Problem 1. A particle moves along the x-axis. The velocity of the particle is modeled by a strictly decreasing, twice differentiable function v(t) measured in meters per second. Select values of v(t) at specific times t, measured in seconds, are given below. It is known at time t = 7, the particle's position is 3 units to the right of the origin.

	-	-	1	D	
$t ext{ (sec)}$	2.	_3	5	7	9
v(t) (m/sec)	3	1	0	-6	-8

(a) Estimate v'(2.5) and v'(6). Interpret the meanings in context including units.

$$v'(25) \approx \frac{v(3) - v(3)}{3 - 2} = \frac{1 - 3}{3} = -3 \frac{3}{3}$$
 $v'(6) \approx v(7) - v(5) = -6 - 0 = -3 \frac{3}{32}$

(b) State whether the particle is speeding up or slowing down at both t=2.5 and t=6.

Since velocity is decreasing, acceleration is negative.

At t=2.5, v>0 so a and have different signs,

so speed is decreasing.

But at t=6, v<0, so they have the same sign,

so speed is increasing.

(c) The particle's position is modeled by the function P(t). Write an equation of the tangent line to the graph of P at t=7, use the tangent line to approximate P(8).

We know
$$P(7) = 3$$

The velocity gives the slipe of the pungent:
 $V(7) = -6$. So fine is
 $L(4) = -6(4-7) + 3$.
 $L(7) = -3$.

Problem 1. A particle moves along the x-axis. The velocity of the particle is modeled by a strictly decreasing, twice differentiable function v(t) measured in meters per second. Select values of v(t) at specific times t, measured in seconds, are given below. It is known at time t = 7, the particle's position is 3 units to the right of the origin.

t (sec)	2	3	5	7	9
v(t) (m/sec)	3	1	0	-6	-8

(d) Is the estimate in part (c) an under approximation or over approximation of P(8)? Explain how you know. U(t) = -6(t-7) + 3 $Y = W \times Y$

L(s) = -6(1) + 3

Since velis decreasing, P'is regatue, so Pis concure down, so L(8) is an overestimate

(e) Claire, a calculus student, uses a left Riemann sum of three subintervals to approximate $\int_2^\tau v(t) dt$. Is her approximation an overestimate or underestimate of the actual value? Explain how you know.

This is an averestimate because we use a left Riemann sum of a decreasing function.

(Q(t)=4+5t-63

(f) Another particle Q is also moving along the x-axis. Let $Q(x) = (4 + 5x - x^2)$ State open interval(s) during $2 \le t \le 9$ when particle P and particle Q are moving in the same direction.

during $2 \le t \le 9$ when particle P and particle Q are moving in the same direction.

So y and vo have same sign on (2, 5) U(5,9)