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1. Irreducibility Examples

Example 1. Show that f(x) = x2 − 6x− 2 is irreducible over Q.

Solution. Any proper factorization over a field F of a quadratic polynomial would
include a linear term (x− β), where β ∈ F and β is a root of f .

By the quadratic formula, the roots of f in C are

x =
8±
√

64 + 8

2
= 4±

√
11.

Thus f has no rational roots, and since f is quadratic, f is irreducible over Q. �

Example 2. Show that f(x) = x3 − 4x+ 2 is irreducible over Q.

Solution. Since f is cubic, any proper factorization over Q would include a linear
term, so f would have a root in Q. By the Rational Roots Theorem, the only
conceivable rational roots of f are ±1 or ±2. But testing these shows that none of
them are roots; thus f is irreducible. �

Example 3. Show that f(x) = x4 − x2 + 6 has no rational roots, but is reducible
over Q.

Solution. We can factor f(x) = (x2−3)(x2+2), from which we see that the complex

roots of f are ±3 and ±i
√

2. None of these roots are in Q. �

Example 4. Show that f(x) = x3 − 42x2 + 30x+ 2772 is irreducible over Q.

Solution. The prime factorization of 2772 is 22 · 32 · 7 · 11. There are more factors
of this number than we wish to try in applying the Rational Roots Theorem. On
the other hand, if we reduce the polynomial modulo 5, we obtain

f(x) = x3 − 2x2 + 2.

Then in Z5, we have f(0) = 2, f(1) = 1, f(2) = 2, f(3) = 2, and f(4) = 4. Thus f
has no roots in Z5, and since f is cubic, this implies that f has is irreducible over
Z5. Thus f is irreducible over Q by the Modular Irreducibility Test. �
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Example 5. Factor f(x) = x6 − 1 into a product of polynomials which are irre-
ducible over Q.

Solution. Use the formula for the difference of cubes to see that

f(x) = (x3 − 1)(x3 + 1) = (x− 1)(x+ 2)(x2 + x+ 1)(x2 − x+ 1).

The quadratic polynomials have negative discriminant, so their roots are nonreal,
and therefore nonrational; thus they are irreducible over Q. �

Example 6. Factor f(x) = x8 − 1 into a product of polynomials which are irre-
ducible over Q.

Solution. We see that

f(x) = (x4− 1)(x4 + 1) = (x2− 1)(x2 + 1)(x4 + 1) = (x− 1)(x+ 1)(x2 + 1)(x4 + 1).

Clearly (x2 + 1) is irreducible over Q; is x4 + 1 irreducible over Q? Since it has no
rational roots, if it factors, it must factor into the product of irreducible quadrat-
ics. We know that in any factorization over R, complex conjugates produce pairs
which are irreducible over R. So, if x4 + 1 factors over Q, this must be the same
factorization that it has over R.

Now (x− z)(x− z) = x2 − (z + z)x+ zz = x2 − 2<(z) + |z|2. A root of x4 + 1

is e2πi/4 =
√
2+i
√
2

2 , and 2<(z) =
√

2. This is not rational, so this quadratic is not

over Q. Thus the factorization of x4 + 1 over R does not succeed over Q, which
shows that x4 + 1 is irreducible over Q. �

Example 7. Factor f(x) = x4 + x2 + 1 into a product of polynomials which are
irreducible over Q.

Solution. Since f(x) clearly has no rational roots, we look for a factorization into
irreducible quadratics. Again, it must factor of R into the product of two irreducible
quadratics, and we only need to see if these quadratics have rational coefficients.

Since f(x) looks like a cyclotomic polynomial in x2, the natural thing to do is
to multiply it by x2 − 1, in order to better understand it. We obtain

(x2 − 1)(x4 + x2 + 1) = x6 − 1.

Thus, the roots of f(x) are the complex sixth roots of unity other than ±1. The
primitive cube roots of unity are the roots of x2 + x + 1, so this must be a factor
of f(x). Indeed,

x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

Each of these factors is irreducible, since it is quadratic with no rational roots. �



3

Example 8. Determine if f(x) is irreducible over Q. Justify your answer.

(a) f(x) = x− 16
(b) f(x) = x5 − 32
(c) f(x) = x3 + 15x2 + 8x+ 40
(d) f(x) = x4 + 2x2 + 1
(e) f(x) = x5 + 6x4 + 10x3 + 8x+ 18
(f) f(x) = 7x2 − 9x+ 3

Solution. Since (a) is linear, it is irreducible.
Since 2 is a root of (b), it is not irreducible.
Consider (c) modulo 3; it is f(x) = x3 − x + 1. In Z3, f(0) = 1, f(1) = 1, and

f(2) = 1. Thus f has no roots in Z3, and since f is cubic, it is irreducible in Z3.
Thus f is irreducible in Q by the Modular Irreducibility Test, with p = 3.

Obviously x4 + 2x2 + 1 = (x2 + 1)2, so (d) is reducible.
(e) is irreducible by Eisenstein’s Criterion, with p = 2.
The discriminant of the quadratic in (f) is 92 − 4(7)(2) = 81− 84 < 0, so (f) is

irreducible. �

Example 9. Let f(x) = x4 −mx2 + 1, where m ∈ Z.
Show that f is reducible over Q if and only if there exists a ∈ Z such that either

(i) m = a2 − 2, in which case f(x) = (x2 − ax+ 1)(x2 + ax+ 1) , or
(ii) m = a2 + 2, in which case f(x) = (x2 − ax− 1)(x2 + ax− 1).

Proof. By the rational roots theorem, if f has a rational root, it is an integer
dividing 1, so it is ±1, and f(±1) = 1−m+ 1 = 0. Then m = 2 and

f(x) = (x− 1)(x+ 1)(x− 1)(x+ 1) = (x2 + 2x+ 1)(x2 − 2x+ 1).

This is case (i) with a = 2.
Otherwise, if f factors, it is a product of irreducible quadratics. Moreover, by

Gauss’ lemma, we may select these quadratics to have integer coefficients. In this
case, the product of the leading coefficients will be the leading coefficient of f ,
which is one, so we may assume that the factors are monic.

Thus suppose that f(x) = (x2 + ax + b)(x2 + cx + d), where a, b, c, d ∈ Z.
Multiplying this out gives

f(x) = x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd.

Matching coefficients gives the equations

(1) a+ c = 0
(2) b+ d+ ac = −m
(3) ad+ bc = 0
(4) bd = 1

The first equation says that c = −a, and the last say that b = d = ±1 (because
b, d ∈ Z). Then the second equation gives 2b− a2 = −m, so m = a2 − 2 if b = 1 or
m = a2 + 2 if b = −1. Now multiply out the factorization given above to confirm
that they do indeed give f(x). �
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2. Minimum Polynomial Examples

Example 10. Find the minimum polynomial over Q of β = 5
√

2.

Solution. We see that β5 = 2, so if f(x) = x5 − 2, then f(β) = 0. This polynomial
is irreducible by Eisenstein’s criterion, and its coefficients are in Q, so it is the
minimum polynomial of β over Q. �

Example 11. Find the minimum polynomial over Q of

β = 4 cos 18◦ =

√
10 + 2

√
5.

.

Solution. Squaring gives β2 = 10+2
√

5, so β2−10 = 2
√

5. Thus β4−20β2 +100 =
20, whence β4−20β2+80 = 0. Let f(x) = x4−20x2+80; then f(β) = 0. Moreover,
f is irreducible over Q by Eisenstein’s criterion, with p = 5. Thus f is the minimum
polynomial of β over Q. �

Example 12. Find the minimum polynomial over Q of

β =
√

2 +
√

3.

Solution. It suffices to find a monic polynomial which annihilates β, and show that
it is irreducible. Squaring both sides of the definition of β gives β2 = 2 + 2

√
6 + 3,

so β2 − 5 = 2
√

6, whence (β2 − 5)2 = 24. Therefore β4 − 10β2 + 1 = 0. Set
f(x) = x4 − 10x2 + 1; then f(β) = 0. Showing that f is irreducible is possible by
brute force, as demonstrated in Example 9. We give an alternate proof, using the
field extensions and the product of degrees formula.

Claim 1: Q[β] = Q[
√

2,
√

3].

Clearly β ∈ Q[
√

2,
√

3], so Q[β] ⊂ Q[
√

2,
√

3]. So to prove (a), it suffices to show

that
√

2,
√

3 ∈ Q[β]. Since Q[β] is a field,

β−1 =
1

β
=

1√
3 +
√

2
=

√
3−
√

2

3− 2
=
√

3−
√

2 ∈ Q[β].

Thus β − β−1 = 2
√

3 ∈ Q[β], so
√

3 ∈ Q[β]. Thus
√

2 = β −
√

3 ∈ Q[β].

Claim 2: [Q[
√

2,
√

3] : Q] = 4.

The minimum polynomial of
√

2 over Q is x2−2, so [Q[
√

2] : Q] = 2. It is impossible

to solve the equation
√

3 = a+ b
√

2 for rational numbers a and b, so
√

3 /∈ Q[
√

2].

The minimum polynomial of
√

3 over Q is x2− 3; but since
√

3 /∈ Q[
√

2] and x2− 3

is quadratic, it cannot possibly factor over Q[
√

2]. Thus x2 − 3 is irreducible over

Q[
√

3], which shows that

[Q[
√

2,
√

3] : Q] = [Q[
√

2,
√

3] : Q[
√

2]][Q[
√

2] : Q] = 2 · 2 = 4.

Therefore, [Q[β] : Q] = 4, so the degree of the minimum polynomial of β over
Q is 4. Since f(x) = x4 − 10x2 + 1 is a monic polynomial of degree four which
annihilates β, it must be the minimum polynomial of β over Q. Consequently, it is
irreducible. �
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Example 13. Let β =
3
√√

2 +
√

3.

(a) Find the minimum polynomial of β over Q.

(b) Find the minimum polynomial of β over Q[
√

6].

Solution. Compute β3 =
√

2+
√

3, so β6 = 5+2
√

6, whence (β6−5)2 = 24. Writing
this in standard form, we obtain

β12− 10β6 + 1 = 0.

Let f(x) = x12 − 10x6 + 1; then f(β) = 0. Thus f is a monic polynomial which
annihilates β; we wish to show that f is irreducible over Q. Since we know that the
minimum polynomial of β is divisible by f , it suffices to show that the degree of
the minimum polynomial of β is 12. We also know that the degree of the minimum
polynomial is equal to the degree of the corresponding primitive extension.

We show that [Q[β] : Q] = 12 by using the product of degrees formula.

The minimum polynomial of
√

2 over Q is x2 − 2, so [Q[
√

2] : Q] = 2. It is

impossible to solve the equation
√

3 = a + b
√

2 for rational numbers a and b, so√
3 /∈ Q[

√
2].

The minimum polynomial of
√

3 over Q is x2 − 3; but since
√

3 /∈ Q[
√

2] and

x2− 3 is quadratic, it cannot possibly factor over Q[
√

2]. Thus x2− 3 is irreducible

over Q[
√

3], which shows that

[Q[
√

2,
√

3] : Q] = [Q[
√

2,
√

3] : Q[
√

2]][Q[
√

2] : Q] = 2 · 2 = 4.

Let α =
√

2+
√

3; we show that Q[α] = Q[
√

2,
√

3]. It is clear that α ∈ Q[
√

2,
√

3],

so we show that
√

2,
√

3 ∈ Q[α].
Set h(x) = x4 − 10x2 + 1. Then h is a polynomial which annihilates α, so α is

algebraic over Q, so Q[α] is a field. The inverse of α is also in Q[α], and may be
computed as

α−1 =
1√

3 +
√

2
=

√
3−
√

2

3− 2
=
√

3−
√

2.

Thus
α+ α−1

2
=
√

3 ∈ Q[α], and consequently α −
√

3 =
√

2 ∈ Q[α]. Conclude

that Q[α] = Q[
√

2,
√

3]. Incidently, this also shows that h is irreducible over Q, and
that [Q[α] : Q] = 4.

Finally, it is clear that β /∈ Q[α]. However, x3 − α is a polynomial over Q[α]
which annihilates β. This cubic polynomial is irreducible unless it has a root in
Q[α]. But the roots are β, βω, and βω2, where ω = e2πi/3. The latter two are
nonreal, and so are certainly not in the real field Q[α]. Thus x3−α is the minimum
polynomial of β over Q[α]. Thus

[Q[β] : Q] = [Q[β] : Q[α]][Q[α] : Q] = 3 · 4 = 12.

This details why f(x) = x12 − 10x6 + 1 must be irreducible over Q.

Looking back at our initial computation, we see that β6 − 5 − 2
√

6 = 0. Thus
let g ∈ Q[

√
6] be given as g(x) = x6 − (5 + 2

√
6). Since [Q[

√
6] : Q] = 2, we must

have [Q[β] : Q[
√

6] = 12/2 = 6. Thus g is irreducible. �
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Example 14. Let β = e2π/16.

(a) Find the minimum polynomial of β over Q.
(b) Find the minimum polynomial of β over Q[i].

(c) Find the minimum polynomial of β over Q[
√

2].

Solution. Since β8 = eπi = −1, we see that β is a root of f(x) = x8 + 1. We wish
to show that f is irreducible, again by computing degrees.

Now β = cis(2πi/16) = cos(2πi/16) + i sin(2πi/16); use the half angle formula
to compute

β =

√
2−
√

2

2
+ i

√
2 +
√

2

2
.

Note that β2 =
√
2
2 + i

√
2
2 , and β4 = i. Then i,

√
2,
√

2 +
√

2 ∈ Q[β].

Drawing on previous experience, we can see that [Q[
√

2] : Q] = 2, but that√
2 +
√

2 /∈ Q[
√

2]. Thus [Q[
√

2 +
√

2] : Q] = 4. Since
√

2 +
√

2 ∈ R, the field it
generates over Q is also contained in R, and in particular, does not contain i. Thus

[Q[i,
√

2 +
√

2] : Q] = 8, which proves that f is irreducible.
The minimum polynomial of β over Q[i] must be of degree 4, and β4 = i. Thus,

x4 − i is the minimum polynomial of β over Q[i].

The minimum polynomial of β over Q[
√

2] also is of degree 4; note that β = β−1

is the complex conjugate of β, so

β + β−1 = 2<(β) =

√
2−
√

2.

Squaring gives β2 + 2 + β−2 = 2−
√

2, so β4 +
√

2β2 + 1 = 0. Thus x4 +
√

2x2 + 1
is the minimum polynomial of β over

√
2. �
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3. Splitting Extensions

Example 15. Let f(x) = x2 +1, and let E be the splitting field of f over Q. Write
E/Q as a multiple extension of Q, and find [E : Q].

Solution. The roots of f are not ±i. Clearly E = Q[i,−i] = Q[i]. Since f is
irreducible, [E : Q] = 2. �

Example 16. Let f(x) = x3 − 7x+ 6, and let E be the splitting field of f over Q.
Write E/Q as a multiple extension of Q, and find [E : Q].

Solution. We see that f(1) = 0, and divide f by (x− 1) to find

f(x) = (x− 1)(x− 2)(x+ 3).

So, E = Q[1, 2,−3] = Q, and [E : Q] = 1. �

Example 17. Let f(x) = x3 − 7x2 + 6, and let E be the splitting field of f over
Q. Write E/Q as a multiple extension of Q, and find [E : Q].

Solution. We see that f(1) = 0, and divide f by (x− 1) to find

f(x) = (x− 1)(x2 − 6x− 6).

Let g(x) = x2 − 6x − 6; this polynomial is irreducible over Q, as the quadratic
formula gives its roots to be

x =
6±
√

36 + 24

2
= 3±

√
15.

If we adjoin
√

15 to Q, we will obtain all three roots of f ; thus E = Q[
√

15]. The

minimum polynomial of
√

15 over Q is not g, but it is x2 − 15, so [E : Q] = 2. �

Example 18. Let f(x) = x5−2, and let E be the splitting field of f over Q. Write
E/Q as a multiple extension, and find [E : Q].

Solution. Let α = 5
√

2, and let ω = e2πi/5. Then ω is a primitive fifth root of unity,
and the five fifth roots of 2 generate E. Thus

E = Q[α, αω, αω2, αω3, αω4].

Since E is a field, α−1 ∈ E, so α−1αω ∈ E. Then it is clear that E = Q[α, ω].
Now [Q[α] : Q] = deg(f) = 5; but ω is not in Q[α]. We know this because Q[α]

contains only real number, but ω is not real.
Recall that if p is prime and ζ is a primitive pth root of unity, then ζ is a root

of xp − 1 = (x − 1)(xp−1 + · · · + x + 1), where Φp(x) = xp−1 + · · · + 1 is the pth

cyclotomic polynomial. We have seen that Φp is irreducible (we substituted x + 1
for x and applied Eisenstein’s criterion to see this).

Thus g(x) = x4+x3+x2+x+1 is the minimum polynomial of ω, and [Q[ω] : Q] =
4. Thus the minimum polynomial of ω over Q[α] is a factor of g, and [E : Q[ω] ≤ 4.

Since Q[α] and Q[ω] are both subfields of E, we see that [E : Q] is divisible both
by 5 and by 4, so [E : F ] is at least twenty, so [E : Q[α]] ≥ 4.

We conclude that

[E : Q] = [Q[α, ω] : Q[α]] · [Q[α] : Q] = 4 · 5 = 20.

�
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Example 19. Let f(x) = x12 − 1, and let E be the splitting field of f over Q.
Write E/Q as a multiple extension, and find [E : Q].

Solution. Let β = e2πi/12 =
√
3
2 + i 12 . Since β is a primitive twelfth root of unity,

all the other roots of f are powers of β, so E = Q[β] = Q[
√

3, i]. Thus [E : Q] = 4.
Let’s find the minimum polynomial of β over Q, by way of factoring f into

irreducible polynomials:

x12 − 1 = (x6 − 1)(x6 + 1)

= (x3 − 1)(x3 + 1)(x2 + 1)(x4 − x2 + 1) (sum of cubes formula)

= (x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1)(x2 + 1)(x4 − x2 + 1).

The last factor is the only one whose degree is at least four; thus it must be the
minimum polynomial of β over Q, and is irreducible. We identify the powers of β
which are roots of each of these polynomials:

• 1, the primitive first root of unity, is a root of x− 1;
• −1, the primitive second root of unity, is a root of x+ 1;
• β4, β8, the primitive cube roots of unity, are roots of x2 + x+ 1;
• β2, β10, the primitive sixth roots of unity, are roots of x2 − x+ 1;
• ±β3 = ±i, the primitive fourth roots of unity, are roots of x2 + 1;
• β, β5, β7, β11, the primitive twelfth roots of unity, are roots of x4 − x2 + 1.

�
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