AP® COMPUTER SCIENCE A
2012 SCORING GUIDELINES

Question 3: Horse Barn

|Part (a) findHorseSpace 4 points

Intent: Return index of space containing horse with specified name

+1 Accesses all entries in spaces (no bounds errors)
+1 Checks for null reference in array and avoids dereferencing it (in context of loop)
+1 Checks for name equality between array element and parameter

(must use String equality check)

+1 Returns correct index, if present; -1 point if not

|Part (b) consolidate 5 points

Intent: Repopulate spaces such that the order of all non-null entries is preserved and all
null entries are found contiguously at the largest indices

+1 Accesses all entries in spaces (no bounds errors)
+1 Identifies and provides different treatment of null and non-null elements in array
+1 Assigns element in array to a smaller index

(must have identified source as non-null or destination as null)

+1 On exit: The number, integrity, and order of all identified non-null elements in spaces
is preserved, and the number of null elements is preserved

+1 On exit: Allnon-null elementsin spaces are in contiguous locations, beginning at
index 0 (no destruction of data)

|Question-Specific Penalties

-1 (z) Attempts to return a value from consolidate

-2 (v) Consistently uses incorrect array name instead of spaces

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.



AP® COMPUTER SCIENCE A
2012 CANONICAL SOLUTIONS

Question 3: Horse Barn

Part (a):
public int findHorseSpace (String name) {
for (int 1 = 0; 1 < this.spaces.length; i++) {
if (this.spaces[i]!=null && name.equals(this.spaces[i].getName())) {
return i;
}
}
return -1;
}
Part (b):
public void consolidate() {
for (int 1 = 0; 1 < this.spaces.length-1; i++) {
if (this.spaces[i] == null) {
for (int j = i+1l; j < this.spaces.length; j++) {
if (this.spaces[j] != null) {
this.spaces[i] = this.spaces[j];
this.spaces[j] = null;
j = this.spaces.length;
}
}
}
}
}

Part (b): Alternative solution (auxiliary with array)
public void consolidate() {

Horse[] newSpaces = new Horsel[this.spaces.length];
int nextSpot = 0;

for (Horse nextHorse : this.spaces) {
if (nextHorse != null) {
newSpaces [nextSpot] = nextHorse;
nextSpot++;
}
}

this.spaces = newSpaces;

Part (b): Alternative solution (auxiliary with ArrayList)
public void consolidate() {
List<Horse> horselList = new ArrayList<Horse> () ;
for (Horse h : this.spaces) {

if (h != null) horselList.add(h);

}

for (int i = 0; 1 < this.spaces.length; i++) {
this.spaces[i] = null;

}

for (int 1 = 0; 1 < horseList.size(); 1i++) {
this.spaces[i] = horseList.get (i) ;

}

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2012 The College Board.
Visit the College Board on the Web: www.collegeboard.org.



