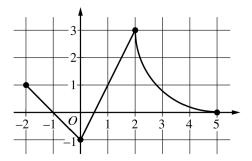

AP CALCULUS AB Dr. Paul L. Bailey

Homework 0507f Thursday, May 7, 2020

Problem 1. The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure below shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5, 3). It is known that the point $(3, 3 - \sqrt{5})$ is on the graph of f.



(a) If $\int_{-6}^{5} f(x) dx = 7$, find the value of $\int_{-6}^{-2} f(x) dx$. Show the work that leads to your answer.

(b) Evaluate
$$\int_{3}^{5} (2f'(x) + 4) dx$$
.

Problem 1 (continued). The continuous function f is defined on the closed interval $-6 \le x \le 5$. The figure below shows a portion of the graph of f, consisting of two line segments and a quarter of a circle centered at the point (5,3). It is known that the point $(3,3-\sqrt{5})$ is on the graph of f.

Graph of f

(c) The function g is given by $g(x) = \int_{-2}^{x} f(t) dt$. Find the absolute maximum value of g on the interval $-2 \le x \le 5$. Justify your answer.

(d) Find $\lim_{x \to 1} \frac{10^x - 3f'(x)}{f(x) - \arctan x}$.