Quiz 0424 Friday, April 24, 2020 Name:

Problem 1. A particle moves along the x-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = 1 - \sin(2\pi t)$.

(a) Find the acceleration a(t) of the particle at any time t.

Solution. Since acceleration is the derivative of velocity,

$$a(t) = \frac{dv}{dt} = -2\pi\cos(2\pi t).$$

(b) Find all values of $t, 0 \le t \le 2$, for which the particle is at rest.

Solution. The particle is at rest when v(t) = 0, so $1 - \sin(2\pi t) = 0$, so $\sin(2\pi t) = 1$. This occurs at $2\pi t = \frac{\pi}{2} \pm n\pi$, where *n* is an integer, so $t = \frac{1}{4} \pm \frac{n}{2}$. In the interval [0, 2], the solutions are $t = \frac{1}{4}$ and $t = \frac{5}{4}$.

(c) Find the position x(t) of the particle at any time t if x(0) = 0.

Solution. We know that position is the antiderivative of velocity, in the sense that

$$x(t) = \int v(t) \, dt = \int 1 - \sin(2\pi t) \, dt = t + \frac{\cos(2\pi t)}{2\pi} + C.$$

We use that knowledge that x(0) = 0 to find C:

$$0 = x(0) = 0 + \frac{\cos(0)}{2\pi} + C = \frac{1}{2\pi} + C \quad \Rightarrow \quad C = -\frac{1}{2\pi}$$

Thus

$$x(t) = t + \frac{\cos(2\pi t)}{2\pi} - \frac{1}{2\pi}$$