f, f', f'' Review Sheet

- 1. critical point
 - a. foccurs at c if and only if f'(c) = 0 or f'(c) does not exist.
 - b. SO THE GRAPH of f 'MUST NOT EXIST OR HIT THE X-AXIS
- 2. *f* is increasing
 - a. x < y implies f(x) < f(y).
 - b. f'(x) > 0.
 - c. THE GRAPH OF f 'MUST BE ABOVE THE X-AXIS
- 3. f is decreasing
 - i. x < y implies f(x) > f(y).

ii.
$$f'(x) < 0$$

- iii. THE GRAPH OF f 'MUST BE BELOW THE X-AXIS
- 4. *f* has a local maximum
 - a. f'(x) changes from positive to negative
 - b. THE GRAPH OF *f* 'CROSSES FROM ABOVE TO BELOW THE X-AXIS.
- 5. f has a local minimum if and only if the following are true:
 - a. f'(x) changes from negative to positive
 - b. THE GRAPH OF f 'CROSSES FROM BELOW TO ABOVE THE X-AXIS
- 6. You are asked to find a value f(a)
 - a. Look at prompt for a given value, f(b).
 - b. Use the FUNDAMENTAL THEOREM OF CALCULUS

$$f(b) - f(a) = \int_a^b f'(t) dt$$

- c. You will need to find the integral of f ' by adding the SIGNED areas between the graph and the x –axis.
- d. REMEMBER IF b < a THEN THE SIGN SWITCHES!!!!
- 7. absolute maximum or absolute minimum
 - a. Plug in relative max or min AND endpoints back into f
 - b. <u>USE FTC</u>
- 8. Tangent line equation at x = a: y f(a) = f'(a)(x a)
 - a. To find f'(a), look at the y-value on the graph of f'.
 - b. To find f(a), use FTC or see if you were given the value in the prompt.

9. An **inflection point** of f

- a. f''(x) changes sign
- b. THE GRAPH OF f'(x) changes direction
- c. f(x) changes concavity
- 10. f is **concave up** is equivalent to the following
 - a. f " is <u>positive</u>
 - b. THE GRAPH OF f is increasing
 - c. f is changing at a <u>increasing</u> rate.
 - d. the tangent line to f is <u>BELOW</u> the graph
- 11. f is **concave down** is equivalent to the following
 - a. *f* " is <u>negative</u>
 - b. <u>THE GRAPH OF</u> f 'is <u>decreasing</u>
 - c. f is changing at a <u>decreasing</u> rate.
 - d. the tangent line to f is <u>ABOVE</u> the graph

d. The tangent line crosses the graph at the point of tangency.

AP[®] CALCULUS AB 2008 SCORING GUIDELINES (Form B)

Question 5

Let g be a continuous function with g(2) = 5. The graph of the piecewise-linear function g', the derivative of g, is shown above for $-3 \le x \le 7$.

- (a) Find the x-coordinate of all points of inflection of the graph of y = g(x) for -3 < x < 7. Justify your answer.
- (b) Find the absolute maximum value of g on the interval $-3 \le x \le 7$. Justify your answer.
- (c) Find the average rate of change of g(x) on the interval -3 ≤ x ≤ 7.

(d) Find the average rate of change of g'(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g''(c) is equal to this average rate of change? Why or why not?

(a) g changes from increasing to decreasing at x = 1; 1: x-values 2:g' changes from decreasing to increasing at x = 4. 1: justification Points of inflection for the graph of y = g(x) occur at x = 1 and x = 4. (b) The only sign change of g' from positive to negative in 1 : identifies x = 2 as a candidate the interval is at x = 2. 1 : considers endpoints 3 : 1 : maximum value and justification $g(-3) = 5 + \int_{2}^{-3} g'(x) dx = 5 + \left(-\frac{3}{2}\right) + 4 = \frac{15}{2}$ g(2) = 5 $g(7) = 5 + \int_{2}^{7} g'(x) dx = 5 + (-4) + \frac{1}{2} = \frac{3}{2}$ The maximum value of g for $-3 \le x \le 7$ is $\frac{15}{2}$. (c) $\frac{g(7) - g(-3)}{7 - (-3)} = \frac{\frac{3}{2} - \frac{15}{2}}{10} = -\frac{3}{5}$ 1 : difference quotient 2: 1 : answer (d) $\frac{g'(7) - g'(-3)}{7 - (-3)} = \frac{1 - (-4)}{10} = \frac{1}{2}$ average value of g'(x)
 answer "No" with reason 2: No, the MVT does not guarantee the existence of a value c with the stated properties because g' is not differentiable for at least one point in -3 < x < 7.

> © 2008 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

AP[®] CALCULUS AB 2011 SCORING GUIDELINES (Form B)

Question 4

Consider a differentiable function f having domain all positive real numbers, and for which it is known that $f'(x) = (4 - x)x^{-3}$ for x > 0.

- (a) Find the *x*-coordinate of the critical point of *f*. Determine whether the point is a relative maximum, a relative minimum, or neither for the function *f*. Justify your answer.
- (b) Find all intervals on which the graph of f is concave down. Justify your answer.
- (c) Given that f(1) = 2, determine the function f.

AP[®] CALCULUS AB 2009 SCORING GUIDELINES (Form B)

Question 5

Let *f* be a twice-differentiable function defined on the interval -1.2 < x < 3.2 with f(1) = 2. The graph of *f'*, the derivative of *f*, is shown above. The graph of *f'* crosses the *x*-axis at x = -1 and x = 3 and has a horizontal tangent at x = 2. Let *g* be the function given by $g(x) = e^{f(x)}$.

- (a) Write an equation for the line tangent to the graph of g at x = 1.
- (b) For -1.2 < x < 3.2, find all values of x at which g has a local maximum. Justify your answer.

(d) Find the average rate of change of g', the derivative of g, over the interval [1, 3].

 $(x)^{2} + f''(x)$]. Is g''(-1) positive, negative ve of g, over the interval [1, 3].

(1, -4)

Graph of f'

2

© 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

AP[®] CALCULUS AB 2007 SCORING GUIDELINES (Form B)

Question 4

Let *f* be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of *f'*, the derivative of *f*, consists of two semicircles and two line segments, as shown above.

- (a) For -5 < x < 5, find all values x at which f has a relative maximum. Justify your answer.
- (b) For -5 < x < 5, find all values x at which the graph of f has a point of inflection. Justify your answer.
- (c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.

(d) Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.

(a)	f'(x) = 0 at $x = -3$, 1, 4 f' changes from positive to negative at -3 and 4. Thus, f has a relative maximum at $x = -3$ and at $x = 4$.	2 : $\begin{cases} 1 : x \text{-values} \\ 1 : \text{justification} \end{cases}$
(b)	f' changes from increasing to decreasing, or vice versa, at $x = -4$, -1 , and 2. Thus, the graph of f has points of inflection when $x = -4$, -1 , and 2.	2 : $\begin{cases} 1 : x \text{-values} \\ 1 : \text{justification} \end{cases}$
(c)	The graph of <i>f</i> is concave up with positive slope where f' is increasing and positive: $-5 < x < -4$ and $1 < x < 2$.	2 : $\begin{cases} 1 : intervals \\ 1 : explanation \end{cases}$
(d)	Candidates for the absolute minimum are where f' changes from negative to positive (at $x = 1$) and at the endpoints ($x = -5, 5$). $f(-5) = 3 + \int_{1}^{-5} f'(x) dx = 3 - \frac{\pi}{2} + 2\pi > 3$ f(1) = 3 $f(5) = 3 + \int_{1}^{5} f'(x) dx = 3 + \frac{3 \cdot 2}{2} - \frac{1}{2} > 3$ The absolute minimum value of f on [-5, 5] is $f(1) = 3$.	3 : $\begin{cases} 1 : \text{ identifies } x = 1 \text{ as a candidate} \\ 1 : \text{ considers endpoints} \\ 1 : \text{ value and explanation} \end{cases}$

AP[®] CALCULUS AB 2006 SCORING GUIDELINES (Form B)

Question 4

The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function

f. In the figure above,
$$f(t) = -\frac{1}{4}t^3 + \frac{3}{2}t^2 + 1$$
 for

- $0 \le t \le 4$ and f is piecewise linear for $4 \le t \le 24$.
- (a) Find f'(22). Indicate units of measure.
- (b) For the time interval $0 \le t \le 24$, at what time t is f increasing at its greatest rate? Show the reasoning that supports your answer.
- (c) Find the total number of calories burned over the time interval $6 \le t \le 18$ minutes.

4)

(d) The setting on the machine is now changed so that the person burns f(t) + c calories per minute. For this setting, find c so that an average of 15 calories per minute is burned during the time interval $6 \le t \le 18$.

(a)	$f'(22) = \frac{15-3}{20-24} = -3$ calories/min/min	1 : $f'(22)$ and units
(b)	<i>f</i> is increasing on [0, 4] and on [12, 16]. On (12, 16), $f'(t) = \frac{15-9}{16-12} = \frac{3}{2}$ since <i>f</i> has constant slope on this interval. On (0, 4), $f'(t) = -\frac{3}{4}t^2 + 3t$ and $f''(t) = -\frac{3}{2}t + 3 = 0$ when $t = 2$. This is where f' has a maximum on [0, 4] since $f'' > 0$ on (0, 2) and $f'' < 0$ on (2, 4). On [0, 24], <i>f</i> is increasing at its greatest rate when $t = 2$ because $f'(2) = 3 > \frac{3}{2}$.	4: $\begin{cases} 1: f' \text{ on } (0, 4) \\ 1: \text{ shows } f' \text{ has a max at } t = 2 \text{ on } (0, 4) \\ 1: \text{ shows for } 12 < t < 16, f'(t) < f'(2) \\ 1: \text{ answer} \end{cases}$
(c)	$\int_{6}^{18} f(t) dt = 6(9) + \frac{1}{2}(4)(9+15) + 2(15)$ = 132 calories	$2: \begin{cases} 1 : method \\ 1 : answer \end{cases}$
(d)	We want $\frac{1}{12} \int_{6}^{18} (f(t) + c) dt = 15$. This means $132 + 12c = 15(12)$. So, $c = 4$. OR Currently, the average is $\frac{132}{12} = 11$ calories/min. Adding c to $f(t)$ will shift the average by c. So $c = 4$ to get an average of 15 calories/min.	$2: \begin{cases} 1: \text{setup} \\ 1: \text{value of } c \end{cases}$

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP[®] CALCULUS AB 2006 SCORING GUIDELINES (Form B)

Question 2

- (c) Write an equation for the line tangent to the graph of f at x = 2.
- (a) On the interval 1.7 < x < 1.9, f' is decreasing and thus f is concave down on this interval.
- (b) f'(x) = 0 when $x = 0, \sqrt{\pi}, \sqrt{2\pi}, \sqrt{3\pi}, ...$ On [0, 3] f' changes from positive to negative only at $\sqrt{\pi}$. The absolute maximum must occur at $x = \sqrt{\pi}$ or at an endpoint.

$$f(0) = 5$$

$$f(\sqrt{\pi}) = f(0) + \int_0^{\sqrt{\pi}} f'(x) \, dx = 5.67911$$

$$f(3) = f(0) + \int_0^3 f'(x) \, dx = 5.57893$$

This shows that f has an absolute maximum at $x = \sqrt{\pi}$.

(c) $f(2) = f(0) + \int_0^2 f'(x) dx = 5.62342$ $f'(2) = e^{-0.5} \sin(4) = -0.45902$ y - 5.623 = (-0.459)(x - 2)

2 :
$$\begin{cases} 1 : \text{answer} \\ 1 : \text{reason} \end{cases}$$

3 :
$$\begin{cases} 1 : \text{identifies } \sqrt{\pi} \text{ and } 3 \text{ as candidates} \\ - \text{ or } - \\ \text{indicates that the graph of } f \\ \text{increases, decreases, then increases} \end{cases}$$

1 : justifies
$$f(\sqrt{\pi}) > f(3)$$

4 :
$$\begin{cases} 2: f(2) \text{ expression} \\ 1: \text{ integral} \\ 1: \text{ including } f(0) \text{ term} \\ 1: f'(2) \\ 1: \text{ equation} \end{cases}$$

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

AP[®] CALCULUS AB 2004 SCORING GUIDELINES (Form B)

Question 4

The figure above shows the graph of f', the derivative of the function f, on the closed interval $-1 \le x \le 5$. The graph of f' has horizontal tangent lines at x = 1 and x = 3. The function f is twice differentiable with f(2) = 6.

- (a) Find the *x*-coordinate of each of the points of inflection of the graph of *f*. Give a reason for your answer.
- (b) At what value of x does f attain its absolute minimum value on the closed interval $-1 \le x \le 5$? At what value of x does f attain its absolute maximum value on the closed interval $-1 \le x \le 5$? Show the analysis that leads to your answers.

(c) Let g be the function defined by g(x) = x f(x). Find an equation for the line tangent to the graph of g at x = 2.

(a)	x = 1 and $x = 3$ because the graph of f' changes from increasing to decreasing at $x = 1$, and changes from decreasing to increasing at $x = 3$.	2: $\begin{cases} 1 : x = 1, x = 3\\ 1 : reason \end{cases}$
(b)	The function <i>f</i> decreases from $x = -1$ to $x = 4$, then increases from $x = 4$ to $x = 5$. Therefore, the absolute minimum value for <i>f</i> is at $x = 4$. The absolute maximum value must occur at $x = -1$ or at $x = 5$. $f(5) - f(-1) = \int_{-1}^{5} f'(t) dt < 0$ Since $f(5) < f(-1)$, the absolute maximum value occurs at $x = -1$.	4 : $\begin{cases} 1 : \text{ indicates } f \text{ decreases then increases} \\ 1 : \text{eliminates } x = 5 \text{ for maximum} \\ 1 : \text{absolute minimum at } x = 4 \\ 1 : \text{absolute maximum at } x = -1 \end{cases}$
(c)	g'(x) = f(x) + xf'(x) g'(2) = f(2) + 2f'(2) = 6 + 2(-1) = 4 g(2) = 2f(2) = 12	$3: \begin{cases} 2:g'(x) \\ 1: \text{ tangent line} \end{cases}$
	Tangent line is $y = 4(x - 2) + 12$	

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).