Problem 1. Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.

(a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.

y :	X	Y	dylan
3	0	0	0
2	0		-1.
	0	2	7
	2	0).
0 1 2	2	2	4

(b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Use your equation to approximate f(2.1).

tò approximate
$$f(2.1)$$
.

Potr $+$ (2.3)
 $y = M(x-z) + 3$

$$dx = \frac{1}{2-1} = \frac{9}{4} \text{ Line 1}$$

$$L(x) = y = 9(x-2) + 3$$

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.

$$\frac{dy}{dx} = \frac{y^2}{x-1} + \frac{1}{y} = \ln(x-1) + C$$

$$\int \frac{dy}{y^2} = \int \frac{dx}{x-1} = \int \frac{$$

Peoblem 2. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function differential equation $\frac{dW}{dt} = \frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.

(a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).

$$W(0) = |400$$

$$\frac{dW}{dt}(0) = \frac{1}{25}(1400 - 300) = \frac{1100}{25} = 44$$

$$L(t) = m(t - t_0) + W_0$$

$$L(\frac{1}{4}) = \frac{11}{1411}$$

$$= 444 + 1400$$

$$= \frac{11411}{1411}$$

(b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time t=

an overestimate of the amount of solid waste that the landfill contains at time
$$t = \frac{1}{4}$$
.

We know win concare up that $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.

We know win concare up that $\frac{d^2W}{dt^2} = \frac{d^2W}{dt^2} = \frac{d$

(c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ with initial condition W(0) = 1400.

$$\int \frac{dW}{W^{2-300}} = \int \frac{1}{25} dt$$
So In (W-300) = $\frac{1}{25} + \ln(1/00)$

$$ln(w-300) = \frac{t}{25} + C$$

$$\frac{t}{25} + en(100) = \frac{t}{25} + en(1100) = \frac{t}{25} = en(1100)$$

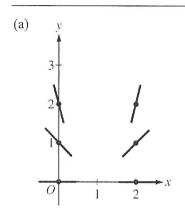
at
$$(0,1400)$$
: $ln(1100) = C$ $SO(W = 300 + (100) e^{t/2})$

AP® CALCULUS AB 2016 SCORING GUIDELINES

Question 4

Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
- (b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Use your equation to approximate f(2.1).
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.



 $2: \begin{cases} 1: zero slopes \\ 1: nonzero slopes \end{cases}$

(b) $\frac{dy}{dx}\Big|_{(x, y)=(2, 3)} = \frac{3^2}{2-1} = 9$

2: $\begin{cases} 1 : \text{tangent line equation} \\ 1 : \text{approximation} \end{cases}$

An equation for the tangent line is y = 9(x - 2) + 3. $f(2.1) \approx 9(2.1 - 2) + 3 = 3.9$

(c) $\frac{1}{y^2} dy = \frac{1}{x - 1} dx$ $\int \frac{1}{y^2} dy = \int \frac{1}{x - 1} dx$ $-\frac{1}{y} = \ln|x - 1| + C$ $-\frac{1}{3} = \ln|2 - 1| + C \implies C = -\frac{1}{3}$ $-\frac{1}{y} = \ln|x - 1| - \frac{1}{3}$ $y = \frac{1}{\frac{1}{3} - \ln(x - 1)}$

5: { 1: separation of variables 2: antiderivatives . 1: constant of integration and uses initial condition 1: solves for y

Note: max 3/5 [1-2-0-0] if no constant of integration

Note: 0/5 if no separation of variables

Note: This solution is valid for $1 < x < 1 + e^{1/3}$.

AP® CALCULUS AB 2011 SCORING GUIDELINES

Question 5

At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.

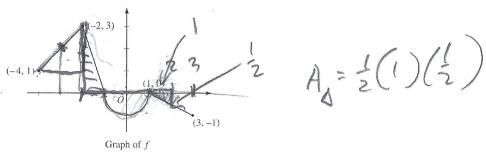
- (a) Use the line tangent to the graph of W at t=0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
- (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.
- (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400.
- (a) $\left. \frac{dW}{dt} \right|_{t=0} = \frac{1}{25} (W(0) 300) = \frac{1}{25} (1400 300) = 44$ The tangent line is y = 1400 + 44t. $W\left(\frac{1}{4}\right) \approx 1400 + 44\left(\frac{1}{4}\right) = 1411$ tons
- $2: \begin{cases} 1: \frac{dW}{dt} \text{ at } t = 0\\ 1: \text{answer} \end{cases}$
- (b) $\frac{d^2W}{dt^2} = \frac{1}{25} \frac{dW}{dt} = \frac{1}{625} (W 300)$ and $W \ge 1400$ Therefore $\frac{d^2W}{dt^2} > 0$ on the interval $0 \le t \le \frac{1}{4}$. The answer in part (a) is an underestimate.
- $2: \begin{cases} 1: \frac{d^2W}{dt^2} \\ 1: \text{ answer with reason} \end{cases}$
- (c) $\frac{dW}{dt} = \frac{1}{25}(W 300)$ $\int \frac{1}{W 300} dW = \int \frac{1}{25} dt$ $\ln|W 300| = \frac{1}{25}t + C$ $\ln(1400 300) = \frac{1}{25}(0) + C \Rightarrow \ln(1100) = C$ $W 300 = 1100e^{\frac{1}{25}t}$ $W(t) = 300 + 1100e^{\frac{1}{25}t}, \quad 0 \le t \le 20$

5: { 1 : separation of variables
1 : antiderivatives
1 : constant of integration
1 : uses initial condition
1 : solves for W

Note: max 2/5 [1-1-0-0-0] if no constant of integration

Note: 0/5 if no separation of variables

Problem 1. Let f be a continuous function defined on [-4, 3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given below.



Let g be the function given by $g(x) = \int_{-x}^{x} f(t) dt$.

(a) Find the values of
$$g(2)$$
 and $g(-2)$.

Find the values of
$$g(2)$$
 and $g(-2)$.

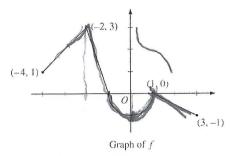
We know $g' = f$ and $g(1) = 0$.

 $g(2) = g(1) + \int_{-1}^{2} f(t) dt$
 $g(2) = g(1) + \int_{-1}^{2} f(t) dt$

(b) For each of
$$g'(-3)$$
 and $g''(-3)$, find the value or state that it does not exist.

$$g'(-3) = 2$$
.
 $g'(-3) = 1$.

Problem 1 (continued). Let f be a continuous function defined on [-4,3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given below.



Let g be the function given by $g(x) = \int_{-\infty}^{\infty} f(t) dt$.

(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of . these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.

We know g has a horizontal tangent to g'=0. We have a graph of g'. Lock where it is zero This occurs at x = -1 and x = 1, Since g' does not change signar x = 1, g does not have a local extrema there Sine 9' charge, from positive to negative at (x=-) (d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.

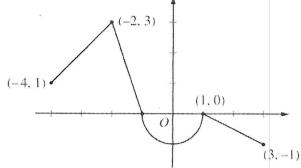
g has a local maximum at x=-1 We know g has a poi at x if.
The concavity Johnnyes at x, so g' changes significant x, so changes direction, from the tensing to decreasing of decreasing to increasing.

This occurs at x=-2,0,1.

AP® CALCULUS AB 2012 SCORING GUIDELINES

Question 3

Let f be the continuous function defined on [-4, 3] whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_1^x f(t) dt$.



- (a) Find the values of g(2) and g(-2).
- (b) For each of g'(-3) and g''(-3), find the value or state that it does not exist.
- (c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
- (d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning.
- (a) $g(2) = \int_{1}^{2} f(t) dt = -\frac{1}{2} (1) \left(\frac{1}{2}\right) = -\frac{1}{4} A_{0}$ $g(-2) = \int_{1}^{-2} f(t) dt = -\int_{-2}^{1} f(t) dt$ $= -\left(\frac{3}{2} - \frac{\pi}{2}\right) = \frac{\pi}{2} - \frac{3}{2}$

 $2: \begin{cases} 1:g(2) \\ 1:g(-2) \end{cases}$ Fot FALD DASWER

(b) $g'(x) = f(x) \Rightarrow g'(-3) = f(-3) = 2$ $g''(x) = f'(x) \Rightarrow g''(-3) = f'(-3) = 1$

- $2: \begin{cases} 1: g'(-3) \\ 1: g''(-3) \end{cases}$
- (c) The graph of g has a horizontal tangent line where g'(x) = f(x) = 0. This occurs at x = -1 and x = 1.
 - g'(x) changes sign from positive to negative at x = -1. Therefore, g has a relative maximum at x = -1.
 - g'(x) does not change sign at x = 1. Therefore, g has neither a relative maximum nor a relative minimum at x = 1.
- 3: $\begin{cases} 1 : \text{considers } g'(x) = 0. \\ 1 : x = -1 \text{ and } x = 1 \\ 1 : \text{answers with justifications} \end{cases}$

- (d) The graph of g has a point of inflection at each of x = -2, x = 0, and x = 1 because g''(x) = f'(x) changes sign at each of these values.
- $2: \begin{cases} 1: answer * \\ 1: explanation * \end{cases}$