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We use this formula from Thomas:

Surface Area =

∫∫
R

|Of |
|Of · ~p|

dA,

where ~p is a unit vector normal to R and Of · p 6= 0.
If f is of the form f(x, y, z) = g(x, y) − z = k, where k is constant, then the surface may be viewed as

the graph of the function z = g(x, y) + k, and R is then a region in the xy-plane. In this case, ~p is a unit
vector perpendicular to the xy-plane; that is, ~p = 〈0, 0, 1〉.

Problem 1 (Thomas §16.5 # 1). Find the area of the surface cut from the paraboloid x2 + y2 − z = 0 by
the plane z = 2.

Solution. Here, f(x, y, z) = x2 + y2 − z, and the surface is part of the locus of the equation f(x, y, z) = 0.
The region R is the disk {(x, y) ∈ R2 | x2 + y2 ≤ 2}, and ~p = 〈0, 0, 1〉.

Compute Of = 〈2x, 2y,−1〉, |Of | =
√

4x2 + 4y2 + 1, and |Of · ~p| = 1. Thus, converting to polar
coordinates,
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Problem 2 (Thomas §16.5 # 2). Find the area of the band cut from the paraboloid x2 + y2− z = 0 by the
planes z = 2 and z = 6.

Solution. Still, f(x, y, z) = x2 + y2 − z, and the surface is part of the locus of the equation f(x, y, z) = 0.
The region R is the annulus {(x, y) ∈ R2 | 2 ≤ x2 + y2 ≤ 6}, and ~p = 〈0, 0, 1〉.

Again, Of = 〈2x, 2y,−1〉, |Of | =
√
4x2 + 4y2 + 1, and |Of · ~p| = 1. All that changes from above are the

limits of integration in polar coordinates:
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