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1 Using the Chain Rule in Reverse

Recall that the Chain Rule is used to differentiate composite functions such as
cos(x3+1), e

1
2
x2

, (2x2+3)11, ln(3x+1). (The Chain Rule is sometimes called the Composite
Functions Rule or Function of a Function Rule.)

If we observe carefully the answers we obtain when we use the chain rule, we can learn to
recognise when a function has this form, and so discover how to integrate such functions.

Remember that, if y = f(u) and u = g(x)

so that y = f(g(x)), (a composite function)

then
dy

dx
=

dy

du
· du

dx
.

Using function notation, this can be written as

dy

dx
= f ′(g(x)) · g′(x).

In this expression, f ′(g(x)) is another way of writing
dy

du
where y = f(u) and u = g(x)

and g′(x) is another way of writing
du

dx
where u = g(x).

This last form is the one you should learn to recognise.

Examples

By differentiating the following functions, write down the corresponding statement for
integration.

i. sin 3x

ii. (2x + 1)7

iii. ex2

Solution

i
d

dx
sin 3x = cos 3x · 3, so

∫
cos 3x · 3dx = sin 3x + c.

ii
d

dx
(2x + 1)7 = 7(2x + 1)6 · 2, so

∫
7(2x + 1)6 · 2dx = (2x + 1)7 + c.

iii
d

dx

(
ex2

)
= ex2 · 2x, so

∫
ex2 · 2xdx = ex2

+ c.
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Exercises 1.1

Differentiate each of the following functions, and then rewrite each result in the form of
a statement about integration.

i (2x − 4)13 ii sin πx iii e3x−5

iv ln(2x − 1) v
1

5x − 3
vi tan 5x

vii (x5 − 1)
4

viii sin(x3) ix e
√

x

x cos5 x xi tan (x2 + 1) xii ln(sin x)

The next step is to learn to recognise when a function has the forms f ′(g(x)) · g′(x),
that is, when it is the derivative of a composite function. Look back at each of the
integration statements above. In every case, the function being integrated is the product
of two functions: one is a composite function, and the other is the derivative of the “inner
function” in the composite. You can think of it as “the derivative of what’s inside the
brackets”. Note that in some cases, this derivative is a constant.

For example, consider ∫
e3x · 3dx.

We can write e3x as a composite function.
3 is the derivative of 3x i.e. the derivative of “what’s inside the brackets” in e(3x).

This is in the form ∫
f ′(g(x)) · g′(x)dx

with

u = g(x) = 3x, and f ′(u) = eu.

Using the chain rule in reverse, since d
dx

(f(g(x))) = f ′(g(x)) · g′(x) we have

∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c.

In this case ∫
e3x · 3dx = e3x + c.

If you have any doubts about this, it is easy to check if you are right: differentiate your
answer!

Now let’s try another: ∫
cos(x2 + 5) · 2xdx.

cos(x2 + 5) is a composite function.
2x is the derivative of x2 + 5, i.e. the derivative of “what’s inside the brackets”.
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So this is in the form
∫

f ′(g(x)) · g′(x)dx with u = g(x) = x2 + 5 and f ′(u) = cos u.

Recall that if f ′(u) = cos u, f(u) = sin u.

So, ∫
cos(x2 + 5) · 2xdx = sin(x2 + 5) + c.

Again, check that this is correct, by differentiating.

People sometimes ask “Where did the 2x go?”. The answer is, “Back where it came
from.”

If we differentiate sin(x2 + 5) we get cos(x2 + 5) · 2x.

So when we integrate cos(x2 + 5) · 2x we get sin(x2 + 5).

Examples

Each of the following functions is in the form f ′(g(x)) · g′(x).

Identify f ′(u) and u = g(x) and hence find an indefinite integral of the function.

i. (3x2 − 1)4 · 6x

ii. sin(
√

x) · 1

2
√

x

Solutions

i. (3x2 − 1)4 · 6x is a product of (3x2 − 1)4 and 6x.

Clearly (3x2 − 1)4 is the composite function f ′(g(x)). So g(x) should be 3x2 − 1.

6x is the “other part”. This should be the derivative of “what’s inside the brackets”
i.e. 3x2 − 1, and clearly, this is the case:

d

dx
(3x2 − 1) = 6x.

So, u = g(x) = 3x2 − 1 and f ′(u) = u4 giving f ′(g(x)) · g′(x) = (3x2 − 1)4 · 6x.

If f ′(u) = u4, f(u) = 1
5
u5.

So, using the rule ∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c

we conclude ∫
(3x3 − 1)4 · 6x =

1

5
(3x2 − 1)5 + c.

You should differentiate this answer immediately and check that you get back the
function you began with.



Mathematics Learning Centre, University of Sydney 4

ii. sin(
√

x) · 1

2
√

x

This is a product of sin(
√

x) and 1
2
√

x
.

Clearly sin(
√

x) is a composite function.

The part “inside the brackets” is
√

x, so we would like this to be g(x). The other
factor 1

2
√

x
ought to be g′(x). Let’s check if this is the case:

g(x) =
√

x = x
1
2 , so g′(x) =

1

2
x− 1

2 =
1

2x
1
2

=
1

2
√

x
.

So we’re right! Thus u = g(x) =
√

x and f ′(u) = sin u giving

f ′(g(x)) · g′(x) = sin(
√

x) · 1

2
√

x
.

Now, if f ′(u) = sin u, f(u) = − cos u.

So using the rule ∫
f ′(g(x)) · g′(x)dx = f(g(x)) + c

we conclude ∫
sin(

√
x) · 1

2
√

x
dx = − cos(

√
x) + c.

Again, check immediately by differentiating the answer.

Note: The explanations given here are fairly lengthy, to help you to understand
what we’re doing. Once you have grasped the idea, you will be able to do these very
quickly, without needing to write down any explanation.

Example

Integrate
∫

sin3 x · cos xdx.

Solution

∫
sin3 x · cos xdx =

∫
(sin x)3 · cos xdx.

So u = g(x) = sin x with g′(x) = cos x.

And f ′(u) = u3 giving f(u) = 1
4
u4.

Hence
∫

sin3 x · cos xdx =
1

4
(sin x)4 + c =

1

4
sin4 x + c.
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Exercises 1.2

Each of the following functions is in the form f ′(g(x)) · g′(x). Identify f ′(u) and u = g(x)
and hence find an indefinite integral of the function.

i
1

3x − 1
· 3 ii

√
2x + 1 · 2 iii (ln x)2 · 1

x

iv e2x+4 · 2 v sin(x3) · 3x2 vi cos
(

πx

2

)
· π

2

vii (7x − 8)12 · 7 viii sin(ln x) · 1

x
ix

(
1

sin x

)
· cos x

x etan x · sec2 x xi ex3 · 3x2 xii sec2(5x − 3) · 5

xiii (2x − 1)
1
3 · 2 xiv

√
sin x · cos x

The final step in learning to use this process is to be able to recognise when a function is
not quite in the correct form but can be put into the correct form by minor changes.

For example, we try to calculate
∫

x3
√

x4 + 1dx.

We notice that
√

x4 + 1 is a composite function, so we would like to have u = g(x) = x4+1.
But this would mean g′(x) = 4x3, and the integrand (i.e. the function we are trying to
integrate) only has x3. However, we can easily make it 4x3, as follows:

∫
x3
√

x4 + 1dx =
1

4

∫ √
x4 + 1 · 4x3dx.

Note: The 1
4

and the 4 cancel with each other, so the expression is not changed.

So u = g(x) = x4 + 1, g′(x) = 4x3

And f ′(u) = u
1
2 f(u) = 2

3
u

3
2

So,
∫

x3
√

x4 + 1dx =
1

4

∫ √
x4 + 1 · 4x2dx =

1

4
· 2

3

(
x4 + 1

) 3
2 + c.

Note: We may only insert constants in this way, not variables.

We cannot for example evaluate
∫

ex2

dx by writing
1

2x

∫
ex2 · 2xdx, because

the 1
x

in front of the integral sign does not cancel with the x which has been
inserted in the integrand.

This integral cannot, in fact, be evaluated in terms of elementary functions.
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The example above illustrates one of the difficulties with integration: many seemingly
simple functions cannot be integrated without inventing new functions to express the
integrals. There is no set of rules which we can apply which will tell us how to integrate
any function. All we can do is give some techniques which will work for some functions.

Exercises 1.3

Write the following functions in the form f ′(g(x)) · g′(x) and hence integrate them:

i cos 7x ii xex2

iii x
1−2x2 iv x2(4x3 + 3)9

v sin(1 + 3x) vi sin
√

x√
x

vii x√
(1−x2)

viii e3x

ix tan 6x

Hint: Write tan 6x in terms of sin 6x and cos 6x.
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2 Solutions to exercises

Exercises 1.1

i
d

dx
(2x − 4)13 = 13 · (2x − 4)12 · 2, so

∫
13(2x − 4)12 · 2dx = (2x − 4)13 + c.

ii
d

dx
(sin πx) = cos πx · π, so

∫
cos πx · πdx = sin πx + c.

iii
d

dx
(e3x−5) = e3x−5 · 3, so

∫
e3x−5 · 3dx = e3x−5 + c.

iv
d

dx
(ln(2x − 1)) =

1

2x − 1
· 2, so

∫ 1

2x − 1
· 2dx = ln(2x − 1) + c.

v
d

dx
(

1

5x − 3
) = − 1

(5x − 3)2
· 5, so

∫
− 1

(5x − 3)2
· 5dx =

1

5x − 3
+ c.

vi
d

dx
(tan 5x) = sec2 5x · 5, so

∫
sec2 5x · 5dx = tan 5x + c.

vii
d

dx
((x5 − 1)4) = 4(x5 − 1)3 · 5x4, so

∫
4(x5 − 1)3 · 5x4dx = (x5 − 1)4 + c.

viii
d

dx
(sin x3) = cos(x3) · 3x2, so

∫
cos(x3) · 3x2dx = sin(x3) + c.

ix
d

dx
(e

√
x) = e

√
x · 1

2
x− 1

2 , so
∫

e
√

x · 1

2
x− 1

2 dx = e
√

x + c.

x
d

dx
(cos5 x) = 5 cos4 x · (− sin x), so

∫
5 cos4 x · (− sin x)dx = cos5 x + c.

xi
d

dx
(tan(x2 + 1)) = sec2(x2 + 1) · 2x, so

∫
sec2(x2 + 1) · 2xdx = tan(x2 + 1) + c.

xii
d

dx
(ln(sin x)) =

1

sin x
· cos x, so

∫ 1

sin x
· cos xdx = ln(sin x) + c.

Exercises 1.2

(Before you read these solutions, check your work by differentiating your answer.)

i.
∫ 1

3x − 1
· 3dx = ln(3x − 1) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 3x − 1

f ′(u) = 1
u

so g′(x) = 3

so f(u) = ln u

ii.
∫ √

2x + 1 · 2dx =
2

3
(2x + 1)

3
2 + c.
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⎧⎪⎨
⎪⎩

u = g(x) = 2x + 1

f ′(u) =
√

u

so g′(x) = 2

so f(u) = 2
3
u

3
2

iii.
∫

(ln x)2 · 1

x
dx =

1

3
(ln x)3 + c.

⎧⎪⎨
⎪⎩

u = g(x) = ln x

f ′(u) = u2

so g′(x) = 1
x

so f(u) = 1
3
u3

iv.
∫

e2x+4 · 2dx = e2x+4 + c.
⎧⎪⎨
⎪⎩

u = g(x) = 2x + 4

f ′(u) = eu

so g′(x) = 2

so f(u) = eu

v.
∫

sin(x3) · 3x2dx = − cos(x3) + c.
⎧⎪⎨
⎪⎩

u = g(x) = x3

f ′(u) = sin u

so g′(x) = 3x2

so f(u) = − cos u

vi.
∫

cos(
πx

2
) · π

2
dx = sin(

πx

2
) + c.

⎧⎪⎨
⎪⎩

u = g(x) = π
2
x

f ′(u) = cos u

so g′(x) = π
2

so f(u) = sin u

vii.
∫

(7x − 8)12 · 7dx =
1

13
(7x − 8)13 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 7x − 8

f ′(u) = u12

so g′(x) = 7

so f(u) = 1
13

u13

viii.
∫

sin(ln x) · 1

x
dx = − cos(ln x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = ln x

f ′(u) = sin u

so g′(x) = 1
x

so f(u) = − cos u

ix.
∫ 1

sin x
· cos xdx = ln(sin x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = sin x

f ′(u) = 1
u

so g′(x) = cos x

so f(u) = ln u

x.
∫

etan x · sec2 xdx = etan x + c.
⎧⎪⎨
⎪⎩

u = g(x) = tan x

f ′(u) = eu

so g′(x) = sec2x

so f(u) = eu
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xi.
∫

ex3 · 3x2dx = ex3

+ c.
⎧⎪⎨
⎪⎩

u = g(x) = x3

f ′(u) = eu

so g′(x) = 3x2

so f(u) = eu

xii.
∫

sec2(5x − 3) · 5dx = tan(5x − 3) + c.
⎧⎪⎨
⎪⎩

u = g(x) = 5x − 3

f ′(u) = sec2 u

so g′(x) = 5

so f(u) = tan u

xiii.
∫

(2x − 1)
1
3 · 2dx =

3

4
(2x − 1)

4
3 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 2x − 1

f ′(u) = u
1
3

so g′(x) = 2

so f(u) = 3
4
u

4
3

xiv.
∫ √

sin x · cos xdx =
2

3
(sin x)

3
2 + c.

⎧⎪⎨
⎪⎩

u = g(x) = sin x

f ′(u) =
√

u

so g′(x) = cos x

so f(u) = 2
3
u

3
2

Exercises 1.3

(Before reading the solutions, check all your answers by differentiating!)

i.
∫

cos 7xdx =
1

7

∫
cos 7x · 7dx =

1

7
sin 7x + c.

⎧⎪⎨
⎪⎩

u = g(x) = 7x, g′(x) = 7

f ′(u) = cos u so f(u) = sin u

ii.
∫

xex2

dx =
1

2

∫
ex2 · 2xdx =

1

2
ex2

+ c.
⎧⎪⎨
⎪⎩

u = g(x) = x2, g′(x) = 2x

f ′(u) = eu so f(u) = eu

iii.
∫ x

1 − 2x2
dx = −1

4

∫ 1

1 − 2x2
· (−4x)dx = −1

4
ln(1 − 2x2) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 1 − 2x2, g′(x) = −4x

f ′(u) = 1
u

so f(u) = ln u

iv.
∫

x2(4x3 + 3)9dx =
1

12

∫
(4x3 + 3)9 · 12x2dx =

1

12
· 1

10
(4x3 + 3)10 + c =

1

120
(4x3 + 3)10 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 4x3 + 3, g′(x) = 12x2

f ′(u) = u9 so f(u) = 1
10

u10



Mathematics Learning Centre, University of Sydney 10

v.
∫

sin(1 + 3x)dx =
1

3

∫
sin(1 + 3x) · 3dx = −1

3
cos(1 + 3x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = 1 + 3x, g′(x) = 3

f ′(u) = sin u so f(u) = − cos u

vi.
∫ sin

√
x√

x
dx = 2

∫
sin

√
x · 1

2
√

x
dx = −2 cos

√
x + c.

⎧⎪⎨
⎪⎩

u = g(x) =
√

x, g′(x) = 1
2
√

x

f ′(u) = sin u so f(u) = − cos u

vii.
∫ x√

1 − x2
dx = −1

2

∫ 1√
1 − x2

· (−2x)dx = −1

2
· 2(1 − x2)

1
2 + c = −(1 − x2)

1
2 + c.

⎧⎪⎨
⎪⎩

u = g(x) = 1 − x2, g′(x) = −2x

f ′(u) = 1√
u

so f(u) = 2u
1
2

viii.
∫

e3xdx =
1

3

∫
e3x · 3dx =

1

3
e3x + c.

⎧⎪⎨
⎪⎩

u = g(x) = 3x, g′(x) = 3

f ′(u) = eu so f(u) = eu

ix.
∫

tan 6xdx =
∫ sin 6x

cos 6x
dx = −1

6

∫ 1

cos 6x
· −6 sin 6x = −1

6
ln(cos 6x) + c.

⎧⎪⎨
⎪⎩

u = g(x) = cos 6x, g′(x) = −6 sin 6x

f ′(u) = 1
u

so f(u) = ln u


