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Dr. Paul L. Bailey Monday, April 13, 2020

We are confronted with this formula in the book:

Area of R =
1

2

∮
C

x dy − y dx.

What the heck does that mean again?
Firstly, one should note that the circle on the integral sign says nothing more nor less than that C is a

closed curve. If you already know that, or if it doesn’t effect the computation in any way, it is pointless.
Let ~F = 〈F1, F2〉, where F1 and F2 are scalar valued function defined on a simply connected subset of

R2. Let ~r parameterize the curve C, and let ~v =
d~r

dt
. Then∫

F1 dx+ F2 dy =

∫
F1
dx

dt
+ F2

dy

dt
dt

=

∫ 〈
F1, F2

〉
·
〈dx
dt
,
dy

dt

〉
dt

=

∫
~F · ~v dt

=

∫
~F · ~T |~v| dt where ~T is the unit tangent vector

=

∫
~F · ~T ds

= Flow of ~F along C

So this weird looking thing is just a flow integral, and that is how we compute it.
Okay so what about F1 dy − F2 dx? In this case, write∫

F1 dy − F2 dx =

∫
F1
dy

dt
− F2

dx

dt
dt

=

∫ 〈
F1, F2

〉
·
〈dy
dt
,−dx

dt

〉
dt

=

∫
~F · ~w dt where ~w is a normal vector of length |~v|

=

∫
~F · ~n|~v| dt where ~n is a unit normal vector

=

∫
~F · ~n ds

= Flux of ~F across C



Problem 1 (Thomas §16.4 # 23). Find the area enclosed by the astroid ~r(t) = 〈cos3 t, sin3 t〉.

Solution. Let C be the image of ~r and R be the region enclosed by C. Let ~F = 〈x, y〉.
We see that ~v(t) = 〈−3 cos2 t sin t, 3 sin2 t cos t〉, so the normal vector of the same length is ~w =

〈3 sin2 t cos t, 3 cos2 t sin t〉. Then

Area of R =
1

2

∮
C

x dy − y dx =
1

2

∫ 2π

0

~F · ~w dt

=
1

2

∫ 2π

0

〈cos3 t, sin3 t〉 · 〈3 sin2 t cos t, 3 cos2 t sin t〉 dt

=
1

2

∫ 2π

0

3 sin2 t cos4 t+ 3 sin4 t cos2 t dt

=
3

2

∫ 2π

0

sin2 t cos2 t(sin2 t+ cos2 t) dt

=
3

2

∫ 2π

0

sin2 t cos2 t dt

=
3

4

∫ 2π

0

sin2 2t dt

=
3

4

[ t
2
− sin 4t

4

]2π
0

=
3

8
π.

Here is an alternate way to write this. Since x = cos3 t, we have dx = −3 cos2 t sin t dt. Since y = sin3 t,
we have dy = 3 sin2 t cos t dt. Plug in dx and dy to get

Area of R =
1

2

∮
C

x dy − y dx =
1

2

∫ 2π

0

cos3 t(3 sin2 t cos t)− sin3 t(−3 cos2 t sin t) dt

=
1

2

∫ 2π

0

3 sin2 t cos4 t+ 3 sin4 t cos2 t dt

=
3

2

∫ 2π

0

sin2 t cos2 t(sin2 t+ cos2 t) dt

=
3

2

∫ 2π

0

sin2 t cos2 t dt

=
3

4

∫ 2π

0

sin2 2t dt

=
3

4

[ t
2
− sin 4t

4

]2π
0

=
3

8
π.



Problem 2. Let f(x, y) = ln(x2 + y2).

(a) Let C be the circle x2 + y2 = a2. Evaluate the flux integral∮
C

Of · ~n ds.

(b) Let K be a simple closed curve which does not pass through (0, 0). Show that∮
K

Of · ~n ds

can have two possible values, depending on whether (0, 0) lies inside K or outside K.

Solution. The gradient is

Of = ~F = 〈F1, F2〉 =
〈 2x

x2 + y2
,

2y

x2 + y2

〉
.

The curve C does not reside in a simply connected region in the domain of f , and therefore, Green’s
Theorem does not apply. We compute directly.

The circle is parameterized by ~r(t) = 〈a cos t, a sin t〉. The normal vector of the same length is the position
vector, so let ~w = ~r. Along the curve, we have

Of =
〈2 cos t

a
,

2 sin t

a

〉
,

so ∮
C

Of · ~n ds =

∫
C

Of · ~w dt

=

∫ 2π

0

〈2 cos t

a
,

2 sin t

a

〉
· 〈a cos t, a sin t〉 dt

=

∫ 2π

0

2 cos2 t+ 2 sin2 t dt

=

∫ 2π

0

2 dt

= 4π.

Note that this is independent of a.
Now Of is conservative on any simply connected domain in which it is defined. If the region bounded by

K contains the origin, it can be continuously deformed into a circle through a region in which Of is defined,
and so, ∮

K

Of · ~n ds =

∮
C

Of · ~n ds = 4π.

On the other hand, if K does not encircle the origin, it can be continuously deformed to a point through
a region in which Of is defined, in which case we have∮

K

Of · ~n ds = 0.

It is worth noting that if we eliminate the requirement that K be a simple closed curve, and allow it to
wrap around the origin m times, then ∮

K

Of · ~n ds = 4πm.

In this way, we can detect the wrapping number for a curve.


