Problem 1. The functions f and g have continuous second derivatives. The table below gives values of the functions and their derivatives at selected values of x.

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6,-	2
6	4	5	3	-1

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

First, find the slope of the line.
We know
$$K(x) = f'(g(x))g'(x)$$
.
They $K'(3) = f'(g(3))g'(3)$
 $= f'(6)(2)$
 $= 5 \cdot 2 = 10$
So $y = m(x - x_0) + y_0$ where $y_0 = 3$
 $y_0 = K(3) = f(6)$
 $y_0 = K(3) = f(6)$
 $y_0 = 4$

Maximize

d

d

t

d

n+1

24

Problem 1 (continued). The functions f and g have continuous second derivatives. The table below gives values of the functions and their derivatives at selected values of x.

x	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5 *	3	-1

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$;

We know $h'(x) = g'(1)f(1) - g(1)f'(1)$

So $h'(1) = g'(1)f(1) - g(1)f'(1)$

$$= g'(1)f(1) - g(1)f'(1)$$

$$= g'(1)f(1) - g'(1)$$

$$= g'(1)f(1)$$

(c) Evaluate
$$\int_{1}^{3} f''(2x) dx$$
.

We use FTC . We know

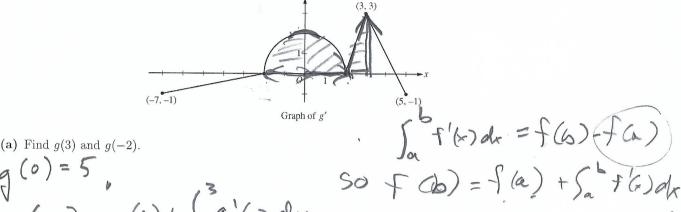
$$\int_{1}^{3} f''(2x) dx = \frac{1}{2} f'(2x) + C$$

So $\int_{1}^{3} f''(2x) dx = \frac{1}{2} \left[f'(2(3)) - f'(2(1)) \right]$

$$= \frac{1}{2} \left[f'(6) - f'(2) \right]$$

$$= \frac{1}{2} \left[5 + 2 \right] = \left(\frac{2}{2} \right)$$

Problem 1. The function g is defined and differentiable on the closed interval [-7,5] and satisfies g(0) = 5. The graph of y = g'(x), the derivative of g, consists of a semicircle and three line segments, as shown in the figure below.



We know g(0) = 5, $g(0) + \int_{0}^{3} g'(x) dx$ $g(3) = g(0) + \int_{0}^{3} g'(x) dx$ $g(3) = \frac{1}{2}(1)(3)$ $g(3) = \frac{1}{2}(1)(3)$

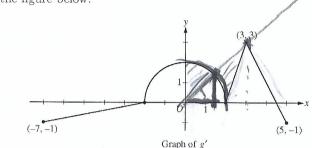
$$g(-2) = g(0) - \int_{-2}^{0} g'(x) dx = [5 - T]$$

(b) Find the x-coordinate of each point of inflection of the graph of y = g(x) on the interval -7 < x < 5. Explain your reasoning.

We know g has a point of reflection where g' changes likection, that is, it changes from increasing to decreasing or vice versa.

This occurs at $1 \times 20, 2, 3$

Problem 1 (continued). The function g is defined and differentiable on the closed interval [-7,5] and satisfies g(0) = 5. The graph of y = g'(x), the derivative of g, consists of a semicircle and three line segments, as shown in the figure below.



(c) The function h is defined by $h(x) = g(x) - \frac{1}{2}x^2$. Find the x-coordinate of each critical point of h, where -7 < x < 5, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

we set h(x)=0 and solve for x. So h'(x)=g'(x)-x=0 We want of (x) =x, This occurs at X=3, and · (2 cos = 254 = (NZ, NZ) SO X=VZ we see that h' changes sign from positive to negative ex x=N2, so of changes from the reasily to decreasing at X= NZ, so we have a local maximum there. A+ X=3, h' does not change sign. So, it is not a local extremum

AP® CALCULUS AB 2016 SCORING GUIDELINES

Question 6

х	f(x)	f'(x)	g(x)	g'(x)
1	-6	3	2	8
2	2	-2	-3	0
3	8	7	6	2
6	4	5	3	-1

The functions f and g have continuous second derivatives. The table above gives values of the functions and their derivatives at selected values of x.

(a) Let k(x) = f(g(x)). Write an equation for the line tangent to the graph of k at x = 3.

(b) Let
$$h(x) = \frac{g(x)}{f(x)}$$
. Find $h'(1)$.

(c) Evaluate
$$\int_1^3 f''(2x) dx$$
.

(a)
$$k(3) = f(g(3)) = f(6) = 4$$

 $k'(3) = f'(g(3)) \cdot g'(3) = f'(6) \cdot 2 = 5 \cdot 2 = 10$

3: $\begin{cases} 2 : \text{slope at } x = 3 \\ 1 : \text{equation for tangent line} \end{cases}$

An equation for the tangent line is y = 10(x - 3) + 4.

(b)
$$h'(1) = \frac{f(1) \cdot g'(1) - g(1) \cdot f'(1)}{(f(1))^2}$$

= $\frac{(-6) \cdot 8 - 2 \cdot 3}{(-6)^2} = \frac{-54}{36} = -\frac{3}{2}$

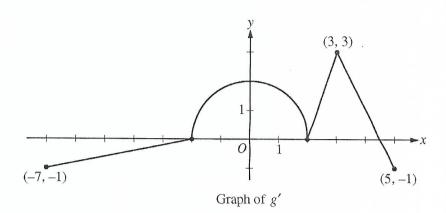
 $3: \begin{cases} 2: \text{ expression for } h'(1) \\ 1: \text{ answer} \end{cases}$

(c)
$$\int_{1}^{3} f''(2x) dx = \frac{1}{2} \left[f'(2x) \right]_{1}^{3} = \frac{1}{2} \left[f'(6) - f'(2) \right]$$
$$= \frac{1}{2} \left[5 - (-2) \right] = \frac{7}{2}$$

 $3: \begin{cases} 2: \text{antiderivative} \\ 1: \text{answer} \end{cases}$

AP® CALCULUS AB 2010 SCORING GUIDELINES

Question 5



The function g is defined and differentiable on the closed interval [-7, 5] and satisfies g(0) = 5. The graph of y = g'(x), the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.

- (a) Find g(3) and g(-2).
- (b) Find the x-coordinate of each point of inflection of the graph of y = g(x) on the interval -7 < x < 5. Explain your reasoning.
- (c) The function h is defined by $h(x) = g(x) \frac{1}{2}x^2$. Find the x-coordinate of each critical point of h, where -7 < x < 5, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.

(a)
$$g(3) = 5 + \int_0^3 g'(x) dx = 5 + \frac{\pi \cdot 2^2}{4} + \frac{3}{2} = \frac{13}{2} + \pi$$

 $g(-2) = 5 + \int_0^{-2} g'(x) dx = 5 - \pi$

- 3: $\begin{cases} 1 : \text{uses } g(0) = 5 \\ 1 : g(3) \\ 1 : g(-2) \end{cases}$
- (b) The graph of y = g(x) has points of inflection at x = 0, x = 2, and x = 3 because g' changes from increasing to decreasing at x = 0 and x = 3, and g' changes from decreasing to increasing at x = 2.
- 2: $\begin{cases} 1 : \text{identifies } x = 0, 2, 3 \\ 1 : \text{explanation} \end{cases}$

(c)
$$h'(x) = g'(x) - x = 0 \Rightarrow g'(x) = x$$

On the interval $-2 \le x \le 2$, $g'(x) = \sqrt{4 - x^2}$.
On this interval, $g'(x) = x$ when $x = \sqrt{2}$.
The only other solution to $g'(x) = x$ is $x = 3$.
 $h'(x) = g'(x) - x > 0$ for $0 \le x < \sqrt{2}$
 $h'(x) = g'(x) - x \le 0$ for $\sqrt{2} < x \le 5$
Therefore h has a relative maximum at $x = \sqrt{2}$, and h has neither

a minimum nor a maximum at x = 3.

4:
$$\begin{cases} 1: h'(x) \\ 1: \text{identifies } x = \sqrt{2}, 3 \\ 1: \text{answer for } \sqrt{2} \text{ with analysis} \\ 1: \text{answer for 3 with analysis} \end{cases}$$