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Problem 1 (Gallian Chapter 13 # 55). Let F be a field of prime characteric p. Prove that

K = {x ∈ F | xp = x}

is a subfield of F .

Proof. This requires that 1F ∈ K, and that K is closed under addition, additive inverse, multiplication, and
multiplicative inverses.

Identity: Since 1p = x, 1 ∈ K.
Additive inverses: Let x ∈ K. Then xp = x. If p = 2, then −x = x, so −x ∈ K. Otherwise, p is odd,

and (−x)p = (−1)pxp = (−1)x = −x, so −x ∈ K.
Multiplicative inverses: Let x ∈ K r {0}. Since F is a field, x−1 ∈ F . Now (x−1)p = (xp)−1 = x−1, so

x−1 ∈ K.
Multiplication: Let x, y ∈ K. Since x and y commute, (xy)n = xnyn for all n ∈ N. Thus (xy)p = xpyp =

xy, so xy ∈ K.
Okay, that was all easy, but addition is a little more subtle.
Addition: Let x, y ∈ K. Recall that the binomial coefficients

(
p
k

)
The Binomial Theorem holds.

By the Binomial Theorem, which holds in an arbitrary commutative ring,

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k.

Now
(
p
k

)
=

p!

k!(p− k)!
is divisible by p unless k! or (p − k)! is divisible by p, so

(
p
k

)
is divisible by p except

when k = 0 or k = p. In F , p = 0, so

(x+ y)p = xp + yp = x+ y.

Thus x+ y ∈ K.

Problem 2 (Gallian Chapter 14 # 50). Show that Z[i]/〈1− i〉 is a field. How many elements does this field
contain?

Solution. What is in the ideal 〈1− i〉? Well, it is the set of all things divisible by 1− i. Suppose 1− i | a+ bi;
then a+ bi = (c+ di)(1− i) = (c+ d) + i(d− c), so a = c+ d and b = d− c, whence a+ b = 2d, so a+ b is

even. On the other hand, if a+ b is even, set c =
a− b

2
and d =

a+ b

2
to arrive at a+ bi = (c+ di)(1− i).

So a+ bi ∈ 〈1− i〉 if and only if 2 | a+ b.
Consider the map φ : Z[i]→ F2 given by a+ bi 7→ a+ b (mod 2). One easily verifies that this a surjective

ring homomorphism. Let z = a+bi ∈ ker(φ) if and only if a+b ∼= 0 (mod 2), which occurs if and only if 1− i
divides z. So kerφ = 〈1− i〉. By the Isomorphism Theorem, Z[i]/〈1− i〉 ∼= F2, a field with two elements.

Problem 3 (Gallian Chapter 14 # 52). How many elements are in the ring Z5[i]/〈1 + i〉 is a field?

Solution. I believe that 1+ i is invertible in Z5[i], so I attempt to solve 1 = (1+ i)(c+di) = (c−d)+(c+d)i,
and get c − d = 1 and c + d = 0, whence c = 2−1 = 3 and d = 2. That is, 3 + 2i is the inverse of 1 + i,
in particular, 1 + i is invertible, so 〈1 + i〉 is the whole ring, and Z5[i]/〈1 + i〉 is the zero ring; it contains 1
element (just zero).



Problem 4 (Gallian Chapter 15 # 63). Let

R =
{[a b

b a

] ∣∣∣a, b ∈ Z
}
,

and let φ : R→ Z be given by

[
a b
b a

]
7→ a− b.

(a) Show that φ is a homomorphism.

(b) Determine K = ker(φ).

(c) Show that R/K is isomorphic to Z.

(d) Is K a prime ideal?

(e) Is K a maximal ideal?

Solution. One computes to verify that φ is a homomorphism.

Let A =

[
a b
b a

]
. Then A ∈ K if and only if a− b = 0, that is, if a = b.

Clearly φ is surjective, and the image of φ is all of Z. By the Isomorphism Theorem, R/K ∼= Z.
Since Z is an integral domain, K is a prime ideal. However, Z is not a field, so K is not a maximal

ideal.

The following theorem is a consequence of the fact that the multiplicative group of a finite field is cyclic.
I’m not sure how to prove it without using, at least indirectly, this fact.

Proposition 1 (Wilson’s Theorem). Let p be a positive prime integer. Then

(p− 1)! ≡ −1 (mod p).

Proof. This is true if p = 2, so assume that p is odd.
In any finite abelian group G, only elements of order two are there own inverses. Thus, if we take the

product of all element in G, we obtain the product of the elements of order two, because the other elements
cancel each other.

Since Zp is a finite field, we know that G = Z∗p is cyclic. We know that a cyclic group of order n contains
a unique cyclic subgroup of order d for every positive integer d which divides n. Since |G| = p − 1 is even,
G has a unique element of order two. This element is p− 1. Every other element of G has an inverse which
is distinct from it; thus

∏
g∈G g = p− 1. But

∏
g∈G g = (p− 1)!. The result follows.

Problem 5 (Gallian Chapter 16 # 32). Let n ∈ Z, n ≥ 2. Show that (n− 1)! ∼= n− 1 (mod n) if and only
if n is prime.

Solution. The reverse direction is Proposition 1.
On the other hand, if n is not prime, n = pr where p is prime and r > 1. Then p | (n−1)! and r | (n−1)!,

so n = pr | (n− 1)!, which implies that (n− 1)! is congruent to zero modulo n.


