
AP Computer Science Homework 0428 Name:
Dr. Paul Bailey Wednesday, April 29, 2020

Problem 1. Consider the following incomplete class that stores information about a customer, which in-
cludes a name and unique ID (a positive integer). To facilitate sorting, customers are ordered alphabetically
by name. If two or more customers have the same name, they are further ordered by ID number. A particular
customer is “greater than” another customer if that particular customer appears later in the ordering than
the other customer.

public class Customer

{

// constructs a Customer with given name and ID number

public Customer(String name, int idNum)

{ /* implementation not shown */ }

// returns the customer’s name

public String getName()

{ /* implementation not shown */ }

// returns the customer’s id

public int getID()

{ /* implementation not shown */ }

// returns 0 when this customer is equal to other;

// a positive integer when this customer is greater than other;

// a negative integer when this customer is less than other

public int compareCustomer(Customer other)

{ /* to be implemented in part (a) */ }

// There may be fields, constructors, and methods that are not shown.

}

(a) Write the Customer method compareCustomer, which compares this customer to a given customer,
other. Customers are ordered alphabetically by name, using the compareTo method of the String

class. If the names of the two customers are the same, then the customers are ordered by ID number.
Method compareCustomer should return a positive integer if this customer is greater than other, a
negative integer if this customer is less than other, and 0 if they are the same.

For example, suppose we have the following Customer objects.

Customer c1 = new Customer("Smith", 1001);

Customer c2 = new Customer("Anderson", 1002);

Customer c3 = new Customer("Smith", 1003);

The following table shows the result of several calls to compareCustomer.

Method Call Result

c1.compareCustomer(c1) 0

c1.compareCustomer(c2) a positive integer

c1.compareCustomer(c3) a negative integer

Complete method compareCustomer below.

// returns 0 when this customer is equal to other;

// a positive integer when this customer is greater than other;

// a negative integer when this customer is less than other

public int compareCustomer(Customer other)



(b) A company maintains customer lists where each list is a sorted array of customers stored in ascending
order by customer. A customer may appear in more than one list, but will not appear more than
once in the same list. Write method prefixMerge, which takes three array parameters. The first two
arrays, list1 and list2, represent existing customer lists. It is possible that some customers are in
both arrays. The third array, result, has been instantiated to a length that is no longer than either
of the other two arrays and initially contains null values. Method prefixMerge uses an algorithm
similar to the merge step of a Mergesort to fill the array result. Customers are copied into result from
the beginning of list1 and list2, merging them in ascending order until all positions of result have
been filled. Customers who appear in both list1 and list2 will appear at most once in result. For
example, assume that three arrays have been initialized as shown below.

list1 Arthur Burton Burton Franz Horton Jones Miller Ngueyn
4920 3911 4944 1692 9221 5554 9360 4339

Position [0] [1] [2] [3] [4] [5] [6] [7]

list2 Aaron Baker Burton Dillard Jones Miller Noble
1729 2921 3911 6552 5554 9360 3335

Position [0] [1] [2] [3] [4] [5] [6]

In this example, the array result must contain the following values after the call prefixMerge(list1,
list2, result).

result Aaron Arthur Baker Burton Burton Dillard
1729 4920 2921 3911 4944 6552

Position [0] [1] [2] [3] [4] [5]

In writing prefixMerge, you may assume that compareCustomer works as specified, regardless of what
you wrote in part (a). Solutions that create any additional data structures holding multiple objects(e.g.
arrays, ArrayLists, etc.) will not receive full credit.

Complete the method prefixMerge below.

// fills result with customers merged from the

// beginning of list1 and list2;

// result contains no duplicates and is sorted in

// ascending order by customer

// precondition: result.length > 0;

// list1.length >= result.length;

// list1 contains no duplicates;

// list2.length >= result.length;

// list2 contains no duplicates;

// list1 and list2 are sorted in

// ascending order by customer

// postcondition: list1, list2 are not modified

public static void prefixMerge(

Customer[] list1,

Customer[] list2,

Customer[] result)


