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Question 2: TokenPass 
 
Part (a)  TokenPass constructor   4 points 

Intent: Create TokenPass object and correctly initialize game state 

 +1 Creates instance variable board as int array of size playerCount 
 
 +1 Computes a random number between 1 and 10, inclusive, and 
  a random number between 0 and playerCount-1, inclusive  
 
 +1 Initializes all entries in board with computed random value (no bounds errors) 
 
 +1 Initializes instance variable currentPlayer to computed random value 
 
 
Part (b)  distributeCurrentPlayerTokens 5 points 

Intent: Distribute all tokens from currentPlayer position to subsequent positions in array 

 +1 Uses initial value of board[currentPlayer] to control distribution of tokens 
 
 +1 Increases at least one board entry in the context of a loop 
 
 +1 Starts distribution of tokens at correct board entry 
 
 +1 Distributes next token (if any remain) to position 0 after distributing to 
  highest position in board  
 
 +1 On exit: token count at each position in board is correct 
 
 
Question-Specific Penalties 

 -2 (v) Consistently uses incorrect array name instead of board 
 
 -1 (y) Destruction of persistent data (currentPlayer) 
 
 -1 (z) Attempts to return a value from distributeCurrentPlayerTokens 
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Question 2: TokenPass 
 
Part (a): 
public TokenPass(int playerCount) 
{  
    board = new int[playerCount]; 
    for (int i = 0; i < playerCount; i++){ 
        board[i] = 1 + (int) (10 * Math.random()); 
    } 
    currentPlayer = (int) (playerCount * Math.random()); 
} 
 
 
Part (b): 
public void distributeCurrentPlayerTokens() 
{   
    int nextPlayer = currentPlayer; 
    int numToDistribute = board[currentPlayer]; 
    board[currentPlayer] = 0; 
     
    while (numToDistribute > 0){ 
        nextPlayer = (nextPlayer + 1) % board.length; 
        board[nextPlayer]++; 
        numToDistribute--; 
    } 
} 
 
 


