AP COMPUTER SCIENCE Project 35a - Was 2016
DR. PAUL BAILEY April 13, 2017

Due Sunday, April 23, at 11:59 P.M. Complete as much as you can and email a COMPLETE .ZIP of
your ENTIRE NETBEANS PROJECT to paul.bailey@basis.ed. It is required that the entire project
compiles in NETBEANS.

This project involves the mathematical subject known as Graph Theory. We begin by defining the
mathematical terms, outlining the underlying problems to be solved, and then outlining the programs to be
built.

A graph is a pair (V, €), where V is a set whose members are called vertices, and € is a set whose members
are called edges, where an edge is a subset of V' which contains exactly two (distinct) vertices.

We view the vertices as points and the edges as line segments between them; however, this viewpoint
only models the abstract notion of graph.

Two vertices are adjacent is they are contained in the same edge. Adjacent vertices are called neighbors.
The degree of a vertex is the number of adjacent vertices.

A subgraph of (V,€) is a graph (W, F) such that W C V and FE. Note that if (W, ) is a subgraph of
(V, W), the edges in F must contain only vertices that come from W.

A walk in a graph (V,€&) is a finite sequence of at least three vertices such that their exists an edge
between consecutive vertices. We say that the walk wisits each of the vertices in the sequence, and that it
traverses each edge between consecutive vertices. The length of the walk is the number of vertices visited,
minus one. The first vertex in the sequence is called the initial vertex of the walk, and the last is called the
terminal vertex of the walk.

The graph is connected if their exists a walk between any two vertices. A component of a graph is a
maximal connected subgraph.

A trail is a walk with distinct edges. A trail is Fulerian if it traverses every edge in the graph.

A path is a trail if which visits each vertex at most once, except possibly if the initial and terminal vertices
are the same. A circuit is a walk whose initial vertex equals its terminal vertex. A cycle is a path which is
a circuit.

A tree is a connected graph which does not admit a circuit. Note that every trail in a tree is simple.
Given two vertices in a tree, there is exactly one trail from one to the other.

We wish to design a Java class Graph which models these definitions, and then build code to solve the
following problems.

e Create a program which detects whether a graph is connected.

e Create a program which finds the number of distinct components of a graph.

Create a program which detects if the graph is a tree.

Create a program which detects whether a graph admits an Eulerian path.

Create a program which detects whether a graph admits an Eulerian cycle.

Create a program the finds the shortest path between two vertices in a graph (Dystra’s Algorithm).



Program 1. Create the Vertex, Edge, and Graph classes are described and outlined during class.

public class Vertex
{
private int id;
public Vertex(int a)
public int id()
public String toString()
public boolean equals(Vertex that)

public class Edge
{
private Vertex v;
private Vertex w;
public Edge(Vertex v, Vertex w)
public Edge(int a, int b)
private void initialize(int a, int b)
public Vertex v()
public Vertex w()
public boolean contains(Vertex u)
public String toString()
public boolean equals(Edge that)

public class Graph
{
private ArrayList<Vertex> vertices = new ArrayList<Vertex>();
private ArrayList<Edge> edges = new ArrayList<Edge>();
public int sizeV()
public int sizeE()
public Vertex getV(int i)
public Edge getE(int i)
public boolean add(Vertex v)
public boolean add(Edge e)
public boolean contains(Vertex v)
public boolean contains(Edge e)
public int degree(Vertex v)
public ArrayList<Vertex> neighbors(Vertex v)
public void print()

You are now tasked with completing as many of the following programs as you can. Add methods to the
Graph class where appropriate.

Program 2. Create a method public boolean isConnected() which returns true if the graph is con-
nected.

Program 3. Create a method public int numberOfComponents() which returns the number of compo-
nents. This is nonzero and is zero if and only if the number of vertices is zero.

Program 4. Create a method public boolean isTree() which return true if the graph is a tree.

Program 5. Create a method public boolean admitsEulerian(Vertex v) which return true if the graph
admits an Eulerian path starting at vertex v. Create another method public boolean admitsEulerian()
which returns true if the graph admits any Eulerian path.

Program 6. Create a class Walk which models walks. Create methods isTrail, isPath, isCircuit,
isCycle inside this class. Create a method public Walk shortestPath(Vertex v, Vertex w) to find the
shortest path between two vertices.



