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Question 3: Horse Barn 
 
Part (a) findHorseSpace    4 points 

Intent: Return index of space containing horse with specified name 

 +1 Accesses all entries in spaces (no bounds errors) 
 
 +1 Checks for null reference in array and avoids dereferencing it (in context of loop) 
 
 +1 Checks for name equality between array element and parameter  
  (must use String equality check)  
 
 +1 Returns correct index, if present; -1 point if not 
 
 
Part (b) consolidate    5 points 

Intent: Repopulate spaces such that the order of all non-null entries is preserved and all 
null entries are found contiguously at the largest indices 

 +1 Accesses all entries in spaces (no bounds errors) 
 
 +1 Identifies and provides different treatment of null and non-null elements in array 
 
 +1 Assigns element in array to a smaller index  
  (must have identified source as non-null or destination as null) 
 
 +1 On exit: The number, integrity, and order of all identified non-null elements in spaces  
  is preserved, and the number of null elements is preserved 
 

+1 On exit: All non-null elements in spaces are in contiguous locations, beginning at 
index 0 (no destruction of data)  

 

Question-Specific Penalties 

    -1  (z) Attempts to return a value from consolidate 

 
    -2 (v) Consistently uses incorrect array name instead of spaces 
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Question 3: Horse Barn 
 
Part (a): 
public int findHorseSpace(String name) { 
   for (int i = 0; i < this.spaces.length; i++) { 
      if (this.spaces[i]!=null && name.equals(this.spaces[i].getName())) { 
         return i; 
      } 
   } 
   return -1; 
} 

Part (b): 
public void consolidate() { 
   for (int i = 0; i < this.spaces.length-1; i++) { 
      if (this.spaces[i] == null) { 
         for (int j = i+1; j < this.spaces.length; j++) { 
            if (this.spaces[j] != null) { 
               this.spaces[i] = this.spaces[j]; 
               this.spaces[j] = null; 
               j = this.spaces.length; 
            } 
         } 
      } 
   } 
} 

Part (b): Alternative solution (auxiliary with array) 
public void consolidate() { 
   Horse[] newSpaces = new Horse[this.spaces.length]; 
   int nextSpot = 0; 
   for (Horse nextHorse : this.spaces) { 
      if (nextHorse != null) { 
         newSpaces[nextSpot] = nextHorse; 
         nextSpot++; 
      } 
   } 
   this.spaces = newSpaces; 
} 

Part (b): Alternative solution (auxiliary with ArrayList) 
public void consolidate() { 
   List<Horse> horseList = new ArrayList<Horse>(); 
   for (Horse h : this.spaces) { 
      if (h != null) horseList.add(h); 
   } 
   for (int i = 0; i < this.spaces.length; i++) { 
      this.spaces[i] = null; 
   } 
   for (int i = 0; i < horseList.size(); i++) { 
      this.spaces[i] = horseList.get(i); 
   } 
} 


