VECTOR CALCULUS DR. PAUL L. BAILEY

Homework 0415 Solutions Sunday, April 19, 2020

We use this formula from Thomas:

Surface Area =
$$\iint_R \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA$$
,

where \vec{p} is a unit vector normal to R and $\nabla f \cdot p \neq 0$.

If f is of the form f(x, y, z) = g(x, y) - z = k, where k is constant, then the surface may be viewed as the graph of the function z = g(x, y) + k, and R is then a region in the xy-plane. In this case, \vec{p} is a unit vector perpendicular to the xy-plane; that is, $\vec{p} = \langle 0, 0, 1 \rangle$.

Problem 1 (Thomas §16.5 # 1). Find the area of the surface cut from the paraboloid $x^2 + y^2 - z = 0$ by the plane z = 2.

Solution. Here, $f(x, y, z) = x^2 + y^2 - z$, and the surface is part of the locus of the equation f(x, y, z) = 0. The region R is the disk $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 2\}$, and $\vec{p} = \langle 0, 0, 1 \rangle$. Compute $\nabla f = \langle 2x, 2y, -1 \rangle$, $|\nabla f| = \sqrt{4x^2 + 4y^2 + 1}$, and $|\nabla f \cdot \vec{p}| = 1$. Thus, converting to polar

coordinates,

Surface Area =
$$\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA$$

=
$$\iint_{R} \sqrt{4x^{2} + 4y^{2} + 1} dA$$

=
$$\int_{0}^{2\pi} \int_{0}^{\sqrt{2}} \sqrt{4r^{2} + 1r} dr d\theta$$

=
$$(2\pi) \frac{1}{8} \int_{0}^{\sqrt{2}} \sqrt{4r^{2} + 18r} dr$$

=
$$\left(\frac{\pi}{4}\right) \left(\frac{2}{3}\right) \left[(4r^{2} + 1)^{3/2} \right]_{0}^{\sqrt{2}}$$

=
$$\frac{\pi}{6} [27 - 1]$$

=
$$\frac{13\pi}{3}.$$

Problem 2 (Thomas §16.5 # 2). Find the area of the band cut from the paraboloid $x^2 + y^2 - z = 0$ by the planes z = 2 and z = 6.

Solution. Still, $f(x, y, z) = x^2 + y^2 - z$, and the surface is part of the locus of the equation f(x, y, z) = 0. The region R is the annulus $\{(x, y) \in \mathbb{R}^2 \mid 2 \le x^2 + y^2 \le 6\}$, and $\vec{p} = \langle 0, 0, 1 \rangle$. Again, $\nabla f = \langle 2x, 2y, -1 \rangle$, $|\nabla f| = \sqrt{4x^2 + 4y^2 + 1}$, and $|\nabla f \cdot \vec{p}| = 1$. All that changes from above are the

limits of integration in polar coordinates:

Surface Area =
$$\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \vec{p}|} dA$$

=
$$\iint_{R} \sqrt{4x^{2} + 4y^{2} + 1} dA$$

=
$$\int_{0}^{2\pi} \int_{\sqrt{2}}^{\sqrt{6}} \sqrt{4r^{2} + 1r} dr d\theta$$

=
$$(2\pi) \frac{1}{8} \int_{\sqrt{2}}^{\sqrt{6}} \sqrt{4r^{2} + 18r} dr$$

=
$$\left(\frac{\pi}{4}\right) \left(\frac{2}{3}\right) \left[(4r^{2} + 1)^{3/2}\right]_{\sqrt{2}}^{\sqrt{6}}$$

=
$$\frac{\pi}{6} [125 - 27]$$

=
$$\frac{49\pi}{3}.$$