
FIELD EXTENSIONS
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1. Evaluation

Let R be a commutative ring. The additive identity of R is denoted by 0R or
simply 0 and the multiplicative identity is denoted by 1R or simply 1. The group
of invertible elements of R is denoted R∗.

If I is an ideal of R, we write I / R. If A is a subset of R, the ideal generated
by A is denoted 〈A〉 or AR. If A = {a} is a singleton, we may write 〈a〉 instead
of 〈{a}〉. Similarly, if A = {a1, . . . , an}, we may write 〈a1, . . . , an〉 for the ideal
generated by A.

We require that ring homomorphisms send the multiplicative identity of the do-
main to that of the image. Since Z is generated (as a ring) by a single element,
there exists a unique homomorphism φ : Z→ R. Since Z is a pid, the kernel of this
homomorphism is a principal ideal. The characteristic of R is the unique nonneg-
ative element which generates ker(φ). The image of φ is called the characteristic
subring of R. The characteristic of a finite domain is necessarily a prime integer.

We require that subrings of R contain the same multiplicative identity. If S is
a subring of R, we write S ≤ R. If A is a subset of R, let S[A] be the subring of
R generated by S and A, which is smallest subring of R containing S and all of
the elements of A. This is necessarily the intersection of all subrings of R which
contains S and A. If S = {a} contains a single element, we may write this as F [a],
or if S = {a1, . . . , an} is finite, we may write this as S[a1, . . . , an]. We should point
out that S[a1, a2] = S[a1][a2], and so forth.

The ring of polynomials in one variable over R is denoted R[X]. This concurs
with the above notation. The Universal Property of Polynomial Rings states that
given a ring homomorphism ψ : R → S and a ∈ S, there exists to a unique
homomorphism ψα : R[X] → S which sends X to α. This homomorphism is
given by ψα(f(X)) = f(α), and is called the evaluation homomorphism. If ψ is
inclusion, denote the image ψα(R[X]) by R[α]. Let I be the set of all polynomials
in R[X] which vanish at a; then I = ker(ψα). Let ψα : R[X]/I → R[α] denote the
isomorphism induced by ψα as dictated by the isomorphism theorem for rings.

On the other hand, suppose that f ∈ R[X] and we wish to create a ring which
contains R and a root of f . Set S = R[X]/〈f〉 and let ψ : R[X] → S be the
canonical homomorphism. Then ψ is injective on R, and we may identify R with
its image under ψ. The image of X under ψ is an element of S which is a root of
R.

Date: May 18, 2001.

1



2

2. Fields

Definition 1. A field is a commutative ring in which every nonzero element is
invertible. A subfield of a ring is a subring which is a field.

Proposition 1. Let F be a field and let I / F . The I = F or I = 〈0〉.

Proof. Suppose I is not the zero ideal. Let I contains a nonzero element a which
is invertible in F . Since a−1 ∈ F , a−1a = 1 ∈ I, so I = R. �

Proposition 2. Let F be a field and let R be a nonzero ring. Let φ : F → R be a
ring homomorphism. Then φ is injective.

Proof. Since R is nonzero, it contains an element 1R which is different from 0R,
and φ(1F ) = 1R. Then 1F /∈ ker(φ), so ker(φ) 6= R, and ker(φ) = 〈0〉. Thus φ is
injective. �

Proposition 3. Let R be a ring and let F be a collection of subfields of R. Then
∩F is a subfield of R.

Proposition 4 (Division Algorithm). Let F be a field and let f, g ∈ F [X]. Then
there exist polynomials q, r ∈ F [X], with deg(r) < deg(f), such that g = fq + r.

Proposition 5 (Euclidean Algorithm). Let F be a field and let f, g ∈ F [X]. Let
d ∈ F [X] be a greatest common divisor for f and g. Then there exist polynomials
a, b ∈ F [X] such that af + bg = d.

Proposition 6. Let F be a field. Then F [X] is a principal ideal domain (pid),
and every ideal in F [X] is generated by a unique monic polynomial.

Proof. Let I /F [X] and let f ∈ I be a polynomial of minimal degree among nonzero
elements of I. If g ∈ I, then g = fq+ r for some q, r ∈ F [X] with deg(r) < deg(f).
But fq ∈ I since I is an ideal so r = g − fq ∈ I. By the minimality of f , we must
have r = 0, so g is a multiple of f . Thus f generates I. The other generators of I
are given by multiplying a given generator by an invertible element. The invertible
elements of F [X] are exactly the nonzero elements of F . Thus there is a unique
monic polynomial which generates I. �

Proposition 7. Let R be a pid and let I / R be prime. Then I is maximal.

Proof. Since R is a pid, I = 〈a〉 for some a ∈ R. Let J be an ideal which properly
contains I. Then J = 〈b〉 for some b ∈ R. Since a ∈ J , a = cb for some c ∈ R, and
since I is prime, either c ∈ I or b ∈ I. If b ∈ I, then J ⊂ I, which assumed is not
the case. So c ∈ I, and c = da for some d ∈ R. Then a = dab, so bd = 1 and b is
invertible, so J = R. Thus I is maximal. �

Proposition 8 (Preservation of Roots). Let F be a subfield of a field E and let
σ : E → K be a homomorphism. For f(X) =

∑n
i=0 aiX

i ∈ F [X], set fσ(X) =∑n
i=0 σ(ai)X

i. Then σ induces a homomorphism F [X]→ K[X] given by f 7→ fσ.
Moreover, α ∈ E is a root of f ∈ F [X] if and only if σ(α) is a root of fσ.

Proof. Note that for α ∈ E, we have σ(f(α)) = fσ(σ(α)). Since σ is injective, this
equals zero if and only if f(α) = 0. �
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3. Field Extensions

Definition 2. A field extension E/F is a pairs of fields E and F such that F ≤ E.
We may view E as a vector space over F , with scalar multiplication given by
multiplication within E. The dimension of this vector space is called the degree of
the extension, and is denoted by [E : F ].

Let E/F be a field extension. We say that E/F is finite if [E : F ] <∞.

Theorem 1 (Product of Degrees Formula). Let F ≤ E ≤ K be fields. Then K/F
is finite if and only if E/F is finite and K/E is finite. In this case, [K : F ] = [E :
F ][K : E].

Proof. Suppose that K/F is finite of dimension n. Then we have a basis
{v1, . . . , vn}. Since E/F is a subspace, it is finite. Now a vector in K/E is a
linear combination of the vi’s with coefficients in F and thus in E, so the vi’s span
K/E and it is finite.

Conversely suppose that K/E and E/F are finite. Let {u1, . . . , um} be a basis for
E/F and let {v1, . . . , vn} be a basis for K/E. Let B = {uivj | i = 1, . . . ,m and j =
1, . . . , n}.

Let x ∈ K. Then there exist a1, . . . , an ∈ E such that x = a1v1+ · · ·+anvn. But
for j = 1, . . . , n there exist b1,j , . . . , bm,j ∈ F such that ai = b1,iu1 + · · ·+ bm,ium,
so that x =

∑
j

∑
i bi,juivj . Thus B spans K/F , and K/F is finite.

Now suppose that
∑
i,j bi,juivj = 0. By the linear independence of the vj ’s, we

have that
∑
i bi,jui = 0 for j = 1, . . . , n, and thus by the linear independence of the

ui’s, each bi,j = 0. Thus B is linearly independent and is therefore a basis. Thus
K/F has dimension ij. �

4. Primitive Extensions

Definition 3. Let E/F be a finite field extension. We say that E/F is primitive if
there exists α ∈ E such that F [α] = E. In this case we call α a primitive element
for the extension.

Definition 4. Let E/F be a field extension and let α ∈ E. We say that α is alge-
braic over F if there exists a polynomial f ∈ F [X] such that f(a) = 0. Otherwise,
we say that α is transcendental over F .

If E/F is a field extension, denote the smallest subfield of E containing F and
α by F (α).

Proposition 9. Let E/F be a field extension and let α ∈ E. Let I = ker(ψα) be
the kernel of evaluation. Then

(a) I is a prime ideal;
(b) if α is transcendental over F , then I = 〈0〉, and F [α] ∼= F [X];
(c) if α is algebraic over F , then I = 〈f〉 where f is a unique monic irreducible

polynomial, and F [α] is a field.

Proof. Since F is a field, it contains no zero divisors, so the subring ψα(F [X]) =
F [α] ∼= F [X]/I is an integral domain. Thus I is a prime ideal.

The ideal I is the set of polynomials in F [X] that vanish at α.
If α is transcendental over F , then I is the zero ideal, and the map F [X] → R

is injective. In this case, F [α] is isomorphic to F [X], and F (α) is isomorphic to
F (X), the quotient field of F [X].



4

If α is algebraic over F , then I is a nonzero prime ideal. In a pid, nonzero
prime ideals are maximal, so I is a maximal ideal. In this case, F [α] is a field, and
F (α) = F [α]. Generators of principal prime ideals are prime elements and prime
elements are always irreducible, so a generator of I is irreducible. �

Definition 5. Let E/F be a field extension and let α ∈ E be algebraic over F .
The unique monic irreducible polynomial which generates I is called the minimum
polynomial of α over F , and is denoted min(α/F ).

Example 1. Find min(
√√

2 +
√

3,Q).

Solution. Let α =
√√

2 +
√

3. Then α4 = 5 + 2
√

2
√

3, and (α4 − 5)2 = 24. Thus
min(α,Q) = X8 − 10X4 + 1. �

Proposition 10. Let E1/F and E2/F be a field extensions and let α ∈ E1, β ∈ E2

such that min(α/F ) = min(β/F ). Define ψβα : F [α] → F [β] by ψβα = ψ
−1
β ◦ ψα.

Then ψβα is an isomorphism.

Proof. We defined ψβα as the composition of isomorphisms. �

Example 2. It is not necessary that F [α] = F [β]. As an example, take F = Q,

α = 3
√

2, ζ = e2πi/3, and β = αζ. Then F [α] is a subfield of R, but F [β] is not.

Proposition 11. Let E/F be a field extension and let α ∈ E be algebraic over F .
Let f = min(α/F ) and set n = deg(f). Then a basis for the vector space F (α)/F
is {1, α, . . . , αn−1}. In particular, [F (α) : F ] = n.

Proof. Let B = {1, α, . . . , αn−1}.
Let g(X) ∈ F [X]. Then there exist polynomials q(X) and r(X) with 0 ≤

deg(r) < deg(f) such that g(X) = f(X)q(X) + r(X). Then g(α) = f(α)q(α) +
r(α) = r(α). Since the evaluation map F [X]→ F [α] is surjective, each element of
F [α] = F (α) is of the form r(α) where deg(r) < n. Thus B spans F (α)/F .

Now suppose that
∑n−1
i=0 aiα

i = 0, where ai ∈ F . Then α is a root of the

polynomial g(X) =
∑n−1
i=0 aiX

i. Since the degree of this polynomial is less than the
degree of the minimal polynomial, we must have that g(X) is the zero polynomial
So all of the ai are zero, and B is a linearly independent set. �

Proposition 12. Let E/F be a field extension and let α1, . . . , αn ∈ E be algebraic
over F . Let L = F [α1, . . . , αn]. Then L/F is finite, and [L : F ] ≤

∏n
i=1[F [αi] : F ].

Proof. Let K = F [α1, . . . , αn−1]; by induction, we assume that [K : F ] ≤∏n−1
i=1 [F [αi] : F ]. Let f be the minimum polynomial of αn over F . Then the

coefficients of αn are in K, so view f ∈ K[X]. Since f(αn) = 0, αn is algebraic over
K, and the minimum polynomial of αn over K is a factors of f . In particular, the
degree of this minimum polynomial is less than or equal to deg(f) = [F [αn] : F ].
Thus

[L : F ] = [K[αn] : K][K : F ] ≤ [F [αn] : F ]

n−1∏
i=1

[F [αi] : F ] =

n∏
i=1

[F [αi] : F ].

�
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5. Splitting Extensions

Definition 6. Let E/F be a field extension and let f ∈ F [X]. We say that f splits
is E if f is the product of linear factors in E[X]. We say that E is a splitting field
of f over F if f splits in E and E is generated over F by the roots of f . In this
case we call E/F a splitting extension for f .

Proposition 13. Let F be a field and let f(X) ∈ F [X] be a monic polynomial of
positive degree. Then there exists an extension field E containing F such that E is
a splitting field of f(X) over F .

Proof. Proceed by induction on the degree of the polynomial.
If deg(f) = 1, then the unique root of f is already in F and F is a splitting field

for f over F . By strong induction on deg(f), we may assume that any polynomial
of degree less than f over any field has a splitting extension over that field.

Let h be an irreducible factor of f , and let K = F [X]/〈h〉. Denote the image of
X in K by α1. Divide f(X) by (X −α1) in K to obtain f(X) = (X −α1)g(X) for
some g(X) ∈ K[X]. Then there exists a splitting extension E/K for g. That is,
E = K[α2, . . . , αn], where α2, . . . , αn are the roots of g. Now E = F [α1, α2, . . . , αn]
is a splitting field for f over F . �

Proposition 14. Let F be a field and f ∈ F [X]. Let E1 and E2 be splitting fields
of f(X) over F . Then there exists an isomorphism φ : E1 → E2 which is the
identity on F .

Hedge. We will show this later, when we have more tools. �

Proposition 15. Let F be a field and f(X) ∈ F [X] with deg(f) = n. Let E be a
splitting field of f(X) over F . Then [E : F ]|n!.

Proof. Proceed by induction on the degree of the polynomial.
Let E be a splitting field of F . Let α be a root of f(X) in E. Then f(X) =

(X − α)g(X) in F [α] ≤ E, and deg(g) = n− 1. Now g(X) splits in E, and if g(X)
splits in a proper subfield of E, then so does f(X); thus E is a splitting field for g(X)
over K. By induction, [E : K]|(n− 1)!. Now [E : F ] = [E : K][K : F ] = [E : K]n;
thus [E : F ]|n!. �

Example 3. Let E/Q be a splitting extension for f ∈ Q[X] in each of the following
cases, and find [E : Q].

(a) f(X) = X3 − 2;
(b) f(X) = X4 − 2;
(c) f(X) = X8 − 10X4 + 1;
(d) f(X) = X5 − 2;
(e) f(X) = X5 − 4X + 2.
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6. Algebraic Extensions

Definition 7. Let E/F be a field extension. We say that E/F is algebraic if every
element in E is algebraic over F .

Proposition 16. Let E/F be a finite field extension. Then E/F is algebraic.

Proof. Let [E : F ] = n and let α ∈ E. Then {1, α, . . . , αn} is a linearly dependent
set over F , so there exist a0, . . . , an ∈ F such that a0 +a1α+ · · ·+anα

n = 0. Then
α is a root of a0 + a1X + · · ·+ anX

n, so α is algebraic over F . �

Proposition 17. Let E/F be a field extension and let α1, . . . , αn ∈ E be algebraic
over F . Then F [α1, . . . , αn]/F is algebraic.

Proof. By a previous proposition, this is a finite extension, so it is algebraic. �

Proposition 18. Let K/E and E/F be algebraic extensions. Then K/F is alge-
braic.

Proof. Let α ∈ K and let f ∈ E[X] be the minimum polynomial of α over E.
The coefficients of f are in E, so they are algebraic over F . Let A be the set
of these coefficients. Then F [A]/F is a finite extension. Now f ∈ F [A][X], and
[F [A][α] : F [A]] = deg(f), so F [A][α]/F [A] is a finite extension. Thus F [A][α]/F
is an algebraic extension, and α is algebraic over F . �

Proposition 19. Let E/F be an algebraic extension and let R be a subring of E
which contains F . Then R is a field.

Proof. It is clear that R is commutative, because E is. Let α ∈ R r 0. Then α is
algebraic over F , so F [α] is a field. Clearly F [α] is contained in R, so α−1 ∈ R.
Thus R is a field. �

Proposition 20. Let E/F be a field extension and set

K = {α ∈ E | α is algebraic over F}.

Then K is a subfield of E containing F .

Proof. Let α, β ∈ K. Since β is algebraic over F , it is also algebraic over F [α]. We
have [F [α, β] : F ] ≤ [F [α] : F ][F [β] : F ]. So F [α, β] is an algebraic extension of F ,
which implies that α + β and αβ are algebraic over F and thus in K, so K is a
subring of E. Then K is a subfield by the previous proposition. �

Proposition 21. Let E/F be an algebraic field extension and let φ : E → E be a
field monomorphism which fixes F pointwise. Then φ is an automorphism.

Proof. Let α ∈ E r F . Let f(X) be the minimum polynomial of α over F . Let A
be the set of roots of this polynomial in E. Note that A is nonempty and finite.
Since φ sends roots of f to other roots of f , the restriction φ �A: A → A is an
injective function from a finite set into itself. Therefore φ �A is surjective. Thus φ
sends some element to α, and φ is surjective on E. Thus φ is an isomorphism. �
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7. Algebraic Closure

Definition 8. A field E is called algebraically closed if every polynomial in E[X]
has a root in E. It follows immediately that if E is algebraically closed, then every
polynomial in E[X] is the product of linear factors in E[X].

Let E/F be a field extension. The set of all elements in E which are algebraic
over F is called the algebraic closure of F in E. We say that E is an algebraic
closure of F if E is algebraically closed and E/F is an algebraic extension.

We wish to prove that every field has an algebraic closure, and that any two
algebraic closures are isomorphic via an isomophism which is the identity on F .
Showing that there exists an algebraically closed field containing F requires one of
the forms of the Axiom of Choice. We use Zorn’s Lemma.

Fact 1 (Zorn’s Lemma). Let A be a partially ordered set. A chain in A is a subset
of A which is linearly ordered. If every chain in A has an upper bound, then every
element of A is bounded above by a maximal element.

Theorem 2 (Algebraic Closure Theorem). Let F be a field. Then there exists an
algebraically closed field K which contains F .

Proof. Let N denote the set of nonnegative integers. Let S = F [X]× N. The map
φ : F → S given by a 7→ ((X − a), 0) is injective, and induces the structure of a
field on the image. Identify φ(F ) with F .

Let F be the collection of all fields E such that

(a) the underlying set of E is a subset of S;
(b) E contains F ;
(c) if α = (f, n) ∈ E then f(α) = 0.

The set F is partially ordered by inclusions which preserve the field structure. Given
a chain in F, its union is also a field which is an upper bound for the chain. By
Zorn’s lemma, there exists a maximal field K ∈ F.

It follows from (c) that K is algebraic over F ; it remains to show that K is alge-
braically closed. Suppose it is not; then there exists a a proper algebraic extension
of K, say L.

Define a map φ : L → S as follows. If α ∈ K, then φ(α) = α. Otherwise α is
algebraic over F and is a root of a minimum polynomial f ∈ F [X]. Let a1, . . . , ar
be roots of f which are in K and let b1, . . . , bs be roots of f which are in L rK.
Let n1, . . . , ns be positive integers such that (f, ni) /∈ K. Set φ(bi) = (f, ni) for
i = 1, . . . , s. With such choices, φ is defined on all of L and is clearly injective and
maps L onto a subset of S which contains F . Also φ maps M onto itself. The map
φ induces a field structure on its image, and this field contains M as a subfield,
contradicting the maximality of K. This proves that K is algebraically closed. �

Proposition 22. Let F be a field and let K be an algebraically closed field contain-
ing F . Let E be the algebraic closure of F in K. Then E is an algebraic closure of
F .

Proof. By construction, E/F is algebraic. To see that E is algebraically closed, let
f ∈ E[X] and let α ∈ K be a root of f . Then E[α]/E is algebraic, so E[α]/F is
algebraic, and α is algebraic over F . Thus α ∈ E, and E is algebraically closed. �
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Theorem 3 (Algebraic Embedding Theorm). Let L be an algebraically closed field
and let E/F be an algebraic field extension. Let φ : F → L be a field embedding.
Then φ extends to an embedding ψ : E → L.

Proof. Define E = {(K, τ) | F ≤ K ≤ E and τ : K → L extends φ}. This set
is partially ordered by declaring (K1, τ1) ≤ (K2, τ2) if K1 ≤ K2 and τ2 extends
τ1. Then E contains a minimal element (F, φ), and all of the elements of the form
(F [α], ε), where α is a root in E of a polynomial over F , and ε maps this root to a
root of the polynomial in L.

This set admits an partial order relation given by

(K1, τ1) ≤ (K2, τ2)⇔ K1 ≤ K2 and τ2 extends τ1.

Every chain in E admits an upper bound given by taking the union of the fields
in the chain and defining an embedding on this union which agrees with every
embedding in the chain.

By Zorn’s Lemma, E contains maximal elements. Let (K,ψ) be a maximal
element. Now we claim that K = E. Suppose not, and let α ∈ E/K. Since E/F
is algebraic, so is E/K. Let f(X) be the minimum polynomial of α over K. Then
ψ(f) is a polynomial over L, and thus has a root in L, say β. Then we obtain an
embedding K[α] ↪→ L which extends K by sending α to β. This contradicts the
maximality of (K,ψ), and completes the proof. �

Proposition 23. Let F be a field and let K1 and K2 be algebraic closures of F .
Then there exists an isomorphism φ : K1 → K2 which is the identity on F .

Proof. By the previous proposition, the inclusion of F into K2 extends to an em-
bedding φ1 : K1 → K2. Similarly, there is an embedding φ2 : K2 → K1 which is
the identity on F . Then the composition φ1 ◦ φ2 is an embedding of K2 into itself
over F , and since K2/F is algebraic, this is an automorphism. In particular, it is
surjective, so φ1 is surjective, and thus an isomorphism. �

Proposition 24. Let E/F be an algebraic extension. Let L be an algebraically
closed field which is algebraic over either F or E. Then L is an algebraic closure
for both E and F .

Proof. If L is algebraic over E, then since the composition of algebraic extensions is
algebraic, L is algebraic over F . If L is algebraic over F , then L/E is a subextension,
which is necessary algebraic. By definition, L is an algebraic closure for F and for
E. �
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8. Finite Fields

Definition 9. Let R be a ring. Then there exists a unique homomorphism η : Z→
R. The characteristic of R is the unique nonnegative generator for the kernel of η.
If positive, this is the smallest positive integer that annihilates R. The image of η
is the characteristic subring

Proposition 25. Let R be an integral domain. Then the charactertistic of R is
either 0 or p for some prime p.

Proof. Otherwise, the characteristic subring of R has zero divisors. �

Proposition 26. Let R be a finite integral domain. Then R is a field.

Proof. Let a ∈ Rr{0} and define ξa : R→ R by ξa(x) = ax. Since R is an integral
domain, the cancellation law holds, and ax = ay ⇒ x = y. Thus ξa is injective.
Since R is finite, ξa is also surjective and admits an inverse. Then the inverse of a
in R is ξ−1a (1). �

Proposition 27. Let F be a field and let G be a finite subgroup of F ∗. Then G is
cyclic.

Proof. Let exp(G) denote the exponent of G; this is the smallest positive integer
n such that gn = 1 for every g ∈ G. Clearly exp(G) ≤ |G| and by a group theory
lemma, an abelian group is cyclic if and only if |G| = exp(G).

Consider the polynomial f(X) = Xexp(G) − 1 ∈ F [X]. Then every element of G
is a root of f , so f has at least |G| roots. But since deg(f) = exp(G), f has at most
exp(G) roots, so |G| ≤ exp(G), implying that |G| = exp(G) and G is cyclic. �

Proposition 28. Let E be a field and let F1 and F2 be finite subfields of E of the
same cardinality. Then F1 = F2.

Proof. Let n be the common cardinality of F1 and F2, and consider the polynomial
f(X) = Xn−X. Then every element of F1 is a root of f , and there are n = deg(f)
such elements, so these are all the roots. Similarly, F2 equals the set of roots of f ,
so F1 = F2. �

Let p be prime. Denote the field Z/pZ by Fp.

Proposition 29. Let E/F be an algebraic field extension, where F ∼= Fp. Let r be
a positive integer and set q = pr. Define φ : E → E by φ(a) = aq. Then φ is an
automorphism which fixes F pointwise.

Proof. Clearly φ(1) = 1 and φ(ab) = φ(a)φ(b). Also φ(a + b) = (a + b)q =∑q
i=0

(
q
i

)
aibq−i. For i 6= 0, q,

(
q
i

)
is divisible by q and thus by p, and is zero

modulo p. This gives φ(a+ b) = φ(a) + φ(b). Since E is a field, it contains no zero
divisors, so φ is injective. Now F ∗ is cyclic of order p−1, and p−1 divides q−1, so
φ(a) = aq−1a = a for a ∈ F . That is, φ is fixed on F , and since E/F is algebraic,
φ must be an automorphism. �
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Proposition 30. Let E be a finite field of characteristic p. Then |E| = pr for
some positive integer r.

Proof. The characteristic subring of E is isomorphic to the field Fp, and E is a
finite dimensional vector space over this, say of dimension r. Thus E ∼= Frp as a
vector space, and |E| = pr. �

Proposition 31. Let p be prime and let r be a positive integer. Set q = pr. Then
there exists a field of cardinality q which is unique up to isomorphism. Denote such
a field by Fq.

Proof. Any field of prime cardinality must equal its characteristic subring, so it is
isomorphic to Fp.

Let E be the splitting field of the polynomial f(X) = Xq −X over Fp, and let
φ be the qth power map on E. Then φ is an automorphism. The fixed field of φ
consists exactly of the roots of f(X). These roots are distinct, since the derivative
of f equals −1 modulo p, and has no roots. Then clearly E = Fix(φ) and |E| = q.

Given two fields of cardinality q, each is of characteristic p and may be embedded
in an algebraic closure of Fp. There images there must be equal, so they must be
isomorphic. �

Proposition 32. Let r and s be positive integers. Then Fpr ≤ Fps if and only if
r | s.

Proof. Suppose Fpr ≤ Fps . Then Fps is a vector space over Fpr , say of dimension
n, so ps = |Fps | = (pr)n = prn. Thus r divides s.

On the other hand, suppose r divides s. Let F̃p be an algebraic closure of Fp,
and view Fpr and Fps as subfields of F̃p. Then Fps is exactly the set of roots of

the polynomial fs(X) = Xps −X, and Fpr is the set of roots of fr(X) = Xpr −X.
Now fr divides fs, so the roots of fr are in Fps . �
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9. Splitting Extensions of Collections

Definition 10. Let E/F be a field extension and let Γ = {fi(X) | i ∈ I} ⊂ F [X]
be a collection of polynomials over F , where I is any indexing set. We say that Γ
splits in E if each of the fi ∈ Γ splits in E. We say that E is a splitting field for Γ
if Γ splits in E and E is generated by F and all the roots of all the polynomials in
Γ.

Proposition 33. Let F be a field and let Γ = {fi | i ∈ I} ⊂ F [X] be a collection
of polynomials over F , where I is any indexing set. Then there exists a field E
containing F which is a splitting field for Γ.

Proof. Let K be an algebraic closure of F . Then Γ splits in K; the subfield of K
generated by F and all the roots of the polynomials in Γ is a splitting field. �

Proposition 34. Let F be a field and let Γ = {fi | i ∈ I} ⊂ F [X] be a collection of
polynomials over F , where I is any indexing set. Let E1 and E2 be splitting fields
for Γ over F . Then there exists an isomorphism φ : E1 → E2 which is the identity
on F .

Proof. Let K be an algebraic closure of F . Since E1/F and E2/F are algebraic
extensions, there exist embeddings φ1 : E1 → K and φ2 : E2 → K. The images of
both maps are generated by F and the roots of the polynomials in Γ, so the images
are identical, and φ−12 ◦ φ1 : E1 → E2 is an isomorphism. �
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10. Normal Extensions

Definition 11. Let E/F be an algebraic field extension. We say that E/F is
normal if every polynomial f(X) ∈ F [X] which has a root in E splits in E.

Proposition 35. Let F ≤ E ≤ K be fields with K/F algebraic. If K/F is normal,
then so is K/E.

Proof. Let f ∈ E[X] be a polynomial with a root α ∈ K. Since K/F is normal,
all of the roots f = min(α/F ) are in K. Since f may be viewed as a polynomial
over E, g = min(α/E) is a factor of f , so all the roots of g are in K. Thus K/E is
normal. �

Proposition 36. Let E/F be a finite normal extension. Then E is the splitting
field over F of a polynomial over F .

Proof. Suppose E/F is a normal extension. Since it is a finite extension, E =
F (α1, . . . , αn) for some αi ∈ E. Let fi(X) ∈ F [X] be the minimum polynomial
of αi. Let f(X) =

∏n
i=1 fi(X). Then since E/F is normal, f(X) splits in E, and

since E is generated by some of the roots of f and contains them all, E is generated
by all the roots of f . Thus E is a splitting field of f . �

Thus finite normal extensions are splitting fields; later we will see when they are
splitting fields of an irreducible polynomial.

Theorem 4 (Normality Characterization Theorem). Let E/F be an algebraic ex-
tension, and let K be an algebraic closure of E. Then the following conditions are
equivalent:

(a) E/F is a normal extension;
(b) E is the splitting field over F of a collection of polynomials over F ;
(c) every automorphism of K which fixes F pointwise fixes E setwise.

Proof.
(a) ⇒ (b) Suppose E/F is a normal extension. Let Γ = {f ∈ F [X] | f(α) =

0 for some α ∈ E}. For f ∈ Γ, f splits in E because E/F is normal. Clearly E
is generated by F and the roots of the polynomials in Γ. It follows that E is the
splitting field over F of Γ.

(b) ⇒ (c) Suppose E is the splitting field over F of Γ ⊂ F [X]. Let A = {α ∈
E | f(α) = 0 for some f ∈ Γ}. Then E = F [A].

Let φ be an automorphism of K which fixes F pointwise. We wish to show that
φ(E) = E. Let α ∈ A so that α is a root of some f ∈ Γ. Then φ(f(α)) = f(φ(α))
because φ fixes the coefficients of f , so f(φ(α)) = 0, and φ(α) is also a root of f ,
and φ(α) ∈ A, so φ(A) ⊂ A. Similarly φ−1(α) ∈ A, which shows that φ(A) = A.
Thus φ(E) = φ(F [A]) = φ(F )[φ(A)] = F [A] = E.

(c) ⇒ (a) Suppose that E/F is not normal. Then there exists a polynomial
f ∈ F [X] with roots α, β ∈ K such that α ∈ E and β /∈ E. The embedding
F [α] → K fixed pointwise on F and otherwise given by α 7→ β extends to an
embedding K → K which is an automorphism of K. This automorphism does not
fix E setwise. �

Definition 12. Let E/F be an algebraic extension and let F̃ be an algebraic closure

of F . The normal closure of E/F in F̃ is the intersection of all normal extensions

of F in F̃ containing the image of an embedding of E/F in F̃ .
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11. Separable Extensions

Definition 13. Let E/F be a field extension. We say that E/F is separable if
every polynomial f over F with a root in E has deg(f) distinct roots in a splitting
field of f over F .

Proposition 37 (Primitive Element Theorem). Let E/F be a finite separable ex-
tension. Then E/F is primitive.

Proof. First assume that F is finite. Then E is also finite, and E∗ is a cyclic group,
and a generator for this group will be a primitive element for E/F . Thus we may
assume that F is infinite.

Since E/F is finite, we have E = F [α1, . . . , αn] for some elements αi ∈ E
which are algebraic over F . By induction on the number of generators, we may
assume that F [α1, . . . , αn−1] has a primitive element α ∈ E. Set β = αn so that
E = F [α, β]. Let f = min(α/F ) and g = min(β/F ), and let K be a splitting field
of fg over F . Let A = {−a−αb−β ∈ K | a, b ∈ K r {α, β}, f(a) = 0, g(b) = 0}. This

is a finite set. Since F is infinite, we may select c ∈ F r A. Set γ = α + cβ and
L = F [γ]. We claim that E = L.

Let h(X) = f(γ − cX). Then h ∈ L[X] and h(β) = 0. Let b ∈ K r {β} be a
root of g and suppose h(b) = 0. Then f(α + cβ − cb) = 0 so α + cβ − cb = a for
some root a of f . Solving for c gives c = −a−αb−β ; but we selected c away from this

set. Thus the only common root between g and h is β, so gcd(g, h) = (X − β)k for
some k. Since E/F is separable, k = 1. Thus β ∈ L, which implies that α ∈ L, and
L = E. �

Theorem 5 (Primitive Characterization Theorem). Let E/F be a finite extension.
Then E/F is a primitive extension if and only if there are only finitely many distinct
intermediate fields between E and F .

Proof.
(⇒) Suppose that E/F is a primitive extension and let α be a primitive element.

Let f(X) be the minimum polynomial of α over F . Let K be an intermediate field
and let gK be the irreducible polynomial of α over K. Then gK divides f . We
obtain a map K 7→ gK defined on the collection of intemediate fields into a finite
set of polynomials.

Now let K1 and K2 be intermediate fields and suppose that gK1
= gK2

= g. Let
K0 be the subfield of K1 (and K2) generated over F by the roots of g. Since g is
irreducible over K1 (and K2), it is irreducible over K0. Thus [E : K0] = [E : K1],
so K0 = K1; similarly K0 = K2, so the maps K 7→ gK is injective. This proves
that there are only finitely many intermediate fields between E and F .

(⇐) Assume that F is infinite. For every element α ∈ E, we have [F (α) : F ] ≤
[E : F ] < ∞; we may select α such that [F (α) : F ] is maximal among all of the
primitive subextensions. Suppose that F (α) 6= E. Let β ∈ E r F (α). There are
only finitely many fields of the form F (α+ cβ) as c ranges throughout the infinite
field F ; thus for some c1 6= c2, we have F (α+ c1β) = F (α+ c2β). Call this field K.
Then α+ c1β and α+ c2β are both in K, and so there difference (c2 − c1)β. Since
c2 − c1 ∈ K, so is β; thus α is also in K. Thus K = F (α+ c1β) is a primitive field
extension of F containing F (α), contradicting our choice of α. �
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12. Automorphisms and Fixed Fields

Definition 14. Let E be a field. The automorphism group of E is

Aut(E) = {φ : E → E | φ is a bijective homomorphism },
and Aut(E) ≤ Sym(E).

Let E/F be a field extension. The automorphism group of E/F is

Aut(E/F ) = {φ ∈ Aut(E) | φ(a) = a for every a ∈ F},
and Aut(E/F ) ≤ Aut(E).

Proposition 38. Let E/F be a finite separable extension. Then |Aut(E/F )| ≤
[E : F ].

Proof. Let α be a primitive element for E/F so that E = F [α]. Let f = min(α/F ).
Then deg(f) = [E : F ]. Now any automorphism φ of E which fixes F also fixes
f , so it sends α to another root of f . The automorphism is completely determined
by the destination of α, and there are at most deg(f) roots of f in E. Thus
|Aut(E/F )| ≤ [E : F ]. �

Remark 1. This remains true without the hypothesis of separable.

Definition 15. Let φ ∈ Aut(E). The fixed field of φ is

Fix(φ) = {x ∈ E | φ(x) = x},
and Fix(φ) is a subfield of E.

Let G ≤ Aut(E). The fixed field of G is

Fix(G) = {x ∈ E | φ(x) = x for every φ ∈ G},
and Fix(G) = ∩φ∈GFix(φ) is a subfield of E.

Proposition 39. Let E be a field with subfields F and K. Let H,G ≤ Aut(E).
Then

(a) F ⊂ K ⇒ Aut(E/F ) ⊃ Aut(E/K);
(b) H ⊂ G⇒ Fix(H) ⊃ Fix(G);
(c) Aut(E/Fix(G)) ⊃ G;
(d) Fix(Aut(E/F )) ⊃ F .
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13. Galois Extensions

Definition 16. Let E/F be a field extension. We say that E/F is Galois if it is
finite, normal, and separable.

Proposition 40. Let F ≤ E ≤ K be fields, with K/F algebraic. If K/F is Galois,
then so is K/E.

Proof. Since K/F is finite, normal, and separable, so is K/E. �

Proposition 41 (Artin’s Lemma). Let E be a field and let G ≤ Aut(E) be a finite
group of automorphisms of E. Let F = Fix(G). Then

(a) E/F is a Galois extension;
(b) |G| = [E : F ];
(c) Aut(E/F ) = G.

Proof. Let α ∈ E r F and let A = {φ(α) | φ ∈ G}. Since G is finite, so is A. Let
f(X) =

∏
a∈A(X − a) ∈ E[X]. Then f is a monic polynomial with deg(f) = |A|.

Moreover, the coefficients of f are fixed by the action of G on E, and so they are in
F . Thus E/F is an algebraic extension. Furthermore, deg(f) = [F [α] : F ] ≤ |G|.

The elements of A are distinct roots of the minimum polynomial of α over F ,
so the degree of this minimum polynomial must be greater than or equal to |A| =
deg(f). But f is a monic polynomial over F of which α is a root, so it must be the
minimum polynomial. Since α was chosen arbitrarily, f is an arbitrary irreducible
monic polynomial over F with a root in E, and all of the roots of f are in E. Thus
E/F is normal. Moreover, f has distinct roots, so E/F is separable.

Suppose that α is an element of E such that [F (α) : F ] is a maximum, and
suppose that [E : F ] > |G|. Then since [F (α) : F ] ≤ |G|, there exists an element
β ∈ E such that β /∈ F (α). Then F (α, β)/F is a separable finite extension, and so
has a primitive element γ. Then [F (γ) : F ] > [F (α) : F ], contradicting our choice
of α. Thus [E : F ] ≤ |G|, so E/F is finite and therefore Galois.

Finally, G is a group of automorphisms of E which fix F , so G ≤ Aut(E/F ),
and |G| ≤ |Aut(E/F )| ≤ [E : F ]. This proves |G| = [E : F ], and moreover,
|G| = |Aut(E/F )| so G = Aut(E/F ). �
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Theorem 6 (Galois Characterization Theorem). Let E/F be a finite extension.
Then the following conditions are equivalent:

(a) E/F is a Galois extension;
(b) |Aut(E/F )| = [E : F ];
(c) Fix(Aut(E/F )) = F .

Proof.
(a)⇒ (b) Suppose E/F is Galois. Then E/F is separable and admits a primitive

element α. Each root of the minimum polynomial of α which is and elements
of E gives an automorphism of E/F by sending α to it, and these are the only
automorphisms. Since E/F is separable, there are [E : F ] such roots, and since
E/F is normal, all of them are in E.

(b) ⇒ (c) Suppose that |Aut(E/F )| = [E : F ]. Let K = Fix(Aut(E/F )); we
have F ≤ K. Then Aut(E/K) is a group of automorphisms of E which fix K and
therefore fix F , so Aut(E/K) ≤ Aut(E/F ). On the other hand, Aut(E/F ) is a
group of automorphisms of E which fix K by definition of K, we have Aut(E/F ) ≤
Aut(E/K). Thus Aut(E/K) = Aut(E/F ). Now

[E : F ] = |Aut(E/F )| = |Aut(E/K)| ≤ [E : K],

so F ≤ K implies that F = K.
(c) ⇒ (a) Suppose that Fix(Aut(E/F )) = F . Apply Artin’s Lemma with

G = Aut(E/F ). �

Proposition 42. Let E/F be a Galois extension.

(a) H ≤ Aut(E/F )⇒ Aut(E/Fix(H)) = H;
(b) K ≤ E/F ⇒ Fix(Aut(E/K)) = K;

Proof. Part (a) is from Artin’s Lemma. The notation K ≤ E/F means that
F ≤ K ≤ E. Since E/F is Galois, so is E/K. Now (b) follows from the Galois
Characterization Theorem. �
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14. Galois Correspondence

Definition 17. If E/F is a Galois extension, the set of all automorphisms of E
which fix F is denoted Gal(E/F ).

This is simply a mnemonic device. If one sees Gal(E/F ), one recalls its fixed
field is F . If one sees Aut(E/F ), one knows that F is a subfield of its fixed field,
but there is a question about whether F is the entire fixed field.

Theorem 7 (Galois Correspondence Theorem). Let E/F be a Galois extension
with G = Gal(E/F ). Let F be the set of subfields of E which contain F and let G
be the set of subgroups of G. Then there exists a bijective correspondence

Φ : F→ G given by K 7→ Gal(E/K),

with inverse H 7→ Fix(H). Additionally,

(a) H1 ⊂ H2 ⇔ Fix(H1) ⊃ Fix(H2);
(b) |H| = [E : Fix(H)];
(c) [G : H] = [Fix(H) : F ].

Finally, if H ≤ G and K = Fix(H), then H / G if and only if K/F is a normal
extension, in which case Gal(K/F ) ∼= G/H.

Proof. Let K1,K2 ≤ E/F and suppose Φ(K1) = Φ(K2). Then Gal(E/K1) =
Gal(E/K2). Then K1 = Fix(Gal(E/K1)) = Fix(Gal(E/K2)) = K2, so Φ in injec-
tive.

Let H ≤ G. Then Φ(Fix(H)) = Gal(Fix(H)) = H, so Φ in surjective. Thus Φ
is a bijection.

We always have H1 ⊂ H2 ⇒ Fix(H1) ⊃ Fix(H2), and that K1 ⊂ K2 ⇒
Aut(E/K1) ⊃ Aut(E/K2). Now suppose that Fix(H1) ⊃ Fix(H2), and apply
Gal(E/∗), which in this case is the same as Aut(E/∗), to both sides to obtain
H1 = Gal(Fix(H1)) ⊂ Gal(Fix(H2)) = H2. This proves (a).

Since E/Fix(H) is a Galois extension and H = Aut(E/Fix(H)), we have (b).
By Lagrange’s Theorem, we know that |G| = |H|[G : H]. By the dimension

formula, [E : F ] = [E : Fix(H)][Fix(H) : F ]. Since E/F and E/Fix(H) are Galois
extensions, [E : F ] = |G| and [E : Fix(H)] = |H|. Thus [G : H] = [Fix(H) : F ],
proving (c).

As for the a last part, suppose that K/F is a normal extension. Then every
automorphism of E stabilizes K setwise. If φ ∈ G, then φ �K : K → K is an
automorphism of K, which necessarily fixes F and thus is in Gal(K/F ). The
map φ 7→ φ �K is a homomorphism Gal(E/F ) → Gal(K/F ). The kernel of this
homomorphism is Gal(E/K). Thus Gal(E/K) is normal, and Gal(K/F ) ∼= G/H
by the isomorphism theorem.

Suppose that K/F is not a normal extension. Then there exists an automor-
phism φ ∈ Gal(E/F ) which does not stabilize K setwise; thus φ(K) 6= K. Then
Gal(E/φ(K)) = φHφ−1, so φHφ−1 6= H, and H is not normal. �
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15. Fundamental Theorem of Algebra

Theorem 8 (Fundamental Theorem of Algebra). The field C is algebraically closed.

Proof. Let f(X) = X2 + 1 ∈ R[X]. Let i be a root of f and note that

C = R(i) = {a+ ib | a, b ∈ R}.
Let g(X) ∈ C[X] and let E be the splitting field of g(X) over C. It suffices to show
that E = C.

Since E is a splitting field, it is a Galois extension of C. Thus it is Galois over
R. Let G = Gal(E/R). Let H be a Sylow 2-subgroup of G. Let F = Inv(H).
By comparing degrees, [F : R] has odd degree. By the primitive element theorem,
F = R(α), such that α is the root of an irreducible polynomial over R of odd degree.
But every polynomial of odd degree over R has a root in R, so the only irreducible
polynomials over R are the linear ones. Thus α ∈ R, and F = R. Therefore H = G
is a 2-group, which demands that Gal(E/C) is a 2-group.

If Gal(E/C) is nontrivial, it has a subgroup of index 2, necessary normal, which
corresponds to a Galois subextension K/C of degree 2. This extension has a primi-
tive element β, which is the root of an irreducible quadratic equation over C. But by
the quadratic formula, there are no irreducible quadratic polynomials over C. �

16. Galois Solvability Criterion

Definition 18. Let F be a field and let f ∈ F [X]. Let E be a splitting field of f
over F . We say that f is solvable by radicals if there exists a sequence of subfields
of E

F = F0 ≤ F1 ≤ · · · ≤ Fr = E

such that Fi + 1 = Fi[αi] for i = 1, . . . , r, where αi is a root of Xni − bi for some
bi ∈ Fi.

Definition 19. Let G be a group. We say that G is solvable if there exists a
sequence of subgroups of G

{1} = G0 ≤ G1 ≤ · · · ≤ Gs = G

such that Gi / G and Gi+1/Gi is abelian.

Theorem 9. Let F be a field and let f ∈ F [X]. Let E be a splitting field of f over
F . Then f is solvable by radicals if and only if Gal(E/F ) is a solvable group.



19

Additional Material

17. Multiplicity of Roots

Definition 20. Let F be a field and let K be an algebraic closure of F . Let
f ∈ F [X] and let α ∈ K. The multiplicity of α in f , denoted by mul(f, α), is the
largest nonnegative integer n such that f(X) = (X − α)ng(X) for some g ∈ E[X],
where E is a splitting field of f .

If mul(f, α) = 0, then α is not a root of f . If mul(f, α) = 1, we call α a simple
root of f . If mul(f, α) > 1, we call α a multiple root of f .

Definition 21. Let F be a field and let f ∈ F [X], and write f(X) =
∑n
i=0 aiX

i,
where ai ∈ F . Define the derivative of f , denoted f ′, to be the polynomial

f ′(X) = a1 + 2a2X + · · ·+ nanX
n−1.

Proposition 43. Let F be a field and let f ∈ F [X]. Let h be another indeterminate
and view f and f ′ as polynomials in F [X,h]. Then f(X+h) ∈ F [X,h] and h divides

f(X + h)− f(X). Define g(X) = f(X+h)−f(X)
h . Then f ′(X) = g(X, 0).

Proof. Apply the binonmial theorem to terms (X+h)k in f(X+h), cancel duplicate
terms in the numerator, then cancel the h. �

Proposition 44. Let F be a field, f(X) ∈ F [X], E a splitting field of f , and
α ∈ E a root of f . Then

(a) mul(f, α) = mul(f ′, α) + 1;
(b) α is a multiple root if and only if α is a root of f ′.

Proof. Compute. �

Definition 22. Let F be a field and let f ∈ F [X]. We say that f is separable if
its irreducible factors have only simple roots. Otherwise f is inseparable. Let E/F
be a field extension and let α ∈ E be algebraic over F . We say that α is separable
over F if min(α/F ) is separable.

Example 4. We give an example of an inseparable polynomial. Let Fp = Z/pZ
be the field of cardinality p. Let t be transcendental over Fp. Let K = Fp(t).
Consider f ∈ K[X] given by f(X) = Xp − t. Let r be a pth root of t. Then
f(X) = (X − r)p = Xp − rp, so r is a root of multiplicity p.

Definition 23. Let F be a field. We say that F is perfect if every nonzero poly-
nomial over F is separable.

Proposition 45. Let F be a field of characteristic zero. Then F is perfect.

Proof. Let f ∈ F [X] be a nonzero polynomial which we may assume is irreducible.
Let E be a splitting field of f over F . Let α ∈ E be a root of f . Then deg(f ′) <
deg(f), and f ′ is not the zero polynomial. Since f is a nonzero polynomial of
minimal degree of which α is a root, α is not a root of f ′. Thus f is separable. �

Proposition 46. Let F be a field of characteristic p > 0. Then F is perfect if and
only if the map F → F given by a 7→ ap is surjective.

Wait. We will see this later. As a consequence, every finite field is perfect. �
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18. Embeddings

Definition 24. Let E/F and L/F be field extensions. The embedding set of E/F
with respect to L is

EmbL(E/F ) = {φ : E → L | φ(a) = a for every a ∈ F}.

Proposition 47. Let E/F be an algebraic field extension and let L be a field con-
taining F . Then Aut(E/F ) acts freely on the right of EmbF̃ (E/F ) via composition.
Thus |Aut(E/F )| ≤ |EmbF̃ (E/F )|.

Proof. The action is given by, for ψ ∈ Aut(E/F ) and σ ∈ EmbL(E/F ), σψ = σ◦ψ.
This clearly a group action. To see that it is free, select ψ1, ψ2 ∈ Aut(E/F ) and
σ ∈ EmbL(E/F ) such that σψ1 = σψ2. View σ as an isomorphism onto σ(E). As
such, it is invertible, and multiplying on the left yields ψ1 = ψ2. This shows that
the action is free. �

Proposition 48. Let E/F be an algebraic field extension and let F̃ be an algebraic

closure of F . Then Aut(F̃ /F ) acts transitively on the left of EmbF̃ (E/F ) via
composition.

Proof. The action is given by, for φ ∈ Aut(E/F ) and σ ∈ EmbF̃ (E/F ), φσ = φ◦σ.
This clearly a group action. To see that it is transitive, let σ1, σ2 ∈ EmbF̃ (E/F ).

Let Ẽ be an algebraic closure of E. Then σi extends to an embedding σ̃i : Ẽ → F̃
for i = 1, 2, which are isomorphisms by a previous argument. Then φ = σ̃2 ◦ σ̃−11 is

an automorphism of Aut(F̃ /F ). Moreover, φσ1 = σ2. This shows that the action
is transitive. �

Definition 25. Let E/F , K/E, and L/F be field extensions and let σ ∈
EmbL(E/F ). The lifting set of σ to K is

LifL(K/F, σ) = {τ ∈ EmbL(K/F ) | τ �E= σ}.

Proposition 49. Let E/F and K/E be finite extensions and let F̃ be an algebraic
closure of F . Let σ1, σ2 ∈ EmbF̃ (E/F ). Then

|LifF̃ (K/F, σ1)| = |LifF̃ (K/F, σ2)|.

Proof. The group Aut(F̃ /F ) acts transitively on EmbF̃ (E/F ); let φ ∈ Aut(F̃ /F )
such that φσ1 = σ2. Define a function LifF̃ (K/F, σ1)→ LifF̃ (K/F, σ2) by τ 7→ φ◦τ .

The function τ 7→ φ−1 ◦ τ is clearly an inverse, so this function is bijective. �

Proposition 50. Let E/F and K/E be finite field extensions, and let F̃ be an
algebraic closure of F which contains E. Then

|EmbF̃ (K/F )| = |EmbF̃ (K/E)||EmbF̃ (E/F )|.

Proof. Each embedding of K/F into F̃ produces an embedding of E/F and a lift
of this embedding to K/E. Each embedding has the same number of lifts, and that
number is |EmbF̃ (K/E)|, since these are lifts of the identity embedding. The result
follows. �

Definition 26. Let E/F be a field extension and let F̃ be an algebraic closure of
F .

Let Ψ : Aut(E/F ) → Sym(EmbF̃ (E/F )) be the homomorphism given by the
free right action of Aut(E/F ).
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Let Φ : Aut(F̃ /F ) → Sym(EmbF̃ (E/F )) be the homomorphism given by the
transitive left action of Aut(E/F ).

The Galois group of E/F is the image of Φ, and is denoted Gal(E/F ).

Proposition 51. Let E/F be a field extension and let F̃ be an algebraic closure of
F . Let S = Sym(EmbF̃ (E/F )), G = Gal(E/F ), and A = Ψ(Aut(E/F )). Then

(a) CS(G) = A;
(b) NG(T )/T ∼= A.

Definition 27. Let f ∈ F [X]. The distinct root set of f with respect to L is

ZerL(f) = {β ∈ L | f(β) = 0}.

Proposition 52. Let E/F and L/F be fields extensions and let α ∈ E be algebraic
over F with f = min(α/F ). Define εα : ZerL(f) → EmbL(F [α]/F ) by β 7→ ψβα.
Then εα is bijective.

Proof. We have already noted by ψβα is an isomorphism of F [α] onto F [β], and
thus into L/F when β ∈ K. Clearly, sending α to different destinations in K
produces different embeddings, so εα is injective. Moreover, any embedding sends
α to a root of f , so εα is surjective. �

19. Separable Extensions

Definition 28. Let E/F be an algebraic extension. We say that E/F is separable
if every nonzero element of E is separable over F .

Proposition 53. Let F ≤ E ≤ K be fields with K/F algebraic. If K/F is separa-
ble, then so is K/E.

Proof. Let α ∈ K, f = min(α/F ), and g = min(α/E). Since K/F is separable, f
has no multiple roots. Since g is a factor of f , g has no multiple roots. Thus K/E
is separable. �

Proposition 54. Let E/F be a finite extension and let F̃ be an algebraic closure
of F . Then

(a) |EmbF̃ (E/F )| ≤ [E : F ];
(b) |EmbF̃ (E/F )| = [E : F ] if E/F is separable.

Proof. Since E/F is finite, we may find a a proper subfieldK ≤ E containing F such
that K/F is finite and E/K is primitive, say E = K[α] with α algebraic over K.
By induction on the degree of the extension, we may assume that |EmbF̃ (K/F )| ≤
[K : F ] and that |EmbF̃ (K/F )| = [K : F ] if K/F is separable. �
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Theorem 10 (Primitive Element Theorem). Let E/F be a finite separable exten-
sion. Then E/F is a primitive extension.

Proof. If F is a finite field, then so is E, so E∗ is a cyclic group. A generator for
E∗ is a primitive element for E/F . Thus assume that F is infinite.

Since E/F is a finite extension, it is generated by a finite number of elements:
E = F (α1, . . . , αn, β). By induction, any proper subextension has a primitive
element, so let F (α1, . . . , αn) = F (α) for some α ∈ E. Now E = F (α, β).

Let F̃ be an algebraic closure of F . Since E/F is separable, there exist n = [E :

F ] distinct embeddings of E into F̃ ; label them σ1, . . . , σn. Consider the polynomial

f(X) =
∏
i 6=j

(σiα+ σiβX − σjα− σjβX).

This is not the zero polynomial, so it has a finite number of roots in F̃ , but F is
infinite. Thus f(c) 6= 0 for some c ∈ F . Thus the elements σiα+ cσiβ are distinct
as i ranges from 1 to n.

This shows that the σi are distinct embeddings of K = F (α + cβ) into F̃ , so
that [K : F ] ≥ [K : F ]s ≥ n. But K ≤ E, so [K : F ] ≤ [E : F ] = n. Then
[K : F ] = [E : F ], and K = E. Thus E/F is a primitive extension, generated by
α+ cβ. �
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20. Field Exercises

Problem 1. Let D be pid.
For f(X) = a0 + a1X + · · ·+ anX

n ∈ D[X], define

σ(f) =

n∑
i=0

ai; I = {f(X) ∈ D[X] | σ(f) = 0}.

Show that I is a prime ideal of D[X] and that D[X]/I ∼= D.

Problem 2. Let D be pid and let a ∈ D be prime.
For f(X) = a0 + a1X + · · ·+ anX

n ∈ D[X], define

σ(f) = a0; I = {f(X) ∈ D[X] | a divides σ(f)}.
Show that I is a maximal ideal of D[X] and that D[X]/I ∼= D/aD.

Problem 3. Let F be a finite field of cardinality 1331.
Show that the polynomial f(X) = X2 +X + 1 is irreducible over F .
(Hint: Note that X3 − 1 = (X − 1)(X2 + X + 1) and that F ∗ is a group under
multiplication; what are the possible orders of its elements?)

Problem 4. Let F be a finite field of cardinality 343.
Show that the polynomial f(X) = X5 +X4 +X3 +X2 +X + 1 splits in F [X].

Problem 5. Let F be a finite field of cardinality 101.
Find all square roots of −1 in F .

Problem 6. Let F be a finite field of cardinality 243.
Show that

√
−1 does not exist in F .

Problem 7. Let F be a finite field of cardinality q, and suppose that q ≡ 3 mod 4.
Show that the polynomial f(X) = X2 + 1 is irreducible over F .

Problem 8. Show that F51[X]/〈X2 − 15X − 1〉 is not a field.

Problem 9. Let R = F3[X] be the ring of polynomials over F3.
Find an ideal A / R such that R/A is a nondomain with six elements.

Proposition 55. Determine the Galois correspondence for each of the following
polynomials over Q:

(a) f(X) = X3 − 2;
(b) f(X) = X4 − 2;
(c) f(X) = X8 − 10X4 + 19;
(d) f(X) = X5 − 2;
(e) f(X) = X5 − 4X + 2.
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