X is any set of n vectors in Rn; the sign determines whether or not the
transformation is orientation preserving or orientation reversing.
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6. Eigenvectors and Eigenvalues

Let V be a finite dimensional vector space of dimension n and let T : V → V .
An eigenvector of T is a nonzero vector ~v ∈ V such that T (~v) = λ~v for some

λ ∈ R. The number λ is called an eigenvalue of T .
That is, a nonzero vector ~v is an eigenvector of T if and only if T (~v) is on the

same line through the origin as ~v, so T expands or contracts this line by a fixed
factor; the eigenvalue associated to v is this expansion factor.

Let A be an n× n matrix. The eigenvectors and eigenvalues of A are, by defi-
nition, the eigenvectors and eigenvalues of the corresponding linear transformation
TA : Rn → Rn given by TA(~x) = A~x.

Proposition 8.4. Let T : V → V be a linear transformation. Let ~v ∈ V be an
eigenvector with eigenvalue λ. Let a ∈ R. Then a~v is an eigenvector with eigenvalue
λ.

Proof. We have T (a~v) = aT (~v) = aλ~v = λ(a~v). �

Example 8.5. Find the eigenvectors and eigenvalues of the linear transformation
T : R2 → R2 corresponding to the matrix

A =

[
2 0
0 3

]
.

Solution. Since T (~e1) = 2~e1 and T (~e2) = 3~e2, we see that these are both eigenvec-
tors with corresponding eigenvalues 2 and 3. Then all of the vectors on the x and
y axis are also eigenvectors. However, if ~v = a~e1 + b~e2, then T (v) = 2a~e1 + 3b~e2 is
a scalar multiple of ~v if and only if either a or b is zero. Thus no other vectors are
eigenvectors. �

Example 8.6. Find the eigenvectors and eigenvalues of the linear transformation
T : R2 → R2 corresponding to the matrix A = λI.

Solution. Every nonzero vector in R2 is an eigenvector with eigenvalue λ. �

Example 8.7. Find the eigenvectors and eigenvalues of the linear transformation
which rotates R2 by 90 degrees.

Solution. There are none. �

Example 8.8. Find the eigenvectors and eigenvalues of the linear transformation
which reflects R2 across the y-axis.

Solution. Eigenvalue 1 corresponds to eigenvector ~e1. Eigenvalue −1 corresponds
to eigenvector ~e2. �
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7. Eigenspaces

Let T : V → V be a linear transformation with eigenvalue λ. The eigenspace
of λ is the set containing zero and of all eigenvectors of T whose eigenvalue is λ:

eigλ(T ) = {~v ∈ V | T (~v) = λ~v}.

Proposition 8.9. Let T : V → V be a linear transformation and let a ∈ R.
Then eiga(T ) ≤ V .

Proof. Let T − a : V → V denote the linear transformation given by (T − a)(~v) =

T (~v) − av. Then ~v ∈ eiga(T ) if and only if (T − a)(~v) = ~0. Thus eiga(T ) =
ker(T − a). The kernel of a linear transformation is always a subspace of the
domain, so eiga(T ) ≤ V . �

The above proof points out that, in particular, eig0(T ) = ker(T ). We collect
some facts regarding this.

Proposition 8.10. Let T : V → V be a linear transformation.
The following conditions are equivalent:

i. T is an isomorphism;
ii. T is bijective;
iii. T is surjective;
iv. T is injective;
v. ker(T ) = {~0};

vi. eig0(T ) = {~0};
vii. 0 is not an eigenvalue of T .

Let T : V → V be a linear transformation. The total eigenspace of T is

eig(T ) = span{~v ∈ V | ~v is an eigenvector of T }.
We now extend the concept of direct sum to more that one subspace.

Let V be a vector space and let U1, . . . , Un be subspaces. We say that V is the
direct sum of U1, . . . , Un, if

(D1) U1 + · · ·+ Un = V ;

(D2) Ui ∩ Uj = {~0} whenever i 6= j.

In this case, we may write
V = ⊕ni=1Ui.

Proposition 8.11. Let T : V → V be a linear transformation whose distinct
eigenvalues are λ1, . . . , λn. Then

eig(T ) = ⊕ni=1eigλi
(T ).

Proof. It is clear from the definition that the vectors in eigλi
(T ) span eig(T ) as

λi ranges from i = 1, . . . , n. Also, if v has eigenvalue λi, then it cannot also
have a different eigenvalue λj . Thus the intersection of two of these eigenspaces is
trivial. �
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8. Finding Eigenvalues of a Matrix

Let T : V → V be a linear transformation; for simplicity, let us assume for the
time being that V = Rn. To find the eigenvectors and eigenvalues of T , we wish
to solve the equation T (~v) = λ~v, where λ is any real number. That is, we wish to
solve

T (~v)− λ~v = ~0.

Let us first try to find an appropriate λ.
If A is the matrix corresponding to T , then this equation becomes

A~v − λI~v = ~0.

That is, we wish to find ker(A − λI) whenever it is nontrivial. This kernel is
nontrivial if and only if det(A− λI) = 0.

If we compute det(A − λI), we obtain a polynomial in λ. The degree of this
polynomial is exactly dim(V ). Thus we define the characteristic polynomial of A
(or T ) to be

χA(λ) = det(A− λI).

We see that λ is an eigenvalue if and only if χA(λ) = 0, because this is exactly
when (A− λI) has a nontrivial kernel.

Once one finds an eigenvalue λ, one can find the corresponding eigenvectors by
solving (A− λI)~x = ~0.

Example 8.12. Let T : R3 → R3 be the linear transformation corresponding to
the matrix

A =

 2 1 0
−1 0 1
1 3 1

 .
Find the eigenvectors and eigenvalues of T .

Solution. First we find the eigenvalues. The characteristic polynomial is

χA(λ) = det(A− λI) = (2− λ)2(1 + λ).

Thus the eigenvalues are 2 and −1.
Now we find the eigenvectors. We find ker(A−2I) = span{〈1, 0, 1〉} and ker(A+

I) = span{〈1,−3, 4〉}. �
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9. Geometric versus Algebraic Multiplicity

9.1. Polynomials. To better understand the information embedded in the
characteristic polynomial, we wish to review some facts about polynomials. We
assume that the reader is familiar with the set of complex numbers:

C = {x+ iy | x, y ∈ R and i2 = −1}.
We view R as a subset of C;

R = {x+ iy | y = 0}.
It is convenient to view our polynomials as being “defined over C”; that is, it has
complex coefficients.

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, where ai ∈ C for i = 0, . . . , n.

• The degree of f is n. The numbers ai are called coefficients. We call an the
leading coefficient and a0 the constant coefficient.

• We say that a ∈ C is a zero of f if f(a) = 0. A polynomial of degree n has at
most n distinct zeros.

• If g is another polynomial, we say that g divides f , or that g is a factor of f , if
there exists another polynomial h such that f = gh. We say that g is a proper
factor if f = gh, and deg(g),deg(h) > 1.

• The Factor Theorem states that f(a) = 0 if and only if (x− a) is a factor of f .
• A polynomial is monic if its leading coefficient is one.
• A polynomial is linear if its degree is one.
• A polynomial with real coefficients is an irreducible quadratic if it has only

complex zeros.
• The Fundamental Theorem of Algebra states that f has at least one zero in the

complex numbers. It follows that f factors into the product of monic linear
factors.

• The multiplicity of a ∈ C as a zero of f is the largest k ∈ Z such that (x− a)k

is a factor of f . A polynomial of degree n has exactly n zero, counted with
multiplicity.

• A polynomial with real coefficients factors into a product of a real number,
linear factors of the form (x− a) where a ∈ R, and irreducible quadratic factors
of the form (x2 + bx + c), where b, c ∈ R and b2 − 4c < 0.

9.2. Geometric and Algebraic Multiplicity. Let T : Rn → Rn be a linear
transformation, and let A be the corresponding matrix let χA = det(A − λI) be
the characteristic polynomial of A. Then χA is a polynomial of degree n with real
coefficients.

Let r ∈ C. The algebraic multiplicity of r as an eigenvalue of A is the largest
integer n such that (λ− r)n is a factor of χA(λ).

Let λ ∈ R. If χa(λ) = 0, then there exists a nonzero vector ~v ∈ Rn such that
T (~v) = λ~v. We know this, since it means that A − λI has a nontrivial kernel.
However, if λ ∈ C, we will not have a corresponding eigenvector in Rn.

Let r ∈ R. The geometric multiplicity of r as an eigenvector of A is the
dimension of eigλ; it is the maximum number of linearly independent eigenvectors
with eigenvalue r.

It is a fact that the geometric multiplicity of an eigenvalue is less or equal to
the algebraic multiplicity. It is possible that the geometric multiplicity is strictly
less than the algebraic multiplicity.
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10. Matrices with Respect to a Basis

Let V be a vector space of dimension n. Let X = {x1, . . . , xn} be a basis
for V . If v ∈ V , then there exist unique real numbers a1, . . . , an ∈ R such that
v =

∑n
i=1 aixi.

Let ΓX : V → Rn be given by ΓX(v) = (a1, . . . , an), where v =
∑n
i=1 aixi.

Recalling that any transformation is completely determined by its value on a basis,
we see that ΓX is the unique transformation from V → Rn which sends xi to ei.
Since ΓX sends a basis to a basis, it is an isomorphism.

Let T : V → V be a linear transformation. The matrix of T with respect to the
basis X is the n× n matrix B which corresponds to the linear transformation

ΓX ◦ T ◦ Γ−1
X : Rn → Rn.

We view this via the commutative diagram

V
T−−−−→ V

ΓX

y yΓX

Rn −−−−−−−→
ΓX◦T◦Γ−1

X

Rn

The columns of B represent the destinations of the basis vectors in X under
the transformation T , written in terms of the basis X.

For example, if the 4th column of B is (1, 0, 3,−2), then T (x4) = x1 + 3x3−x4.
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11. Matrices with Respect to a Basis in Rn

Let V = Rn and let X ⊂ Rn be a set of n linearly independent vectors in Rn.
Then X is a basis for Rn, but X is not necessarily the standard basis.

Let T : Rn → Rn be a linear transformation. Then T has a corresponding
matrix, say A.

Since Γ−1
X : Rn → Rn, it has a corresponding matrix, say C. It is easy to see

what the matrix inverse of C is; since Γ−1
X (ei) = xi, then

C = [x1 | · · · | xn].

Thus the matrix B of T with respect to the basis X is

B = C−1AC.

We may also write this as a commutative diagram

Rn A−−−−→ Rn

C

x yC−1

Rn −−−−−→
C−1AC

Rn

Let A and B be n×n matrices. We say that A and B are conjugate (or similar)
if there exists an invertible n× n matrix C such that B = C−1AC. Note that A is
invertible if and only if B is invertible.

Suppose that A and B are conjugate matrices, and the B = C−1AC. Can we
express the action of B on Rn in terms of the action of A? Since C is invertible,
the columns of C are a basis for Rn. Let X = {x1, . . . , xn} be this basis. Now Axi
may be written in terms of the basis X:

Axi =

n∑
j=1

bijxj .

Then

C−1Axi =

n∑
j=1

bijej .

On the other hand,
BC−1xi = Bei.

Thus, since BC−1 = C−1A, we have

Bei =

n∑
j=1

bijej ,

which shows that B = (bij).
In words, the columns of B represent the destinations of the nonstandard basis

vectors xi under the transformation TA (corresponding to A) when these destina-
tions are written in terms of the basis X.
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Example 8.13. Find the matrix of a linear transformation T : R2 → R2 which
reflects the plane across the line y = 2x.

Solution. If we find a nice basis, then this transformation is easy.
Let x1 = (1, 2). Then x1 is on the line y = 2x, so T (x1) = x1. Let x2 = (−2, 1);

then x2 is perpendicular to x1, since x1 · x2 = −2 + 2 = 0. Thus T (x2) = −x2.
Thus the matrix of T with respect to this basis is

B =

[
1 0
0 −1

]
.

Let

C =

[
1 −2
2 1

]
; then C−1 =

[
1
5

2
5−2

5
1
5

]
.

Therefore

A = CBC−1 =

[−3
5

4
5

4
5

3
5

]
.

�

Proposition 8.14. Let T : V → V be a linear transformation.
Let ~v1, . . . , ~vn ∈ V be eigenvectors with distinct eigenvalues.
Then {~v1, . . . , ~vn} is independent.

Proof. Let di be the eigenvalue corresponding to ~vi. Suppose that the set is not
independent; then one of these vectors is in the span of the previous vectors. Let k
be the smallest integer such that this is true, so that

~vk = a1~v1 + . . . ak−1~vk−1,

where {~v1, . . . , ~vk−1} is independent. Multiplying this equation by dk gives

dk~vk =

k−1∑
i=1

ak−1~vk−1,

but applying A gives

dk~vk =

k−1∑
i=1

aidi~vi.

Subtracting these gives

0 =

k−1∑
i=1

(dk − di)ai~vi.

Since the di’s are distinct, this is a nontrivial dependence relation, contradicting
the fact that {~v1, . . . , ~vk−1} is independent. �

Corollary 8.15. Let T : V → V be a linear transformation, where dim(V ) = n.
Let ~v1, . . . , ~vn ∈ V be eigenvectors with distinct eigenvalues.
Then

(a) {~v1, . . . , ~vn} is a basis for V ;
(b) eig(T ) = V ;
(c) V = ⊕ni=1eigλi

(T ).
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12. Diagonalization

Let A be an n× n matrix.
We say that A is diagonalizable if there exists a diagonal matrix D and an

invertible matrix C such that D = C−1AC.
We say that Rn has a basis of eigenvectors of A if their exist n linearly inde-

pendent eigenvectors of A. When this happens, they form a basis.

Proposition 8.16. Let A be an n×n matrix. Then A is diagonalizable if and only
if Rn has a basis of eigenvectors of A.

Proof. Suppose that A is diagonalizable, and let D be diagonal and C invertible
such that D = C−1AC. Then D = (dij), where dij = 0 unless i = j.

The columns of C are a basis of eigenvectors ofA. They are linearly independent
because C is invertible; to see that they are eigenvectors, let ~xi be the ith column
of C. Then

A~xi = CDC−1~xi = CD~ei = C(di~ei) = diC~ei = di~xi.

Suppose that A has a basis of eigenvectorsX = {~x1, . . . , ~xn} with corresponding
eigenvalues d1, . . . , dn. Form the square matrix D with di’s along the diagonal and
0 elsewhere. Let C = [~x1 | · · · | ~xn]. Then D is A written with respect to the basis
X, so D = C−1AC. �

Here is a criterion for diagonalizability.

Proposition 8.17. Let A be an n× n matrix with n distinct eigenvalues. Then A
is diagonalizable.

Proof. Each eigenvalue corresponds to a different eigenvector. These are linearly
independent. �

It is sometimes useful or necessary to consider linear transformations composed
with themselves. If the transformation corresponds to a diagonalizable matrix, we
are in luck.

Proposition 8.18. Let B = C−1AC. Then Bn = C−1AnC.

Proposition 8.19. Let D = (dij) be diagonal. Then Dn = (dnij).

Thus if A is diagonalizable and D = C−1AC, then A = CDC−1, so An =
CDnC−1 is relatively easy to compute.
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Example 8.20. Let

A =

−2 0 −1
0 2 0
3 0 2

 .
(a) Diagonalize A.
(b) Find A8.

Solution. The characteristic polynomial of A is

χA(λ) = (−2− λ)[(2− λ)2] + 3(2− λ)

= [(−1)(2 + λ)(2− λ) + 3](2− λ)

= [λ2 − 1](2− λ)

= (λ+ 1)(λ− 1)(2− λ).

Thus the eigenvalues are 1, 2, and −1. Corresponding eigenvectors are ~x1 =
〈−1, 0, 3〉, ~x2 = 〈0, 1, 0〉, and ~x3 = 〈−1, 0, 1〉. Let C = [~x1 | ~x2 | ~x3]. Then

D =

1 0 0
0 2 0
0 0 −1

 ; where D = C−1AC and C−1 =
1

2

 1 0 1
0 1 0
−3 0 −1

 .
Thus A8 = CD8C−1 is easy to compute. Try this.
In this particular example, simply squaring A will reveal that something nice

happens, which explains the result above (if you tried it). �

13. Finding Eigenvalues of a Linear Transformation

Let V be an arbitrary finite dimensional vector space of dimension n. We turn
to the question to finding eigenvalues of a linear transformation T : V → V . By
definition, the eigenvalues of T should not depend on any particular basis we select
for V .

Select an ordered basis X = {~x1, . . . , ~xn} for V . If we know the value of T on
each of the basis vectors ~xi, we can find the matrix A of X with respect to this
basis; A is the matrix corresponding to the transformation

ΓX ◦ T ◦ Γ−1
X : Rn → Rn.

Then we can compute the characteristic polynomial det(A − λI) and attempt to
find its roots; these roots should be our eigenvalues.

The matrix A, however, depends on the basis X we chose for V . The question
arises as to whether or not we get the same result if we choose a different basis for
V . To see that we do get the same result, we formulate two propositions.
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Proposition 8.21. Let V be a finite dimensional vector space of dimension n. Let
T : V → V be a linear transformation. Let X and Y be ordered bases for V . Let A
be the matrix of T with respect to X. Let B be the matrix of T with respect to Y .
Then there exists a matrix C such that B = C−1AC.

Proof. By definition of the matrix of a transformation with respect to a basis, we
know that A is the matrix corresponding to the transformation ΓX ◦ T ◦ Γ−1

X and

the B is the matrix corresponding to the transformation ΓY ◦ T ◦ Γ−1
Y . Let C be

the matrix corresponding to the transformation ΓX ◦ Γ−1
Y : Rn → Rn. Note that

C−1 corresponds to Γ−1
Y ◦ ΓX . Then

ΓY ◦ T ◦ Γ−1
Y =

(
ΓY ◦ Γ−1

X

)
◦
(
ΓX ◦ T ◦ Γ−1

X

)
◦
(
ΓX ◦ Γ−1

Y

)
;

thus B = C−1AC. �

This proposition states that matrices of the same transformation with respect
to different bases are conjugate. Diagrams help explain this; the transformation
diagram

Rn
ΓX◦T◦Γ−1

X−−−−−−−→ Rn

ΓX

x xΓX

V
T−−−−→ V

ΓY

y yΓY

Rn −−−−−−−→
ΓY ◦T◦Γ−1

Y

> Rn

is converted into the matrix diagram

Rn A−−−−→ Rn

C

x yC−1

Rn −−−−−−−→
B=C−1AC

Rn

in a manner identical to a change of basis within Rn. It is not hard to see what
C is; its columns are the destinations in Rn of the ordered basis Y under the
transformation ΓX .
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Proposition 8.22. Let V be a finite dimensional vector space of dimension n. Let
T : V → V be a linear transformation. Let X and Y be ordered bases for V . Let A
be the matrix of T with respect to X. Let B be the matrix of T with respect to Y .
Then χA(λ) = χB(λ).

Proof. We compute

χB(λ) = det(B − λI)

= det(C−1AC − λI)

= det(C−1AC − λC−1IC)

= det(C−1(A− λI)C)

= det(C−1)det(A− λI)det(C)

= det(A− λI)

= χA(λ).

�

This says that we can think of the characteristic polynomial as an invariant of
a transformation as opposed to an invariant of a matrix which changes as the basis
changes. This also tells us that we can find the eigenvalues of a linear transformation
by selecting any basis and computing the eigenvalues with respect to that basis.

Let V be a finite dimensional vector space and let T : V → V be a linear
transformation. The characteristic polynomial of T is χT (λ) = det(A− λI), where
A is the matrix of T with respect to any basis.





APPENDIX A

Matrix Techniques

Abstract. This appendix collects matrix techniques for solving problems in

linear algebra. None of these techniques should be applied without an under-
standing of why they work.

1. Elementary Invertible Matrices

The identity matrix is denoted by I.
The elementary invertible matrices are

• E(i, j; c) is I except aij = c;
• D(i; c) is I except aii = c;
• P (i, j) is I except aii = ajj = 0 and aij = aji = 1.

The inverses of the elementary invertible matrices are

• E(i, j; c)−1 = E(i, j;−c);
• D(i; c)−1 = D(i; c−1);
• P (i, j)−1 = P (i, j).

Let E be an elementary invertible matrix. Multiplying on the left of A to form
EA has the indicated effect on the rows of A. Multiplying on the right of A to form
AE has the analogous effect on the columns of A.

E(i, j; c) Multiply the jth row by c and add to the ith row

D(i; c) Multiply the ith row by c

P (i, j) Swap the ith row and the jth row

143
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2. Gaussian Elimination

Let A denote the original matrix.
Let B = OA be the result of forward elimination, where O is invertible.
Let C = UA be the result of backward elimination, where U is invertible.
Let M be the modified augmented matrix obtained by solution readoff.
The basic columns of B or C are the columns containing the pivots.
The free columns of B or C are the other columns.
The basic columns of A or M correspond to the basic columns of B or C.
The free columns of A or M correspond to the free columns of B or C.
Let r be the number of basic columns of B or C.
Let k be the number of free columns of B or C.
The basic rows of O or U are the first r rows.
The free rows of O or U are the last m− r rows.

Forward Elimination (1) Start with the first nonzero column.
(2) If the top entry in the column is zero, permute with a lower row so

that the top entry is nonzero (use P ).
(3) Eliminate all entries below this one (use E).
(4) Repeat this process, disregarding the current top row and all rows

above it.

Backward Elimination (1) Make all pivots equal to one (use D).
(2) Starting from the right, working upward then leftward, make all en-

tries above a pivot equal to zero (use E).

Solution Readoff (1) Eliminate any zero rows.
(2) Insert a zero row at row i for every free variable xi.
(3) Multiply each free column by −1.
(4) Add ~ei to each free column.
(5) The particular solution is now the augmentation column.
(6) The homogeneous solution is now the span of the free columns.
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3. Finding a Basis for Fundamental Subspaces

The four fundamental subspaces associated to A are the column space col(A),
the row space row(A), the kernel ker(A), and the kernel of the transpose ker(A∗).

The primary techniques for finding a basis of these spaces are:

(F1) The basic columns of A are a basis for col(A).
(F2) The nonzero rows of B or C are a basis for row(A).
(F3) The free columns of M are a basis for ker(A).
(F4) The free rows O or U are a basis for ker(A∗).

These secondary techniques are implied by the primary techniques:

(F5) The basic columns of A are a basis for row(A∗).
(F6) The nonzero rows of B or C are a basis for col(A∗).

To avoid backward elimination, row reduce A∗ instead of A and apply tech-
niques (F2) and (F4) instead of (F1) and (F3).

4. Finding a Basis for a Span

Let X = {~w1, . . . , ~wn} ⊂ Rm and let W = span(X).
Form the m× n matrix A = [~w1 | · · · | ~wn].
Reduce A and apply (F1); a basis for W is a basis for col(A).
Reduce A∗ and apply (F2); a basis for W is a basis for row(A∗).

5. Test for Linear Independence

Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n > m, then X is dependent.
Form the m× n matrix A = [~w1 | · · · | ~wn].
Reduce A; if n = r, then X is independent, otherwise it is not.

6. Test for Spanning

Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n < m, then X does not span Rm.
Form the m× n matrix A = [~w1 | · · · | ~wn].
Reduce A; if m = r, then X spans Rm; otherwise it does not.

7. Test for a Basis

Let X = {~w1, . . . , ~wn} ⊂ Rm.
If n > m, then X is not a basis.
If n < m, then X is not a basis.
If n = m, then X is a basis if and only if X spans.
If n = m, then X is a basis if and only if X is independent.
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8. Finding the Inverse

If A is not square, it cannot be invertible.
Reduce A to B.
If r < n, then A is not invertible.
Reduce B to C; then A−1 = U .

9. Finding the Determinant I

If A is not square, the determinant of A is undefined.
Select any row or column and expand along it.

Along the ith row:

det(A) =

n∑
j=1

(−1)j−1aijdet(Aij).

Along the jth column:

det(A) =

n∑
i=1

(−1)i−1aijdet(Aij).

Here, Aij is the ijth minor matrix of A.

10. Finding the Determinant II

If A is not square, the determinant of A is undefined.
Reduce A to B via forward elimination using E and P but not D.
If r < n, then det(A) = 0.
If r = n, then B is upper triangular and det(B) is the product of the diagonal

entries.
Thus det(A) = (−1)pdet(B), where p is the number of P matrices used in

forward elimination.

11. Finding Eigenvalues and Eigenvectors

Let A be an n× n matrix.
The characteristic polynomial of A is

χA(λ) = det(A− λI);

this is a polynomial of degree n.
Then a is an eigenvalue of A if and only if a is a root of χA(λ).
To find eigenvectors associated to a, find a basis for ker(A− aI).

12. Test for Diagonalizability

Let A be an n× n matrix.
Then A is diagonalizable if and only if Rn has a basis of eigenvectors of A.
To diagonalize A, find a basis of eigenvectors and construct the matrix C which

has these eigenvectors as columns.
Then B = C−1AC is diagonal.
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