VECTOR CALCULUS Homework 0413 Solutions
DRr. PAuL L. BAILEY Monday, April 13, 2020

We are confronted with this formula in the book:
1
Area of R = 7% xdy — ydx.
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What the heck does that mean again?
Firstly, one should note that the circle on the integral sign says nothing more nor less than that C' is a
closed curve. If you already know that, or if it doesn’t effect the computation in any way, it is pointless.
Let F = (Fy, Fy), where F; and Fy are scalar valued function defined on a simply connected subset of
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R2. Let 7 parameterize the curve C, and let ¥ = o Then

/Fldengdy:/Flfl—erFg%dt
ACORE S L
:/ﬁﬁdt
= / F - T|7| dt where T is the unit tangent vector
:/F.fds

S|
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So this weird looking thing is just a flow integral, and that is how we compute it.
Okay so what about Fy dy — Fy dx? In this case, write

/Fldy—Fde:/Flﬁ—Fg%dt

dt
dy dx
- [ (R, F > : <—,——>dt
/ < PR Nae Tt
= / F@dt where 0 is a normal vector of length |7]
= / F - ii|o| dt where 7 is a unit normal vector
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Problem 1 (Thomas §16.4 # 23). Find the area enclosed by the astroid 7(t) = (cos® t,sin®t).

Solution. Let C' be the image of 7 and R be the region enclosed by C. Let F = (z, ).
We see that #(t) = (—3cos®tsint,3sin’tcost), so the normal vector of the same length is @ =
(3sin®t cost, 3 cos? tsint). Then
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Here is an alternate way to write this. Since z = cos® ¢, we have dz = —3cos?tsintdt. Since y = sin®t,

we have dy = 3sin?t cost dt. Plug in dz and dy to get
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Area of R = 3 j{ rdy —ydr = - / cos® t(3sin? t cost) — sin® t(—3 cos? tsint) dt
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Problem 2. Let f(z,y) = In(2? + y?).

(a) Let C be the circle 22 + y? = a?. Evaluate the flux integral

% vf-nds.
c

(b) Let K be a simple closed curve which does not pass through (0,0). Show that
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can have two possible values, depending on whether (0,0) lies inside K or outside K.

Solution. The gradient is
2x 2y
x2+y2’x2+y2>
The curve C does not reside in a simply connected region in the domain of f, and therefore, Green’s
Theorem does not apply. We compute directly.
The circle is parameterized by 7(t) = (acost,asint). The normal vector of the same length is the position
vector, so let @ = 7. Along the curve, we have
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Note that this is independent of a.
Now V f is conservative on any simply connected domain in which it is defined. If the region bounded by
K contains the origin, it can be continuously deformed into a circle through a region in which V f is defined,

and so,
]{ Vf-ﬁdSZf Vf-nds=4n.
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On the other hand, if K does not encircle the origin, it can be continuously deformed to a point through
a region in which V f is defined, in which case we have

% vf-nds=0.
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It is worth noting that if we eliminate the requirement that K be a simple closed curve, and allow it to
wrap around the origin m times, then

7{ Vf-nids=4mm.
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In this way, we can detect the wrapping number for a curve. O



