Problem 1. For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = \cos\left(\frac{\pi}{6}t\right)$. The particle is at position x = -2 at time t = 0.

(a) For $0 \le t \le 12$, when is the particle moving to the left?

We know it moves left when
$$V < 0$$
.

Let $\Theta = \frac{\pi}{6} \in S$ o solve $\cos \Theta = 0$:

then $\Theta = \frac{\pi}{2} + K\pi$ where K is an integer,

So $\frac{\pi}{6} t = \frac{\pi}{2} + K\pi$ Sign short

 $\frac{\pi}{6} t = \frac{\pi}{2} + K\pi$ VLO in interrupt in $[0,12]$, $t = 3$ or $t = 9$. (3,9).

(b) Write, an integral expression that gives the total distance traveled by the particle from time t = 0 to time t = 6.

Integral of velocity is displacement.

$$\int_{0}^{6} |v(t)| dt = \int_{0}^{6} |\cos \frac{\pi}{6}t| dt$$

If $F' = f$

$$= \int_{0}^{3} \cos \frac{\pi}{6}t dt + \int_{3}^{6} (-\cos \frac{\pi}{6}t) dt$$

then
$$\int_{0}^{6} f(at) dt$$

$$= \int_{0}^{6} \sin \frac{\pi}{6} \int_{0}^{6} (-\cos \frac{\pi}{6}t) dt$$

$$= \int_{0}^{6} \cos \frac{\pi}{6}t dt + \int_{0}^{6} (-\cos \frac{\pi}{6}t) dt$$

$$= \int_{0}^{6} \sin \frac{\pi}{6} \int_{0}^{6} (-\cos \frac{\pi}{6}t) dt$$

$$= \int_{0}^{6} \sin \frac{$$

Problem 1 (continued). For $0 \le t \le 12$, a particle moves along the x-axis. The velocity of the particle at time t is given by $v(t) = \cos\left(\frac{\pi}{6}t\right)$. The particle is at position x = -2 at time t = 0.

(c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t = 4? Explain your reasoning.

$$a(t) = -\sin\left(\frac{t}{6}t\right)$$

$$a(4) = -\sin\left(\frac{2}{3}\pi\right) < 0$$

$$V(4) = \cos\left(\frac{t}{6}\cdot 4\right) < 0$$
Since v and a home same sign,
$$speed is increasing.$$

(d) Find the position of the particle at time t = 4.

$$\chi(t) = \chi(0) + \int_{0}^{t} \cos(\frac{\pi}{6}\pi) dx$$

$$= -2 + \left[\frac{6}{17} \sin(\frac{\pi}{6}\pi)\right]_{0}^{t}$$

$$= -2 + \frac{6}{17} \sin(\frac{\pi}{6}\pi)$$

$$= -2 + \frac{6}{17} \sin(\frac{\pi}{6}\pi)$$

$$= -2 + \frac{6}{17} \sin(\frac{\pi}{6}\pi)$$

$$= -2 + \frac{6}{17} \left(\frac{\sqrt{3}}{3}\pi\right)$$

$$= \frac{3\sqrt{3}}{17} - 2$$

Problem 1. The line ℓ is tangent to the graph of $y = x - \frac{x^2}{500}$ at the point Q, as shown in the figure below.

Problem 1 (continued). The line ℓ is tangent to the graph of $y = x - \frac{x^2}{500}$ at the point Q, as shown in the figure below.

(c) Suppose that graph of $y=x-\frac{x^2}{500}$ shown in the figure, where x and y are measured in feet, represents a hill. There is a 50-foot tree growing vertically at the top of the hill. Does a spotlight at point P directed along the line ℓ shine on any part of the tree? Show the work that leads to your conclusion.

Find R.
$$f(x) = x - \frac{250}{500}$$

 $l(x) = \frac{3}{5}x + 20$
Note $f(250) = 250 - \frac{250}{500}$
 $= 250 - \frac{250}{2} = \frac{250}{2} = 125$
and $l(250) = \frac{3}{5}(250) + 20$
 $= 170$

The top of the tree is at f(250)+50=175.
This is higher trun the light,
so, the light hits the tree.