AP CALCULUS AB Dr. Paul L. Bailey Quiz 0423 Thursday, April 23, 2020 Name:

The quiz is multiple choice. Enter the answers on the appropriate Google Form:

0423 Vector Calculus Checkin

Problem 1. Which of the following subsets of \mathbb{R}^2 is NOT simply connected?

(A)
$$\{(x,y) \in \mathbb{R}^2 \mid 0 \le x^2 + y^2 \le 4\} \cup \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$$

- **(B)** $\{(x, y) \in \mathbb{R}^2 \mid 0 \le x^2 + y^2 \le 4\} \setminus \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$
- (C) { $(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 \le 4$ } \ { $(x,y) \in \mathbb{R}^2 \mid y = 0$ }
- (D) $\{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 \le 4\} \cup \{(x,y) \in \mathbb{R}^2 \mid y = 1\}$
- (E) $\{(x,y) \in \mathbb{R}^2 \mid 2 < x^2 + y^2 \le 4\} \setminus \{(x,y) \in \mathbb{R}^2 \mid y = 1\}$

Problem 2. Which of the following vector fields is NOT conservative in \mathbb{R}^3 .

- (A) $\vec{F} = \langle x, y, 1 \rangle$ (B) $\vec{F} = \langle x, y, z \rangle$
- (C) $\vec{F} = \langle x^2, y^2, z^2 \rangle$
- (D) $\vec{F} = \langle yz, xz, xy \rangle$
- (E) $\vec{F} = \langle 4x^3y^4z^4, 4x^4y^3z^4, 4x^4y^4z^3 \rangle$

Problem 3. Consider the following statements.

- (σ) The double integral of divergence in a region equals flux across the boundary.
- (9) The double integral of divergence in a region equals flow along the boundary.
- (\$) The double integral of curl in a region equals flux across the boundary.
- (\mathcal{F}) The double integral of curl in a region equals flow along the boundary.

Which of the following is a correct list of the true statements?

- (A) ♂, ∛
- **(B)** ♀, ĕ
- (C) ♂, ∛
- (D) ♂, \, \, \,
- (E) ♂, ♀, ♀, ∛

Problem 4. Let the surface S be the portion of the paraboloid $z = 5x^2 + 5y^2$ that lies between the planes z = 2 and z = 7. The surface is parameterized by

$$\vec{s}(u,v) = \langle u\cos v, u\sin v, 5u^2 \rangle.$$

We let $v \in [0, 2\pi]$. What is the appropriate domain for u?

(a)
$$u \in \left[2,7\right]$$

(b) $u \in \left[\frac{\sqrt{2}}{5}, \frac{\sqrt{7}}{5}\right]$
(c) $u \in \left[\sqrt{2}, \sqrt{7}\right]$
(d) $u \in \left[\frac{\sqrt{10}}{5}, \frac{\sqrt{35}}{5}\right]$
(d) $u \in \left[\frac{\sqrt{2}}{5}, \frac{\sqrt{7}}{5}\right]$

Problem 5. Let $\vec{F} = \langle 2x^2, 0, -z^3 \rangle$ and let S be the portion of the parabolic cylinder $y = 2x^2$ for which $0 \le z \le 1$ and $-1 \le x \le 1$. What is the outward flux of \vec{F} across S?

- (A) $-\frac{4}{3}$ (B) $\frac{4}{3}$ (C) -4(D) 4
- **(E)** 0