
AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

4

Question 3: Customer List

Part A: compareCustomer 3 points

 +1 1/2 perform comparison
 +1/2 attempt (must call OBJ1.compareTo(OBJ2))
 +1/2 correctly access and compare names
 +1/2 correctly access and compare IDs

 +1/2 return 0 if and only if this = other
 +1/2 return positive if and only if this > other
 +1/2 return negative if and only if this < other

Part B: prefixMerge 6 points

 +1/2 initialize unique variables to index fronts of arrays

 +1 1/2 loop over arrays to fill result
 +1/2 attempt (must reference list1 and list2 inside loop)
 +1 correct (lose this if add too few or too many Customer elements)

 +1 1/2 compare array fronts (in context of loop)
 +1/2 attempt (must call compareCustomer on array elements)
 +1 correctly compare front Customer elements

+1 1/2 duplicate entries
 +1/2 check if duplicate entries found
 +1/2 if duplicates, copy only one to result (without use of additional structure)
 +1/2 update indices into both arrays (list1 and list2)

+1 nonduplicate entries
 +1/2 copy only smallest entry to result (without use of additional structure)
 +1/2 update index into that array only (list1 or list2)

Note: Solution may use constants as returned from part A.

Usage: -1/2 compareTo instead of compareCustomer for Customer objects

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 3: Customer List

PART A:

public int compareCustomer(Customer other)
{
 int nameCompare = getName().compareTo(other.getName());
 if (nameCompare != 0)
 {
 return nameCompare;
 }
 else
 {
 return getID() - other.getID();
 }
}

PART B:

public static void prefixMerge(Customer[] list1, Customer[] list2, Customer[] result)
{
 int front1 = 0;
 int front2 = 0;

 for (int i = 0; i < result.length; i++)
 {
 int comparison = list1[front1].compareCustomer(list2[front2]);
 if (comparison < 0)
 {
 result[i] = list1[front1];
 front1++;
 }
 else if (comparison > 0)
 {
 result[i] = list2[front2];
 front2++;
 }
 else
 {
 result[i] = list1[front1];
 front1++;
 front2++;
 }
 }
}

