Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the derivative of the function at P_0 in the direction of u.

1)
$$f(x, y) = \tan^{-1} \frac{-3x}{y}$$
, $P_0(-7, -8)$, $u = 12i - 5j$
A) $\frac{456}{6565}$
B) $\frac{27}{505}$
C) $\frac{477}{6565}$
D) $\frac{393}{6565}$

Calculate the circulation of the field F around the closed curve C.

2) F = (-x - y)i + (x + y)j, curve C is the counterclockwise path around the circle with radius 3 2) centered at (3, 6) A) $18(1 + \pi)$ B) $18(1 + \pi) + 108$ C) 18π D) 36π

3)

4)

5)

Find the potential function f for the field F.

3)
$$F = \frac{1}{z}i - 2j - \frac{x}{z^2}k$$

A) $f(x, y, z) = \frac{x}{z} - 2 + C$
B) $f(x, y, z) = \frac{2x}{z} - 2y + C$
C) $f(x, y, z) = \frac{x}{z} + C$
D) $f(x, y, z) = \frac{x}{z} - 2y + C$

Evaluate. The differential is exact.

5)

4)
$$\int_{(0, 0, 0)}^{(\pi, \pi, \pi)} -2 \sin x \cos x \, dx - \sin y \cos z \, dy - \cos y \sin z \, dz$$

(0, 0, 0)
A) -2
B) 2
C) 0
D) 1

Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C.

$$F = (x^{2} + y^{2})i + (x - y)j; C is the rectangle with vertices at (0, 0), (8, 0), (8, 5), and (0, 5) A) 160 B) 0 C) -160 D) 240$$