
AP® COMPUTER SCIENCE A
2013 SCORING GUIDELINES

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: TokenPass

Part (a) TokenPass constructor 4 points

Intent: Create TokenPass object and correctly initialize game state

 +1 Creates instance variable board as int array of size playerCount

 +1 Computes a random number between 1 and 10, inclusive, and
 a random number between 0 and playerCount-1, inclusive

 +1 Initializes all entries in board with computed random value (no bounds errors)

 +1 Initializes instance variable currentPlayer to computed random value

Part (b) distributeCurrentPlayerTokens 5 points

Intent: Distribute all tokens from currentPlayer position to subsequent positions in array

 +1 Uses initial value of board[currentPlayer] to control distribution of tokens

 +1 Increases at least one board entry in the context of a loop

 +1 Starts distribution of tokens at correct board entry

 +1 Distributes next token (if any remain) to position 0 after distributing to
 highest position in board

 +1 On exit: token count at each position in board is correct

Question-Specific Penalties

 -2 (v) Consistently uses incorrect array name instead of board

 -1 (y) Destruction of persistent data (currentPlayer)

 -1 (z) Attempts to return a value from distributeCurrentPlayerTokens

AP® COMPUTER SCIENCE A
2013 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2013 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: TokenPass

Part (a):
public TokenPass(int playerCount)
{
 board = new int[playerCount];
 for (int i = 0; i < playerCount; i++){
 board[i] = 1 + (int) (10 * Math.random());
 }
 currentPlayer = (int) (playerCount * Math.random());
}

Part (b):
public void distributeCurrentPlayerTokens()
{
 int nextPlayer = currentPlayer;
 int numToDistribute = board[currentPlayer];
 board[currentPlayer] = 0;

 while (numToDistribute > 0){
 nextPlayer = (nextPlayer + 1) % board.length;
 board[nextPlayer]++;
 numToDistribute--;
 }
}

