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Abstract. Let a be a positive integer, and let x be a real number. We wish

to consider the question, what does ax mean? Using properties of exponentials

we easily obtain from the case when x is a positive integer, we derive the best
meaning for the cases when x = 0, x is a negative integer, and x is a rational

number.

From here, we need to address the case where x is an irrational number;
to do this, we describe how irrational numbers are the limit of a bounded

increasing sequence of rational numbers.
Next, we derive the famous constant e as the limit of a bounded increasing

sequence motivated by consideration of the exponential function obtained from

the example of compound interest.

1. Bounded Increasing Sequences

1.1. Lists of Numbers. Consider the following lists of numbers:

(a) 1, 2, 3, 4, 5 . . .
(b) 1, 4, 9, 16, 25 . . .
(c) 1, 3, 5, 7, 9 . . .
(d) 1, 12 ,

1
3 ,

1
4 ,

1
5 , . . .

(e) 1, 12 ,
2
3 ,

3
4 ,

4
5 , . . .

(f) 3, 3.1, 3.14, 3.141, 3.1415, . . .

Dot dot dot is intended to indicate that the list continues according to a pattern
which one can easily decern. We believe that we understand what the next number
in each list should be:

(a) 6, (b) 36, (c) 11, (d)
1

6
, (e)

5

6
, (f) 3.14159.

This is because we understand the lists in terms of what they are; we can describe
the lists in words:

(a) positive integers
(b) squares of positive integers
(c) odd positive integers
(d) reciprocals of positive integers
(e) quotients of consecutive integers
(f) decimal estimates of π

Since each list inspires a well-defined way of describing the nth value, we can think
of each list as a function which takes positive integers and produces values.
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In fact, we believe that we can say what the generic nth element of the list should
be, by giving a formula for it, in terms of n:

(a)n, (b)n2, (c) 2n− 1, (d)
1

n
, (e)

n− 1

n
, (f)

b10n−1πc
10n−1

.

1.2. Sequences. The lists we have discussed are examples of a certain type of
function known as a sequence.

Definition 1. A sequence is a function whose domain is the set of positive integers.

For example,
a(n) = n2

defines a sequence, where n ranges over the positive integers. It is standard to write
an to mean a(n), so in this case,

a1 = 1, a2 = 4, a3 = 9, a4 = 16, a5 = 25, . . .

and so forth. In this notation, it is common to write (an) to indicate the entire
function.

We can graph this sequence; it is the parabolic graph of f(x) = x2, with a solid
dot above every positive integer.

A sequence may be indicated by a list, where the pattern is clear. For example,
the list for the sequence (an) given by an = n2 is

1, 4, 9, 16, 25, 36, . . .

Consider the sequence (an) given by an = 1
n . As n gets bigger and bigger, 1

n
gets smaller and smaller, and in fact, gets closer and closer to 0. By selecting a
large enough n, we have 1

n as close to 0 as we wish. We say that 0 is the limit of
the sequence as n goes to infinity, and write

lim
n→∞

1

n
= 0.

Next consider the sequence (an) given by an = n−1
n = 1 − 1

n . Since 1
n gets

arbitrarily close to zero as n increases, 1− 1
n gets arbitrarily close to 1, so

lim
n→∞

n− 1

n
= 1.

1.3. Increasing Sequences. The squares, odd numbers, and primes get larger
and larger as we proceed down their lists, as do reciprocals of consecutive integers.

Definition 2. Let (an) be a sequence. We say that (an) is increasing if an < an+1

for every positive integer n.

The sequences of squares, odd numbers, and prime numbers are examples of
increasing sequences. These sequence grow without bound, which is to say, they
get arbitrarily large.

The sequence given by an = 1 − 1
n is increasing; however, it does not get arbi-

trarily large, and in fact is never bigger than 1.
Visualize this by considering the rational function f(x) = 1 − 1

x = x−1
x . This

function has an x-intercept at the point (1, 0), a vertical asymptote at x = 0, and a
horizontal asymptote at y = 1. For positive x, the graph lies below the line y = 1.
We use the graph of this rational function to produce the graph of an = 1 − 1

n as
solid dots above integers residing on the graph of f .
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1.4. Bounded Increasing Sequences. If an increasing sequence every gets larger
than a number L, it can never go back down and get arbitrarily close to L. Thus,
if an increasing sequence has a limit L, we see that it never gets bigger than L; we
say that the sequence is bounded by L.

Definition 3. Let (an) be an increasing sequence, and let M be a real number.
We say that (an) is bounded if there exists a real number M > 0 such that an < M
for all n. We call M an upper bound.

The line y = M is like a “ceiling”, above which the graph of the sequence never
rises. If we imagine the ceiling getting lower and lower until it cannot be lowered
any more without crossing the graph of the sequence, we see that there exists an
upper bound L that is less than all other upper bounds. This is called the least
upper bound. The following theorem states what we intuitively see to be the case.

Theorem 1. A bounded increasing sequence (an) has a least upper bound L, and

lim
n→∞

an = L.

For example, 1 − 1
n has 3, 2, and 1.5 as upper bounds, but 1 is its least upper

bound.

1.5. Sequences of Rational Numbers. Each real number is the limit of an
increasing sequence of rational numbers, as we show by example.

Let x be the unique positive real number whose square is two; we write x =
√

2.
It can easily be shown that x is irrational.

Proposition 1.
√

2 is irrational.

Proof. Let us suppose that
√

2 is rational, and find why this cannot be true by
producing a contradiction.

Assume that
√

2 is rational. Then we may write
√

2 as a quotient of integers
which have no common prime factors, so there exist integers a and b such that√

2 = a
b , and at least one of them is odd.

Squaring gives 2 = a2

b2 , so 2b2 = a2. Thus a2 is even, which implies that a is

even. Thus a = 2c for some integer c, so 2b2 = (2c)2 = 4c2, which implies that
b2 = 2c2. This implies that b2 is even, whence b is even, a contradiction. �

Since
√

2 is real, it has a decimal expansion:
√

2 = 1.4142 . . . .

The decimal expansion for
√

2 produces a sequence of rational numbers:

1, 1.4 =
14

10
, 1.41 =

141

100
, 1.414 =

1414

1000
, 1.4142 =

14142

10000
, ...

This entire sequence is obviously bounded above by 2; thus it has a least upper
bound. That least upper bound is in fact

√
2, and this sequence converges to

√
2.

In general, if x is an irrational number, and (xn) is a sequence defined by

xn =
b10n−1xc

10n−1
.

Then (xn) is a bounded increasing sequence of rational numbers whose limit is x.
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2. Exponents

Let a be a positive real number, and let x be a real number. We ask, what is
the meaning of ax?

2.1. When x is a positive integer. Let n = x, and assume that n is a positive
integer. Then an is defined to mean the product of n numbers whose value is a:

an = a× · · · × a︸ ︷︷ ︸
n times

.

From this, we obtain two significant properties.

(E1) am+n = am · an
(E2) (am)n = amn

To see this, write

am+n = a× · · · × a︸ ︷︷ ︸
m+n times

= a× · · · × a︸ ︷︷ ︸
m times

× a× · · · × a︸ ︷︷ ︸
n times

= am × an.

and

(am)n = (a× · · · × a︸ ︷︷ ︸
m times

)n = (a× · · · × a︸ ︷︷ ︸
m times

)× · · · × (a× · · · × a︸ ︷︷ ︸
m times

)

︸ ︷︷ ︸
n times

= a× · · · × a︸ ︷︷ ︸
mn times

= amn.

We wish to extend the meaning of ax so that it is defined for any real number
x, in such a way that the properties (E1) and (E2) remain true.

2.2. When x = 0. Consider the case when x = 0. We multiply a times a0;
whatever a0 means, if property (E1) is to remain true, we have

aa0 = a1a0 = a1+0 = a1 = a.

Dividing both sides by a gives

a0 = 1.

2.3. When x is a negative integer. Consider the case when x is a negative
integer, so that x = −n for some positive integer n. For (E1) to remain true, we
must have

anax = an+x = a0 = 1.

In this case,

a−n =
1

an
.

2.4. When x is rational. Consider the case when x = 1
n , where n is a positive

integer. For (E2) to remain true, we must have

(a1/n)n = an/n = a1 = a.

Thus, a1/n is the unique number whose nth power is a; that is,

a1/n = n
√
a.

Consider the case when x = m
n , where m and n are positive integers. Then (E2)

produces am/n = (am)1/n, so

am/n = n
√
am.
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2.5. When x is irrational. We now consider the case when x is irrational. This
is the hardest step.

Integers are obtained from natural numbers by algebraic considerations (defining
subtraction), and rational numbers are obtained from integers by additional alge-
braic considerations (defining division); however, real numbers are obtained from
rationals by geometric considerations (filling in gaps in the number line).

There is an additional property of exponents which is important in this context:

(E3) if 1 < a and r < s, then ar < as

This is true when x is any rational number, and we wish it to remain true for any
real number.

We line up all of the rationals by the order relation <, and see that there are
gaps in the line; so, too, we can line up all of the numbers of the form aq where
q is rational, and see that there are gaps in the line; we hope to fill these gaps by
numbers of the form ax, where x is irrational.

Let x be an irrational number, and define the sequence (xn) by

xn =
b10n−1xc

10n−1
,

so that (xn) is a bounded increasing sequence of rational numbers, and

x = lim
n→∞

xn.

This is a sequence of decimal estimates of x of increasing accuracy; it is an increasing
sequence that converges to x.

Since xn is rational, axn is defined. Consider the sequence (axn); by Property
(E3), this is an increasing sequence of real numbers which is bounded above by
adxe. Thus, it converges. We define

ax = lim
n→∞

axn .

This definition extends the previous definitions in such a way as to preserve prop-
erties (E1), (E2), and (E3).

2.6. Exponential Functions. Let a be a positive real number. Now that ax is
defined for any real number x, we see that, by letting x vary throughout the real
numbers, we obtain a function.

The base a exponential function is the function ax. This function has these
properties:

(a) a0 = 1
(b) a1 = a
(c) ar+s = aras

(d) (ar)s = ars

(e) r < s⇒ ar < as, if a > 1
(f) r < s⇒ ar > as, if 0 < a < 1

Our first examples of exponential functions will be those which compute com-
pound interest. From this, we derive the transcendental number e.
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3. The Number e

3.1. Periodic Compound Interest. Suppose we invest 1000 dollars at an interest
rate of 10 percent compounded annually. The amount we have invested remains
the same until one year passes, at which point 10 percent of the amount is added
to the total. If we let At denote the amount invested after t years, then

• A0 = 1000
• A1 = 1000 + (0.1)1000 = 1100
• A2 = 1100 + (0.1)1100 = 1210
• A3 = 1210 + (0.1)1210 = 1331

We see that the rate at which this grows increases year by year; but the pattern is
obscure. It is actually easier to see the pattern if we think more generally.

Let r be the annual interest rate, A0 the initial investment, and At the amount
after t years. Then

• A1 = A0 + rA0 = A0(1 + r)
• A2 = A1 + rA1 = A1(1 + r) = A0(1 + r)2

• A3 = A2 + rA2 = A2(1 + r) = A0(1 + r)3

• At = A0(1 + r)t

Suppose that, instead of compounding annually, we compound quarterly; that
is, every three months, or four times per year. Then, the periodic interest rate is
the annual rate divided by four.

• A1/4 = A0 + ( r
4 )A0 = A0(1 + r

4 )

• A1/2 = A1/4 + ( r
4 )A1/4 = A1/4(1 + r

4 ) = A0(1 + r
4 )2

• A1 = A0(1 + r
4 )4

• At = A0(1 + r
4 )4t

Generalize this further; let k denote the number of periods per year, so that
we compound k times per year. Then, there are k times every year when we the
amount in the account by (1 + r

k ); these gives

At = A0

(
1 +

r

k

)kt
,

where r is the annual rate, k is the number of periods per year, and At is the
amount after t years.

The more periods per year, the faster the amount grows, as this table demon-
strates. We let the annual rate r be ten percent and the initial investment A0 be
one thousand. We compute the amount after five years for various values of k, to
the nearest dollar:

k A0 A1 A2 A3 A4 A5

1 1000 1100 1210 1331 1464 1611
2 1000 1103 1216 1340 1477 1629
4 1000 1104 1218 1345 1485 1639

12 1000 1105 1220 1348 1489 1645
365 1000 1105 1221 1350 1492 1649

8760 1000 1105 1221 1350 1492 1649

This table demonstrates two facts:

• as k increases, the investment grows faster;
• as k increases, the rate at which the investment grows faster slows down.
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3.2. Continuous Compound Interest. We wish to define continuously com-
pounded interest as the limit of periodically compounded interest as the k goes to
infinity. Thus we fix A0, r, and t, and attempt to understand the expression

lim
k→∞

A0

(
1 +

r

k

)kt
.

To do this, we define a new variable n by n = k
r , so that k = nr and r

k = 1
n . Since

r is fixed, n goes to infinity as k goes to infinity. We compute

lim
k→∞

A0

(
1 +

r

k

)kt
= lim

n→∞
A0

(
1 +

1

n

)nrt
= lim

n→∞
A0

[(
1 +

1

n

)n]rt
= A0

[
lim
n→∞

(
1 +

1

n

)n]rt
.

This computation tells us that continuously compounded interest may be computed
using an exponential function whose base is the limit of the sequence (1 + 1

n )n; it
can be show that this is an increasing sequence which is bounded above by 3, so it
converges. The number it converges to turns out to be so important in mathematics
that we give it a special name.

Define

e = lim
n→∞

(
1 +

1

n

)n
.

Then, the equation which computes the amount At for continuously compounded
interest is

At = A0e
rt.

We estimate e by computing a few values:

n (1 + 1
n )n estimate

1 (2)1 2.000000
2 (1.5)2 2.250000
4 (1.25)4 2.441406

10 (1.1)10 2.593742
100 (1.01)100 2.704813

1000 (1.001)1000 2.716923
10000 (1.0001)10000 2.718145

100000 (1.00001)100000 2.718268
∞ e 2.718281
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