AP CALCULUS AB Dr. Paul L. Bailey

Homework 0508h Friday, May 8, 2020

Problem 1. Functions f, g, and h are twice-differentiable functions with g(2) = h(2) = 4. The line $y = 4 + \frac{2}{3}(x-2)$ is tangent to both the graph of g at x = 2 and the graph of h at x = 2. (a) Find h'(2).

(b) Let a be the function given by $a(x) = 3x^3h(x)$. Write an expression of a'(x). Find a'(2).

Problem 1. Functions f, g, and h are twice-differentiable functions with g(2) = h(2) = 4. The line $y = 4 + \frac{2}{3}(x-2)$ is tangent to both the graph of g at x = 2 and the graph of h at x = 2.

(c) The function h satisfies $h(x) = \frac{x^2 - 4}{1 - (f(x))^3}$ for $x \neq 2$. It is known that $\lim_{x \to 2} h(x)$ can be evaluated using L'Hospital's Rule. Use $\lim_{x \to 2} h(x)$ to find f(2) and f'(2). Show the work that leads to your answers.

(d) It is known that $g(x) \le h(x)$ for 1 < x < 3. Let k be a function satisfying $g(x) \le k(x) \le h(x)$ for 1 < x < 3. Is k continuous at x = 2? Justify your answer.