
AP® COMPUTER SCIENCE A
2012 SCORING GUIDELINES

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Horse Barn

Part (a) findHorseSpace 4 points

Intent: Return index of space containing horse with specified name

 +1 Accesses all entries in spaces (no bounds errors)

 +1 Checks for null reference in array and avoids dereferencing it (in context of loop)

 +1 Checks for name equality between array element and parameter
 (must use String equality check)

 +1 Returns correct index, if present; -1 point if not

Part (b) consolidate 5 points

Intent: Repopulate spaces such that the order of all non-null entries is preserved and all
null entries are found contiguously at the largest indices

 +1 Accesses all entries in spaces (no bounds errors)

 +1 Identifies and provides different treatment of null and non-null elements in array

 +1 Assigns element in array to a smaller index
 (must have identified source as non-null or destination as null)

 +1 On exit: The number, integrity, and order of all identified non-null elements in spaces
 is preserved, and the number of null elements is preserved

+1 On exit: All non-null elements in spaces are in contiguous locations, beginning at
index 0 (no destruction of data)

Question-Specific Penalties

 -1 (z) Attempts to return a value from consolidate

 -2 (v) Consistently uses incorrect array name instead of spaces

AP® COMPUTER SCIENCE A
2012 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Horse Barn

Part (a):
public int findHorseSpace(String name) {
 for (int i = 0; i < this.spaces.length; i++) {
 if (this.spaces[i]!=null && name.equals(this.spaces[i].getName())) {
 return i;
 }
 }
 return -1;
}

Part (b):
public void consolidate() {
 for (int i = 0; i < this.spaces.length-1; i++) {
 if (this.spaces[i] == null) {
 for (int j = i+1; j < this.spaces.length; j++) {
 if (this.spaces[j] != null) {
 this.spaces[i] = this.spaces[j];
 this.spaces[j] = null;
 j = this.spaces.length;
 }
 }
 }
 }
}

Part (b): Alternative solution (auxiliary with array)
public void consolidate() {
 Horse[] newSpaces = new Horse[this.spaces.length];
 int nextSpot = 0;
 for (Horse nextHorse : this.spaces) {
 if (nextHorse != null) {
 newSpaces[nextSpot] = nextHorse;
 nextSpot++;
 }
 }
 this.spaces = newSpaces;
}

Part (b): Alternative solution (auxiliary with ArrayList)
public void consolidate() {
 List<Horse> horseList = new ArrayList<Horse>();
 for (Horse h : this.spaces) {
 if (h != null) horseList.add(h);
 }
 for (int i = 0; i < this.spaces.length; i++) {
 this.spaces[i] = null;
 }
 for (int i = 0; i < horseList.size(); i++) {
 this.spaces[i] = horseList.get(i);
 }
}

