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Problem 1. Use the fact that exp and log are injective to solve these problems. That is, if exp a = exp b,
then a = b, and if log a = log b, then a = b.

(a) Find all x ∈ R such that 7x
2−4x+1 = 49x−2.

Solution. We use the fact that (ab)c = abc, and that exponential functions are injective, which is to
say that if f is an exponential function, then f(a) = f(b)⇒ a = b.

7x
2−4x+1 = 49x−2 ⇔ 7x

2−4x+1 = 72(x−2)

⇔ x2 − 4x + 1 = 2(x− 2)

⇔ x2 − 6x + 5 = 0

⇔ (x− 2)(x− 3) = 0

⇔ x = 2 or x = 3.

(b) Find all x ∈ R such that ln(x + 1) + ln(x + 2) = ln(x + 3).

Solution. Here we use that log(a) + log(b) = log(ab), and that logarithmic functions are injective.

ln(x + 1) + ln(x + 2) = ln(x + 3)⇔ ln((x + 1)(x + 2)) = ln(x + 3)

⇔ (x + 1)(x + 2) = x + 3

⇔ x2 + 3x + 2 = x + 3

⇔ x2 + 2x− 1 = 0

⇔ x =
−2±

√
4 + 4

2

⇔ x = −1±
√

2

However, this is only true for those x which are in the domain of the equation. We see that if x ≤ −1,
we cannot plug it into log(x + 1). So, only x =

√
2− 1 is a correct solution.

Problem 2. Solve the initial value problem

dy

dx
= 3x2 − 4 where y(2) = 5.

Solution. First we integrate:

dy

dx
= 3x2 − 4 ⇒ y =

∫
3x2 − 4 ⇒ y = x3 − 4x + C.

Now we need to find the C that works for the initial condition y(2) = 5. We have 5 = y(2) = 23−4·2+C = C,
so C = 5. Thus



Problem 3. Let f and g be functions that are differentiable everywhere, such that g is the inverse function

of f . Suppose that g(−2) = 5 and f ′(5) = −1

2
. Find g′(−2).

Solution. If f is differentiable at x = a and f ′(a) 6= 0, then f has an inverse function g is an open set around
a. This is because if f ′(a) is positive, then f is increasing around a, so f is injective around a; if f ′(a) is
negative, then f is decreasing, hence injective, hence invertible, near a.

If f(a) = b, then g(b) = a. The slope of the line tangent to the graph of g at (b, a) is the reciprocal of
the slope of the line tangent to the graph of f at (a, b). Therefore,

g′(b) =
1

f ′(a)
.

In our case, a = 5 and b = −2. So

g′(−2) =
1

f ′(5)
=

1

(−1/2)
= −2.

Problem 4. Compute ∫
sec2 x dx√
1− tan2 x

.

Solution. Let u = tanx so that du = sec2 x dx. Then∫
sec2 x dx√
1− tan2 x

=

∫
du√

1− u2
= arcsin(u) + C = arcsin(tanx) + C.


