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Abstract

Let G be a finite group and let C be an r-tuple of conjugacy classes from G
which generate G. The reduced Hurwitz space H(G,C)in,rd parameterizes weak
equivalence classes of ramified covers of the Riemann sphere P1 with ramification
in C. If the rank r is four, the reduced space is a Riemann surface. The modular
curves Y1(n) are such spaces, with G = Dn and C four conjugacy classes of
involutions.

We ask three modest questions regarding reduced rank four Hurwitz spaces:
1) How many components are there?
2) What are the genera of the components?
3) What are the fields of definition of the components?

Let p be a prime which divides the order of G. The universal elementary p-
Frattini cover 1

pG̃→ G is versal for Frattini covers of G with elementary p-group
kernel. Inductively define k+1

p G̃ = 1
p(
k
pG̃). If p does not divide the orders of the

elements in C, these conjugacy classes lift uniquely to k
pG̃, producing a sequence

of Riemann surfaces

. . .H(k+1
p G̃,C)in,rd → H(kpG̃,C)in,rd → · · · → H(G,C)in,rd → J4,

which is called a Modular Tower, and is denoted by MTp(G,C); this generalizes
towers of modular curves. Understanding a Modular Tower requires combining
knowledge of the base space and techniques of lifting information.

Certain configurations of the branch points give Harbater-Mumford covers,
which are necessarily defined over R, producing real points on the Hurwitz space.
If p = 2, these are the only points which lie in projective systems of real points
up the tower, and lay at the center of computations.

Given a ramified cover, we develop its Nielsen graph, which dictates which
covers can factor through the given one. Classical generators for the base space
of the cover lift to an embedded realization of the graph in the covering space;
this is a branch cycle design, and it produces classical generators for the covering
space. Using branch cycle designs as platforms and real points as ladders, we
ascend to the first level of the Modular Tower MT2(A4,C32

±
), and answer some

of the questions posed above.
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Preface

We briefly outline the contents of this dissertation. The first three chapters
are an overview of the foundations for the later results, emphasizing the covering
theory and group theory which are our main tools. The next three chapters
introduce details into previously published material, and build tools for the last
three chapters, which consist of detailed examples.

Chapter I reviews the three basic mathematical categories which are related
by Riemann’s Existence Theorem and which produce Hurwitz spaces. These are
topological covers, ramified covers, and function field extensions. This section is
provided to fix notation and emphasis.

Chapter II discusses braid groups and constructs Hurwitz spaces as the natu-
ral covers produced by representations of these groups, emphasizing the interplay
between group actions and topology. Reduction of Hurwitz spaces is discussed,
specifically in the case of rank four Nielsen classes. This chapter draws from
[Fr77], [Fr87], and [FV91].

Chapter III defines the notion of Modular Towers, which were introduced
in [Fr95] and further explored in [FK97] and [BF02]. Included in this chap-
ter are brief explanations of profinite groups and Frattini covers, as well as a
motivational section on moduli spaces of elliptic curves.

Chapter IV relates certain Nielsen tuples to ramified covers defined over R
and real points on Hurwitz spaces. The initial formulas from [DF90] and [DF94]
are refined for use modulo reduction. The key role of Harbater-Mumford tuples
and the prime p = 2 begins to take shape.

Chapter V introduces Nielsen graphs and branch cycle designs which produce
algorithms for splicing ramified covers. This is the main tool applied to an
example in Chapter VII.

Chapter VI reviews and expands upon the group theory of 1
2Ã5 and 1

2Ã4,
including a discussion of the automorphisms and spin covers of 1

2Ã4.
Chapter VII investigates the Modular Tower MT2(A4,C32

±
) by incremen-

tally ascending to level one and beyond with the use of branch cycle designs. We
show that there are two Harbater-Mumford components, each of genus one.

Chapter VIII draws conclusions from Chapter VII. We find the j-invariants
for the Harbater-Mumford components, and discuss the absolute space, obstruc-
tion, and real points.

Chapter IX describes GAP programs used to verify our computations. We
discuss the Modular Tower MT2(A5,C52

±
), and point out its striking similarity

to MT2(A4,C32
±
).
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CHAPTER I

Ramified Covers

1. Group Actions

1.1. Group Actions.
1.1.1. Group Actions. A group action is a function G×X → X, where G is a

group and X is a set, such that 1 · x = x for every x ∈ X and (g1g2)x = g1(g2x)
for every g1, g2 ∈ G and every x ∈ X. This induces a group homomorphism
τ : G → Sym(X), where Sym(X) denotes the group of permutations of X, via
τg(x) = gx, where we write τg instead of τ(g). The kernel of the action is

ker(τ) = {g ∈ G | gx = x for all x ∈ X}.

The action is faithful if for every distinct g, h ∈ G there exists x ∈ X
such that gx 6= hx, that is, when the kernel is trivial. In this case, induced
homomorphism τ : G→ Sym(X) is injective, so G acts as a subgroup of Sym(X).

The action is transitive if for every x, y ∈ X there exists g ∈ G such that
gx = y. This is equivalent to the condition that for every x ∈ X, the map
G→ X given by g 7→ gx is surjective. Thus if G acts transitively on a finite set
X, then |G| ≥ |X|.

The action is free if for every distinct g, h ∈ G and every x ∈ X we have
gx 6= hx. This is equivalent to the condition that for every x ∈ X, the map
G → X given by g 7→ gx is injective. Thus if G acts freely on a finite set X,
then |G| ≤ |X|. We note that free actions are faithful.

The action is regular if it is transitive and free, in which case |G| = |X|.
The orbit of x ∈ X under the action of G is

OrbG(x) = {y ∈ X | gx = y for some g ∈ G}.

The orbits under the action of G partition the set X, and G acts transitively on
each orbit.

The stabilizer of x ∈ X under the action of G is

StbG(x) = {g ∈ G | gx = x}.

This is a subgroup of G. If gx = y, then StbG(x) = g−1StbG(y)g, so the
stabilizers of points in an orbit are conjugate subgroups of G. The intersection
of the stabilizers of the points in an orbit is a normal subgroup of G, because it
is the kernel of the action of the group on that orbit.

Let Y ⊂ X. The setwise stabilizer of Y is the stabilizer of Y under the
induced action of G on P(X). The pointwise stabilizer of Y is the set of elements
of G which fix every point in Y ; this is the intersection of the one point stabilizers
for all the points in Y . The pointwise stabilizer of X is the kernel of the action.

1
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1.1.2. Morphisms of Group Actions. Let G be a group acting on sets X and
Y . A morphism between these actions consists of a function f : X → Y such
that f(gx) = gf(x). This produces the category of actions by G, and defines
equivalence as isomorphisms in this category.

Let x ∈ X and U = StbG(x), and let G/U denote the left coset space
of U in G. Then G acts on G/U by left multiplication. There is a bijective
correspondence between G/U and the points in OrbG(x), given by gU 7→ gx.
This produces an equivalence between the actions of G on G/U and OrbG(x).
In this context, regular actions are those given by the action of G on itself by
left multiplication.

1.1.3. Opposite Groups. Given a group G, construct the opposite group Gopp

as the group with the same set as G but with multiplication ∗ given by g1 ∗ g2 =
g2g1. Define a function from ω : G → Gopp by ω : g 7→ g−1; then ω(g1g2) =
g−1
2 g−1

1 = g−1
1 ∗ g−1

2 = ω(g1)ω(g2), so ω is an isomorphism.
An antihomomorphism between group G and H is a function α : G →

H such that α(g1g2) = α(g2)α(g1). The identity map on the set G gives an
antihomomorphism from G to Gopp. An antihomomorphism G→ H may always
be factored as the identity antihomomorphism from G to Gopp followed by a
homomorphism from Gopp to H.

1.1.4. Right Actions. A right action (X,G) of a group G on a set X as a
function X ×G→ X satisfying x · 1 = x and x(g1g2) = (xg1)g2. In this case the
induced function G → Sym(X) is an antihomomorphism. What we previously
defined to be action, we now call left action, and an action is either a left or right
action. All concepts we discussed regarding left actions have direct analogs for
right actions.

It is not practical to consider only left or only right actions. For example,
conjugation appears naturally on the right. For g, h ∈ G, let hg = g−1hg. Then
hg1g2 = (hg1)g2 , giving a right action and justifying the exponential notation.

For pedagogical reasons which will reveal themselves later, we let Sn denote
the group of permutations of Nn = {1, . . . , n}, which we compose from left to
right. Thus Sn = Sym(Nn)opp, and Sn acts on the right of Nn.

1.2. Permutation Representations.
1.2.1. Permutation Representations. A permutation representation of a group

G is a group homomorphism ρ : G→ Sn for some positive integer n. We call n
the degree of the representation. This produces a right action of G on Nn. Two
permutation representations of the same group are equivalent if they differ by an
inner automorphism of Sn; that is, if they are equivalent as actions.

An enumeration of a finite set X is a bijective function ε : X → Nn. Note
that ε induces an antiisomorphism ε∗ : Sym(X) → Sn. If a group G acts on X
on the right, let τ : G→ Sym(X) be the associated antihomomorphism and set
ρ = ε∗ ◦ τ ; then ρ is a permutation representation of G, which is independent
of ε up to equivalence. If G acts on the left, we obtain in this manner an
antihomomorphism G → Sn, which may be called an antirepresentation. Thus
we may study group actions on finite sets by studying Sn, as is convenient to do.

Let G be a group and let U ≤ G of finite index n. Enumerate the right
cosets of U in G so that U 7→ 1. The right action of G induces a permutation
representation ρU : G→ Sn, such that the stabilizer of 1 in ρU (G) is the image
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of U . Now

g ∈ ker(ρU ) ⇔ Uhg = Uh⇔ hgh−1 ∈ U ⇔ g ∈ Uh

for all h ∈ G. The core of U in G, denoted KG(U), is the intersection of all of
the conjugates of U in G, and it is the kernel of the permutation representation.
We say that U is coreless in G if KG(U) is trivial.

Suppose U1, U2 ≤ G produce equivalent permutation representations. Then
there exists σ ∈ Sn such that σ ◦ ρU1 = ρU2 . Then U1 is the stabilizer of 1σ and
U2 is the stabilizer of 1 under the right action of G on Nn induced by ρU2 ; thus U1

and U2 are conjugate subgroups of G. This describes a bijective correspondence
between the following sets:

(1) equivalence classes of transitive faithful permutation representations of
G of degree n;

(2) conjugacy classes of coreless subgroups of G of index n.
1.2.2. Centralizers of Permutation Representations. Let ρ : G → Sn be a

permutation representation; this gives a right action of G on X = Nn. An
automorphism of this action consists of a bijective function α : X → X such
that α(xg) = α(x)g. Let A ≤ Sym(X) denote the set of such automorphisms;
the left action of A on X produces an antirepresentation ζ : A → Sn. Then
ζ(A) = CSn

(ρ(G)).
Let a ∈ A and suppose ax = x for some x ∈ X; then axg = xg for all g ∈ G;

since G is transitive, a = idX . Therefore the action of A is free.
Let a ∈ A and x ∈ X; since G is transitive, there exists g ∈ G such that

ax = xg. Let u ∈ U ; then x = axug−1 = xgug−1, so gug−1 ∈ U and g ∈
N = NG(U). Define ν : N → A by g 7→ a, where ax = xg. This is well-
defined because A is free, and is surjective because G is transitive. Moreover,
it is an antihomomorphism with kernel U . Thus ζ ◦ ν : N → CSn

(ρ(G)) is
a homomorphism with kernel U , and NG(U)/U ∼= CSn(ρ(G)). In particular, if
U /G, then it is the kernel of the action and G/U ∼= CSn(G); this realizes CSn(G)
as the opposite group of G/U .

1.2.3. Normalizers of Permutation Representations. Let G ≤ Sn so that G
acts on the right of X = Nn. Conjugation in Sn of G by NSn

(G) induces an
antihomomorphism ψ : NSn(G) → Aut(G) whose kernel is CSn(G).

Assume that G acts regularly on X; we have G ∼= CSn . Selection of x ∈ X
induces a bijective correspondence between G and X by g 7→ xg, which in
turn induces a left action of Aut(G) on X by ξ(xg) = x(ξ(g)) for ξ ∈ Aut(G),
giving an antihomomorphism ρ : Aut(G) → Sn. The image of ρ acts on G by
conjugation, in the manner that Aut(G) acts on G. Thus ρ(Aut(G)) ≤ NSn

(G),
and ψ ◦ ρ = idAut(G); that is, ρ is a section of ψ, which reveals NSn(G) to be a
semidirect product, NSn

(G) ∼= CSn
(G) o ρ(Aut(G)) ∼= Go Aut(G).

2. Topological Covers

2.1. Topological Covers.
2.1.1. Topological Covers. A topological cover is a continuous function ϕ :

Y → X between topological spaces with the property that every point in X
has a neighborhood U whose preimage is the disjoint union of countably many
components which are mapped homeomorphically onto U by ϕ. We will assume
that X is Hausdorff, locally compact, locally path connected, and locally simply
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connected; these are the conditions under which covering theory works best. It
follows that Y also has these properties.

We call X the base space and Y the covering space. A topological cover is an
open map, that is, it sends open subsets of Y to open subsets ofX. The fiber over
a point in X is a discrete subspace of Y . Every fiber has the same cardinality;
this cardinality is called the degree of the cover, and is denoted deg(ϕ). The
cover is said to be finite if it has finite degree. The cover is said to be connected
if the covering space is connected, whence the base space is connected.

2.1.2. Path Lifting. Let X be topological space and let γ : I → X be a path
in X, where I = [0, 1] ⊂ R is the closed unit interval. We denote the homotopy
class of γ by [γ]; when speaking of paths, we always mean fixed endpoint ho-
motopy. Let ϕ : Y → X be a topological cover. Select y in the fiber over γ(0).
Then there is a unique path γ̃ : I → Y such that γ̃(0) = y and ϕ ◦ γ̃ = γ; this is
the lift of γ to y.

Let W be a topological space and let F : I ×W → X be a homotopy of
F (0, w) to F (1, w). Suppose there exists a map g : W → Y such that ϕ ◦ g =
F (0, w). For w ∈ W , let γw : I → X be given by γw(t) = F (t, w). Uniquely
lift γw to Y starting at g(w). This produces the unique continuous map G :
I ×W → Y such that G(0, w) = g(w) and ϕ ◦G = F . Thus each homotopy lifts
uniquely, and in particular, homotopic paths in X lift to homotopic paths in Y .

Let y0 ∈ Y such that ϕ(y0) = x0. Consider the map ϕ∗ : π1(Y, y0) →
π1(X,x0) given by [γ̃] 7→ [ϕ ◦ γ̃]. Let γ̃ be a loop in Y based at y0 which
represents an element of the kernel. Its image γ is homotopic to the constant
x0, and this homotopy lifts so that γ̃ is homotopic to the constant y0. Thus ϕ∗
is injective. If Y is connected, there is a path in Y between any two points in
the fiber over x0, and this path maps to a loop in X. Thus the image group
ϕ∗(π1(Y, y0)) depends on the choice of y0 only up to conjugation in π1(X,x0).

2.1.3. Morphisms of Topological Covers. We have interest in two types of
morphisms for covers of a given base space X.

A strong morphism from ϕ1 : Y1 → X to ϕ2 : Y2 → X is a surjective
continuous function ν : Y1 → Y2 such that ϕ1 = ϕ2 ◦ ν. The condition that X is
locally simply connected ensures that ν is a covering map. Two covers which are
isomorphic in the category of topological covers and strong morphisms are called
strongly equivalent (or simply equivalent). The group of strong automorphisms
of a topological cover ϕ : Y → X is denoted Aut(ϕ).

A weak morphism from ϕ1 : Y1 → X to ϕ2 : Y2 → X is a continuous function
ν : Y1 → Y2 together with an automorphism µ : X → X such that µ◦ϕ1 = ϕ2◦ν.
Two covers which are isomorphic in the category of topological covers and weak
morphisms are called weakly equivalent.

2.2. Group Actions on Topological Covers.
2.2.1. Automorphism Action. Let ϕ : Y → X be a topological cover. Then

Aut(ϕ) acts on Y . Let α ∈ Aut(ϕ). Then α is completely determined by its
effect on a single point. This follows from unique path lifting thusly: suppose
we know that α(y1) = y2. Let y ∈ Y and let γ be a path from y1 to y. Drop γ
to X and lift it to y2. The endpoint is now α(y). Thus Aut(ϕ) acts freely on Y .

Let x0 ∈ X and F = ϕ−1(x0). The set F is stabilized by the action of
Aut(ϕ), so Aut(ϕ) acts on F , and this action is free. Thus |Aut(ϕ)| ≤ |F | =
deg(ϕ).
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2.2.2. Discrete Actions. Let Y be a topological space and let G be a group
which acts continuously on Y ; that is, we have a homomorphism G → Aut(Y ),
where Aut(Y ) is the group of homeomorphisms from Y onto itself. We say that
the action is discrete if for every y ∈ Y there exists a neighborhood U of y such
that for every g ∈ G, either g = 1 or gU ∩ U = ∅. A continuous action by a
finite group is discrete if and only if every orbit is a discrete subset. Discrete
actions are necessarily free, and in particular are faithful.

Let Ȳ = Y/G be the quotient space of Y under a discrete action by G, and
let ϕ : Y → Ȳ be the quotient map. The discreteness condition guarantees that
ϕ is a topological cover. Moreover, G acts regularly (transitively and freely) on
the fibers, so |G| = deg(ϕ). Furthermore, every element of the image of G in
Aut(Y ) is an automorphism of ϕ, so G ∼= Aut(ϕ).

Let ψ : Y → X be a topological cover, and let G ≤ Aut(ψ); then G acts
discretely on Y , producing a cover ξ : Y → Ȳ with Aut(ξ) = G. The points of
Ȳ are elements of Y which lie in a single orbit of Aut(ξ); since automorphisms
preserve fibers, there is a map ϕ : Ȳ → X mapping the orbit ȳ of y to ϕ(y).
Thus ψ = ϕ ◦ ξ.

2.2.3. Monodromy Action. Let ϕ : Y → X be a topological cover, and let
x0 ∈ X. Let F = ϕ−1(x0) be the fiber over x0. Then π1(X,x0) acts on F
through path lifting; since we concatenate paths from left to right, this action is
naturally from the right, given by setting x[γ] equal to the endpoint of the unique
lift of γ to x (since γ is a loop, this endpoint is in the fiber over x0). We refer
to this action as the monodromy action. It gives us a group antihomomorphism
π1(X,x0) → Sym(F ).

Assume that Y is connected. In this case, the monodromy action is tran-
sitive. The stabilizer of a point y0 ∈ F is the set of all homotopy classes of
loops in X which lift to loops at y0; that is, the stabilizer is ϕ∗(π1(Y, y0)). Thus
deg(ϕ) = [π1(X,x0) : ϕ∗(π1(Y, y0))].

The kernel of the action on the orbit of y0 is the core of ϕ∗(π1(Y, y0)) in
π1(X,x0); that is, it is the intersection of all its conjugates. The monodromy
group of ϕ is

Mon(ϕ) = π1(X,x0)/Kπ1(X,x0)(ϕ∗(π1(Y, y0))),

together with the action of this group on F .
Let ε : F → Nn be an enumeration of the fiber, where n = deg(ϕ). Denote

ε−1(i) by yi. Composing our action with ε, we obtain a permutation repre-
sentation Tϕ : π1(X,x0) → Sn. A different enumeration of the fiber will give a
conjugate image in Sn. We have ker(Tϕ) = Kπ1(X,x0)(ϕ∗(π1(Y, y0)), so the image
of Tϕ is isomorphic to Mon(ϕ), and may also be referred to as the monodromy
group of the cover.

Since the automorphism group acts freely on fibers and the monodromy
group acts transitively, we see that |Aut(ϕ)| ≤ deg(ϕ) ≤ |Mon(ϕ)|. The au-
tomorphism group of the monodromy action is canonically identified with the
automorphism group of the cover. Let G be the image in Sn of the monodromy
representation of the fundamental group, and let A be the image in Sn of the
automorphism group. We have CSn

(G) = A. This says more than that the au-
tomorphism group is isomorphic to CSn

(G); the identification of A with CSn
(G)

explicitly detects the action of an automorphism on a fiber.
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2.3. Normal Covers.
2.3.1. Extension of Monodromy Action. Let ϕ : Y → X be a topological

cover, and let x0 ∈ X and y0 ∈ ϕ−1(x0). Then the induced homomorphism
ϕ∗ : π1(Y, y0) → π1(X,x0) is injective. Suppose we select a different basepoint
y1 ∈ ϕ−1(x0) for Y . A path from y0 to y1 drops to a loop γ in X, and we have
ϕ∗(π1(Y, y1))γ = ϕ∗(π1(Y, y0)). Moreover, if ϕ1 and ϕ2 are equivalent covers,
their corresponding subgroups in π1(X,x0) are conjugate.

Now we examine when we can extend the action of π1(X,x0) on the fiber
over x0 to an action on all of Y . We attempt to define a right action of π1(X,x0)
on Y as follows. Let γ be a loop based at x0. Let y ∈ Y and let α be a path from
y0 to y. Let γ̃ be the lift of γ to y0; the endpoint of γ̃ is y1 = y0[γ]. Lift the path
ϕ(α) to a path starting at y1, and denote the endpoint of this lift by y[γ]α. If β is
a different path from y0 to y, then αβ−1 is a loop based at y0. Let λ = ϕ(αβ−1)
be the projection of this loop to X and then lift this projection to a path λ̃ based
at y1; then y[γ]α = y[γ]β if and only if λ̃ is a loop at based at y1. This happens
if and only if γ̃λ̃γ̃−1 is a loop based at y0. Projecting this to X, and noting that
every loop at y0 is homotopic to a loop through y, we see that this happens for
all pairs of paths (α, β) exactly when γ normalizes ϕ∗(π1(Y, y0)).

Thus Nπ1(X,x0)(ϕ∗(π1(Y, y0))) acts continuously on Y , and this action pre-
serves fibers of ϕ, thus inducing an antihomomorphism

f : Nπ1(X,x0)(ϕ∗(π1(Y, y0))) → Aut(ϕ).

Let ζ ∈ Aut(ϕ) and y1 = ζ(y0). Then ζ∗ embeds π1(Y, y0) into π1(Y, y1).
Since ζ commutes with ϕ, we have ϕ∗(π1(Y, y0)) ≤ ϕ∗(π1(Y, y1)), and since
these groups are conjugates, they are equal. Thus if γ is a loop in X such that
y0[γ] = y1, we see that γ normalizes ϕ∗(π1(Y, y0)); such a γ exists because Y is
connected. So f([γ]) is an element of Aut(ϕ) which sends y0 to y1, and since ζ
is determined by its effect on a single point, f(γ) = ζ. Thus f is surjective.

The kernel of f is the set of homotopy classes of loops which have trivial
action on ϕ; that is, ker(f) = ϕ∗(π1(Y, y0)). Therefore,

Aut(ϕ) ∼= Nπ1(X,x0)(ϕ∗(π1(Y, y0)))/ϕ∗(π1(Y, y0)).

2.3.2. Normal Covers. A topological cover ϕ : Y → X is called normal if
ϕ∗(π1(Y, y0))/π1(X,x0). In this case, π1(X,x0) acts on the fiber over x0 through
the full automorphism group of the cover, and the kernel of the action is the
image of the covering space’s fundamental group in the base space’s fundamental
group. This action is transitive and free (i.e. regular), so |Aut(ϕ)| = deg(ϕ).
Thus normal covers are also called regular. A normal subgroup is its own core,
so |Mon(ϕ)| = deg(ϕ), and Aut(ϕ) ∼= Mon(ϕ). We summarize this information.

Let ϕ : Y → X be a finite connected cover, and let y0 ∈ Y and x0 = ϕ(y0).
The following conditions are equivalent:

(1) ϕ∗(π1(Y, y0)) / π1(Y, y0);
(2) Aut(ϕ) acts transitively on the fiber over x0;
(3) Mon(ϕ) acts freely on the fiber over x0;
(4) |Aut(ϕ)| = deg(ϕ);
(5) |Mon(ϕ)| = deg(ϕ);
(6) Aut(ϕ) ∼= Mon(ϕ);
(7) ξ : Y/Aut(ϕ) → X is a homeomorphism;
(8) if one lift of a loop is closed, then all lifts are closed.
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2.3.3. Covers from Fundamental Subgroups. Let X be a topological space.
The fact that the fundamental group of the covering space embeds in the fun-
damental group of the base space produces a function from equivalence classes
of covers of X to conjugacy classes of subgroups of the fundamental group of X.
We now demonstrate an inverse to this function.

Let H ≤ π1(X,x0) be any subgroup. We construct a cover ϕ : XH → X
and a point y0 ∈ ϕ−1(x0) such that ϕ∗(π1(XH , y0)) = H.

Let λ(X,x0) be the set of all paths in X based at x0 modulo fixed endpoint
homotopy. Define an equivalence relation on λ(X,x0) by stating that [γ1] ∼ [γ2]
if [γ1γ

−1
2 ] ∈ H. Set XH equal to the set of equivalence classes.

Let [γ] ∈ XH and let U ⊂ X be a simply connected open neighborhood of
γ(1). Let D([γ], U) denote the set of equivalence classes of paths of the form γα,
where α is a path in U based at γ(1). Define a topology on XH by taking all sets
of this form as a basis. Note that in this topology, D([γ], U) is homeomorphic
to U .

Define a function ϕ : XH → X by setting ϕ([γ]) equal to the endpoint of
γ. This is well defined, continuous, and is a topological cover. The degree of
ϕ is the index in π1(X,x0) of H. Finally, let y0 be the equivalence class of
the constant path at x0. This process inverts the function ϕ 7→ ϕ∗(π1(Y, y0)),
yielding a correspondence between the following sets:

(1) equivalence classes of covers of X;
(2) conjugacy classes of subgroups of the fundamental group of X.

The set of all equivalence classes of covers of X is partially ordered by ϕ ≤ ψ
if there exists ξ such that ψ = ξ ◦ϕ. The normal closure of a cover ϕ : Y → X is
a cover ϕ̂ : Ŷ → X which is a minimal normal cover of X which factors through
ϕ. It is the cover which corresponds to the core of ϕ∗(π1(Y, y0)) in π1(X,x0).
Thus ϕ and ϕ̂ have isomorphic monodromy groups, which are in turn isomorphic
to the automorphism group of ϕ̂.

The universal cover of X is the cover which corresponds to the identity in
π1(X,x0). Its fundamental group is trivial, that is, it is simply connected. It is
versally repelling in the category of covers of X. All covers of X can be retrieved
(up to equivalence) through acting on the universal cover by subgroups of the
fundamental group of the base space, which is the automorphism group of the
universal cover.

2.4. Static Covers.
2.4.1. Static Covers. A static cover of a space X with group G is a normal

topological cover ϕ : Y → X together with a group isomorphism τ : G→ Aut(ϕ).
We use this definition to construct a category of covers whose objects have limited
automorphisms.

The group G acts on Y via τ ; this is a discrete action whose corresponding
quotient cover is equivalent to ϕ. On the other hand, suppose that G acts
discretely on a space Y ; this entails a homomorphism τ : G → Aut(Y ). Let X
be the quotient space and let ϕ be the quotient map; we obtain a static cover
(ϕ, τ).

2.4.2. Morphisms of Static Covers. Let (ϕ1 : Y1 → X, τ1) and (ϕ2 : Y2 →
X, τ2) be static covers of X by G. A morphism from the first to the second
consists of a continuous function ξ : Y1 → Y2 with ϕ1 = ϕ2 ◦ ξ, such that
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τ2 = ξ∗ ◦ τ1, where ξ∗ : Aut(ϕ1) → Aut(ϕ2) is the isomorphism given by α 7→
ξ ◦α ◦ ξ−1. This creates the category of static covers of X by G. Any morphism
in this category is necessarily an isomorphism.

Let (ϕ, τ) be an static cover and let ξ ∈ Aut(ϕ, τ) be an automorphism in
this category. Then ξ ∈ Aut(ϕ), and τ = ξ∗ ◦ τ , so ξ∗ is trivial. Since ξ∗ is left
conjugation by ξ, we have ξ ∈ Z(Aut(ϕ)). Thus a static cover has no nontrivial
automorphisms if its group is centerless.

2.4.3. Static Covers and Outer Automorphisms. Let ϕ : Y → X be a cover
and let τ1, τ2 : G → Aut(ϕ) be isomorphisms. Then τ−1

1 ◦ τ2 ∈ Aut(G), and
(ϕ, τ1) ∼= (ϕ, τ2) as static covers if and only if τ−1

1 ◦ τ2 ∈ Inn(G). Given a
cover ϕ, selection of a specific τ1 : G → Aut(ϕ) produces a bijection between
isomorphism classes of static covers {[ϕ, τ ]} and outer automorphisms Out(G)
given by [ϕ, τ ] 7→ τ−1

1 ◦ τ .
2.4.4. Functors between Static Cover Categories. We would like to extend

this category to allow morphisms between static covers with varying groups.
Unfortunately, in killing the automorphism group of the cover, we have precluded
doing this in any canonical manner. However, we can do the following. Let
f : H → G be a fixed surjective group homomorphism, and let (ψ : Z → X, υ :
H → Aut(ψ)) be a static cover. Let K = ker(f) ≤ H; then K acts discretely
on Z, producing a normal covers ξ : Z → Y and ϕ : Y → X, where Y =
Z/K. Automorphisms of ψ descend to well defined automorphisms of ϕ, giving
a surjective homomorphism ρ : Aut(ψ) → Aut(ϕ) with kernel Aut(ξ) = υ(K).
This in turn produces a well-defined discrete action τ : G → Aut(ϕ) given by
τ(f(h)) = ρ(υ(h)). Thus f induces a functor from the category of static covers
with group H to the category of static covers with group G.

3. Ramified Covers

3.1. Ramified Covers.
3.1.1. Ramified Covers. A ramified cover is a nonconstant morphism be-

tween compact connected Riemann surfaces. Let ϕ : Y → X be a ramified
cover. The image of ϕ is open by the Open Mapping Theorem, and it is also
closed because Y is compact and X is Hausdorff. Since X is connected, the
image of ϕ must be all of X, so ϕ is surjective. Let x0 ∈ X and let F = ϕ−1(x0);
the Identity Theorem implies that F is a discrete subset of Y , so F is finite
because Y is compact.

Although the value of the derivative of ϕ is not well-defined, the order of
its vanishing at a given point in Y is well-defined. Since Y is compact, the
Identity Theorem implies that there are only finitely many points on Y where
the derivative vanishes. These points in Y are called the ramification points of
the cover. Their images are called the branch points of the cover; let Bpt(ϕ)
denote the set of branch points.

Let ∆ be the open unit disk in C. Let y0 ∈ Y and x0 = ϕ(y0). There exists
charts κV : V → ∆ and κU : U → ∆ around y0 and x0 with ϕ(V ) = U and
κV (y0) = κU (x0) = 0. We may choose κV and κU such that κU ◦ϕ◦κ−1

V (z) = ze

for all z ∈ ∆ and some positive integer e. We see that e > 1 if and only if y0
is a ramification point; we call e the ramification index of y0, and denote this
number by e(y0). In particular, the map ϕ is e to 1 in a deleted neighborhood
of y0.
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3.1.2. Corresponding Topological Covers. Let ϕ : Y → X be a ramified
cover. Let B = Bpt(ϕ) and R = ϕ−1(B). Set Y ◦ = Y r R, X◦ = X r B, and
ϕ◦ = ϕ �Y ◦ . Then ϕ◦ : Y ◦ → X◦ is a topological cover. The degree of ϕ is the
degree of ϕ◦, and is denoted by deg(ϕ). We see that for any x ∈ X, we have
deg(ϕ) =

∑
y∈ϕ−1(x) e(y).

Let ϕ : Y → X be a finite topological cover, where X• is a compact con-
nected Riemann surface, B is a finite subset of X•, and X = X• r B. Thus
X has a complex structure, and we obtain charts on Y by composing charts on
X with ϕ; this produces a unique complex structure on Y such that the map ϕ
is holomorphic. Let x0 ∈ B, and consider a chart κ : U → ∆ with κ(x0) = 0.
The preimage ϕ−1(U) consists of finitely many connected components which are
homeomorphic to punctured disks. Use a quotient construction to fill in these
punctures to obtain a Riemann surface Y •; ϕ uniquely extends to a morphism
ϕ• : Y • → X•.

3.1.3. Morphisms of Ramified Covers. Let ψ : Z → X and ϕ : Y → X be
ramified covers. The strong morphism from ψ to ϕ is a nonconstant morphism
of Riemann surfaces ξ : Z → Y such that ψ = ϕ ◦ ξ. In this case, ξ is also a
ramified cover. This defines equivalence of ramified covers of X.

Let B be a finite subset of X. The map ϕ◦ 7→ ϕ produces a bijective
correspondence between the following sets:

(1) equivalence classes of topological covers of X◦ of degree n;
(2) equivalence classes of ramified covers of X with branch points in B of

degree n.

Let ϕ : Y → X be a ramified cover. An automorphism of ϕ is an isomorphism
from ϕ to itself. The set of all automorphisms of ϕ is denoted by Aut(ϕ). If
α ∈ Aut(ϕ), the α restricts to α◦ ∈ Aut(ϕ◦). If β ∈ Aut(ϕ◦), then β extends
uniquely to β• ∈ Aut(ϕ). Thus Aut(ϕ) ∼= Aut(ϕ◦).

We say that ϕ is a normal ramified cover if ϕ◦ is a normal topological cover.
The Galois correspondence of finite topological covers now carries over into the
realm of ramified covers.

Define a weak morphism of the ramified covers ψ : Z → X and ϕ : Y → X
to be a pair (ξ, α), where ξ : Z → Y and α : X → X are morphisms of Riemann
surfaces with α ◦ ψ = ϕ ◦ ξ. This defines weak equivalence of covers of X.

3.1.4. Riemann-Hurwitz Formula. The Riemann sphere is P1 = C ∪ {∞}.
This is complex projective one space, which we sometimes view in homogeneous
coordinates [x, y], where C is identified with {[x, 0]} and ∞ is identified with
[0, 1]. We may use a subscript, such as P1

x, to indicate the coordinate system on
P1.

Let ϕ : Y → X be a ramified cover of degree n; we may compute the genus
of Y from the genus of X and the ramification of ϕ as follows. Recall that
the Euler characteristic of X, denoted χ(X), is the number of faces minus the
number of edges plus the number of vertices of any triangulation of X. Select a
triangulation of X which includes all branch points as vertices. The preimages
of the faces determine a triangulation of Y . Each edge and face on X lifts to
n distinct edges and faces on Y . However, if v ∈ X is a vertex over which
ramification occurs, the number of lifts of v is less than n by the extent of the
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ramification, which we express as

χ(Y ) = nχ(X)−
∑

ramification ;

more precisely, we obtain the Riemann-Hurwitz Formula

2− 2gY = n(2− 2gX)−
∑
p∈Y

(e(p)− 1).

If X = P1, then gX = 0; solving this for g = gY yields Riemann’s Formula

g = 1− n+
1
2

∑
p∈Y

(e(p)− 1).

3.2. Branch Cycle Descriptions.
3.2.1. Classical Generators. Let X be a Riemann surface and let x ∈ X.

Then x lies in a chart κ : U → ∆, where U is a simply connected neighborhood
of x, ∆ = {z ∈ C | |z| ≤ 1}, κ is holomorphic, and κ(x) = 0. By a circle
around x, we mean the path κ−1(exp(−2πit)), for t ∈ [0, 1]. Since exp(−2πit)
has winding number −1 around 0, this circle proceeds in a clockwise direction
around x.

Let x = (x1, . . . , xr) be an ordered tuple of distinct points in X, and let
x = {x1, . . . , xr} denote the corresponding unordered set. Let X◦ = X r x, and
let x0 ∈ X◦. A classical loop in X◦ about x ∈ X based at x0 is a loop which is
homotopic in X◦ to a loop of the form λ = αδα−1, such that

(a) δ is a circle around x, based at u ∈ X, which is null homotopic in
X◦ ∪ {x};

(b) α is an injective path in X◦ r U from x0 to u.
Suppose λ0 is another classical loop about x. Then λ0 is homotopic to

α0δα
−1
0 for some path α0; if β = αα−1

0 , then λ is homotopic to βλ0β
−1 in X◦.

Thus [λ] is conjugate to [λ0] in π1(X◦, x0).
A bouquet of classical loops in X◦ with respect (x, x0) is a tuple λ =

(λ1, . . . , λr) of loops in X based at x0 such that
(a) λi is a classical loop about xi;
(b) λi(t1) = λj(t2) ⇒ t1, t2 ∈ {0, 1} for i 6= j;
(c) there exists a circle around x0 which intersects each path exactly once

in the given order.
Assume that X = P1. In this case, X◦ is homotopy equivalent to a disk

with r − 1 punctures, which in turn is homotopy equivalent to the wedge sum
of r − 1 loops. Van Kampen’s Theorem implies that the fundamental group of
this space is free on r− 1 generators. We wish to select particular generators for
the fundamental group of the punctured sphere. We add one generator and one
relation to the presentation.

Let λ be a bouquet with respect to (x, x0). The homotopy classes of the
paths in λ generate the fundamental group of X◦, and the concatenation of the
paths in λ is null homotopic in X, so the product of their homotopy classes
is trivial. Moreover, π1(X◦, x0) is freely generated by [λ1], . . . , [λr] modulo the
relation that their product is trivial, where [λi] is the homotopy class of λi. We
call these homotopy classes classical generators for π1(X◦, x0). Thus a classical
tuple with respect to (x, x0) is a tuple of classical generators based at x0, [λ] =
([λ1], . . . , [λr]), where λ is a bouquet.
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3.2.2. Branch Cycle Descriptions. Let ϕ : Y → P1 be a connected ramified
cover of degree n, and let ϕ◦ : Y ◦ → X◦ be the corresponding topological cover.
Select a basepoint x0 in X◦ and set F = ϕ−1(x0). Let ε : F → {1, . . . , n} be
an enumeration of the fiber over x0. The action of π1(X◦, x0) on F produces a
homomorphism Tϕ : π1(X◦, x0) → Sn via ε. Let G be the image of this homo-
morphism; that is, G the monodromy group of the cover. Since Y is connected,
G is transitive. A different choice of ε will produce a homomorphism which
differs from Tϕ by an inner automorphism of Sn; thus G is well-defined up to
permutation equivalence.

Let x = (x1, . . . , xr) be the branch points of ϕ, so that X◦ = P1 r x. Let λ
be a bouquet with respect to x0 and x. Set gi = Tϕ([λi]) ∈ Sn. Then {g1, . . . , gr}
generates G, and Πr

i=1gi = 1. Each gi describes the action of λi on the fiber
over x0 via path lifting, and is a product of disjoint cycles in Sn. If we include
cycles of length one in this decomposition, we see that each disjoint cycle in gi
corresponds to a point in the fiber over the ith branch point, and the length
of the disjoint cycle gives the ramification index. In this way g = (g1, . . . , gr)
describes the ramification of ϕ. We call g the branch cycle description of the
cover ϕ with respect to λ.

3.2.3. Nielsen Tuples. Let H be a group and let g = (g1, . . . , gr) ∈ Hr. Let
〈g〉 = 〈g1, . . . , gr〉 denote the subgroup of H generated by the entries in g, and
let Πg = Πr

i=1gi denote their product, in the order given.
A Nielsen tuple of degree n and rank r is a tuple g = (g1, . . . , gr) ∈ Srn

satisfying
(a) 〈g〉 = G is a transitive subgroup of Sn;
(b) Πg = 1.
Let h = (h1, . . . , hs) and g = (g1, . . . , gr) be Nielsen tuples with of rank n

andm, respectively, so thatH = 〈h〉 ≤ Sn and G = 〈g〉 ≤ Sm. A morphism from
h to g is a function f : Nn → Nm which induces a homomorphism f∗ : H → G
which sends hi to gi. This necessitates that n ≥ m and that f is surjective. In
particular, if n = m, f must be bijective and f∗ is given by conjugation in Sn; in
this case h and g are equivalent. We obtain the category of Nielsen tuples such
that equivalence is isomorphism in this category.

Now suppose that we wish to construct a cover of P1 with specified ramifi-
cation. Select branch points x, a base point x0 not among them, and a bouquet
λ with respect to (x, x0). Select a Nielsen tuple g. Let X = P1 r x. Map
[λi] to gi to obtain a homomorphism T : π1(X,x0) → Sn with image G = 〈g〉.
Let U be the stabilizer of 1 in G; then T−1(U) is a subgroup of π1(X,x0). Let
ϕ : Y → X be the topological cover which corresponds to this subgroup. By
filling in the missing points, one obtains a ramified cover ϕ• : Y • → P1. Up to
equivalence, this produces an inverse to the process of obtaining a Nielsen tuple
from a ramified cover. Thus a classical tuple produces a bijective correspondence
between the following sets:

(1) equivalence classes of covers of P1 ramified over x of degree n;
(2) equivalence classes of Nielsen tuples of rank r and degree n.
3.2.4. Conjugacy Classes. Let ϕ : Y → P1 be a ramified cover and let x, x0 ∈

P1 distinct. Let λ be a classical loop about x based at x0, and let Conx(ϕ) denote
the conjugacy class of λ in Mon(ϕ). This conjugacy class is independent of the
choice of x0 and λ. Moreover, this definition makes sense for every point in
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P1, not just the branch points. Indeed, the invariant Bpt(ϕ) can be recovered
from the set {Conx(ϕ) | x ∈ P1} as those points x with nontrivial Conx(ϕ).
Although the conjugacy class is unambiguous in Mon(ϕ), the same cannot be
said of its image under a permutation representation; the conjugacy class of the
image depends on the enumeration of the fiber.

3.3. Meromorphic Functions.
3.3.1. Meromorphic Functions. Let X be a compact Riemann surface. A

meromorphic function on X is a holomorphic function from X to P1
x which is

not constantly ∞. Such a function is either constant or surjective. Let Mer(X)
denote the set of meromorphic functions on X. Let ∗ denote addition or multi-
plication in C and define ∗ in Mer(X) by

(f ∗ g)(x) = lim
y→x

f(y),g(y) 6=∞

f(y) ∗ g(y).

This gives Mer(X) the structure of a field, into which C embeds as the constant
functions. We call Mer(X) the function field of X.

Let f ∈ Mer(X) be a nonconstant function; then f is a ramified cover of P1
x.

The zeros of f are the points in the fiber over 0 and the poles of f are the points
in the fiber over ∞. The order of a zero or a pole is its ramification index. The
number of zeros equals the number of poles, when counted with multiplicity; this
number is the degree of the ramified cover.

3.3.2. Endomorphisms of the Riemann Sphere. A meromorphic function on
the Riemann sphere is an endomorphism, so the set of endomorphisms End(P1

x)
equals Mer(P1

x) ∪ {∞} as a set, but becomes a monoid under composition. Let
Hol(P1

x) = End(P1
x)
∗ denote the group of holomorphic isomorphisms from P1

x to
itself. We determine the field Mer(P1

x) and the group Hol(P1
x).

Let f ∈ Mer(P1
x), with zeros a1, . . . , an and poles b1, . . . , bn. Set

g(x) =
Πn
i=1(x− ai)

Πn
j=1(x− bj)

.

Then f/g is a function without zeros or poles, which is constant by the Open
Mapping Theorem. Thus f = ag for some a ∈ C, and f is a rational function.
Therefore

Mer(P1
x) = C(x),

where C(x) denotes the quotient field of the polynomial ring C[x].
A linear fractional transformation is a function f : P1

x → P1
x of the form

f(x) =
ax+ b

cx+ d
.

Such a function has an expression of this form with ad− bc = 1, which is unique
up to multiplication of all coefficients by ±1. The degree of a rational function
written with relatively prime numerator and denominator is the maximum de-
gree of these constituent polynomials. In particular, the only injective rational
functions are those of degree one, that is, the linear fractional transformations.
Since all morphisms from the Riemann sphere to itself are rational functions,
its automorphism group is exactly the set of linear fractional transformations.
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Observe the action of PSL2(C) on P1
x:(

a b
c d

) (
x1

x2

)
=

(
ax1 + bx2

cx1 + dx2

)
.

Using the identification of P1
x with C∪{∞} via x = [x, 1] and ∞ = [1, 0], we see

that if x = x1
x2

, this acts as the function f(x) above. Therefore

Hol(P1
x) = PSL2(C).

3.3.3. Ramified Covers Produce Function Field Extensions. Let ϕ : Y → X
be a ramified cover. The function field of X naturally embeds into the function
field of Y via composition; define

ϕ∗ : Mer(X) ↪→ Mer(Y ) by f 7→ f ◦ ϕ.

Then ϕ∗ is an injective ring homomorphism. This creates a contravariant functor
from the category of compact Riemann surfaces and nonconstant morphisms into
the category of fields and field embeddings.

Focus on the case that X = P1
x; then Mer(X) = C(x), and by identifying

Mer(X) with ϕ∗(Mer(X)), we obtain a field extension Mer(Y )/C(x); we refer to
this the function field extension corresponding to the cover.

Let ψ : Z → P1
x and ϕ : Y → P1

x be ramified covers, and let ξ : Z → Y
be a morphism of covers. The induced map ξ∗ : Mer(Y ) → Mer(Z) is constant
on C(x), and so produces a morphism of function field extensions. This gives
a functor from the category of ramified covers of X to the category of function
field extensions of C(x). Next we outline an inverse to this functor.

3.3.4. Function Field Extensions Produce Ramified Covers. Let E/C(x) be
a function field extension. This extension is separable over C(x), and so admits
a primitive element; thus it is of the form C(x, f), where f is transcendental
over C but algebraic over C(x). As such, f has a minimum polynomial over
C(x)[w], where w transcendental over C(x). By clearing denominators, we find
an irreducible polynomial m(x,w) ∈ C[x,w] such that m(x, f) = 0.

Let V = {(x,w) ∈ C2 | m(x,w) = 0}; then V is an affine set, and the ring
of algebraic functions on V is isomorphic to C[x,w]/〈m〉. Since m is irreducible,
V is an affine variety whose function field is the field of fractions of C[x,w]/〈m〉,
which is isomorphic to E ∼= C(x)[f ]. Let ϕ : V → A1

x be projection on the
first coordinate. Let T = {v ∈ V | ∂m

∂x (v) = 0 or ∂m
∂w (v) = 0}; then T is a

finite subset of V . Set B = ϕ(T ), X◦ = X r B, Y ◦ = Y r ϕ−1(ϕ(T )), and
ϕ◦ = ϕ �Y ◦ . Apply the Implicit Function Theorem to see that ϕ◦ : Y ◦ → X◦ is
a topological cover. This in turn produces a ramified cover ϕ• : Y • → P1

x, whose
corresponding function field extension is isomorphic to E/C(x). This outlines
the bijective correspondence between the following sets:

(1) equivalence classes of ramified covers of P1
x;

(2) equivalence classes of function field extensions of C(x).

3.4. Algebraic Covers.
3.4.1. Algebraic Models of Ramified Covers. An algebraic cover of P1 is an

algebraic function ϕ : V → P1, where V is a projective curve in Pn, and ϕ is
given by projection onto some projective line in Pn. Thus V is the set of zeros of
some homogeneous polynomials in n+1 indeterminates, and ϕ can be expressed
as a ratio of homogeneous polynomials of the same degree.
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Suppose V is the zero locus of the minimum polynomial for a function field
extension, as in the subsection 3.3.4. Embed V in projective space by homoge-
nizing the defining polynomial m; let V • be the zero locus of the corresponding
homogeneous polynomial. If V • is singular, normalize V • (see [Sh94] Section
II.5). This produces a nonsingular curve with the same function field, embedded
in projective space, together with a projection map ϕ• : V • → P1 onto some P1

in the projective space.
If we start with a ramified cover ϕ : Y → P1, this process produces an

equivalent cover V → P1 with an algebraic structure; call it an algebraic model
of the ramified cover. In particular, Y is holomorphically isomorphic to V , and
there exists an embedding ξ : Y → V of Y into projective space such that ϕ◦ξ−1

is algebraic.
3.4.2. Fields of Definition of Ramified Covers. Our purpose for placing an

algebraic structure on a ramified cover is to have geometric access to the notion
of field of definition.

Let ϕ : V → P1 be an algebraic cover, and let K be a subfield of C. We say
that K is a field of definition for ϕ if the coefficients of the polynomials defining
V are in K, and the coefficients of the polynomials defining ϕ are in K.

Let ϕ : Y → P1 be a ramified cover. We say that ϕ can be defined over
K, if there exists an algebraic model for ϕ which is defined over K. Let Fld(ϕ)
denote the set of all subfields of C over which ϕ can be defined; then Fld(ϕ) is
an invariant of ϕ. If K ∈ Fld(ϕ), this produces a well-defined meaning to being
a K-point on Y , up to isomorphisms defined over K.

Let x = (x1, . . . , xr) be the branch points of ϕ, and set f(x) =
∏r
i=1(x−xr),

with the convention that (x − ∞) = 1. Let K be the field generated by the
coefficients of f . Thus x is an algebraic set defined over K. Let K̄ be the
algebraic closure of K in C. Then ϕ can be defined over K̄ (see [Fr77] Theorem
5.1 and [FV91] Section 1.5).

3.4.3. Galois Action on Algebraic Covers. Let ϕ : V → P1 be an algebraic
cover which is defined over a field K. Let β ∈ Aut(K) be a field automorphism.
Then β acts on the defining polynomials for V and ϕ, producing another cover
ϕβ : V β → P1, also defined over K. If K/F is a finite normal extension, then ϕ
is defined over F if and only if ϕβ = ϕ for every β ∈ Gal(K/F ).

To see this more explicitly, extend β to an automorphism of C, also called β.
Now β acts directly on the Riemann sphere P1 = C∪{∞} (fixing∞), producing a
map β : P1 → P1; also β acts on Pn via application to homogeneous coordinates,
producing an isomorphism β̂ : Pn → Pn. Set Y β = β̂(Y ) and define the cover
ϕβ : Y β → P1 by ϕβ = β ◦ ϕ ◦ β̂−1; this is an algebraic cover. The choice of
extension for β does not effect the isomorphism class of ϕβ as a cover defined
over K.

3.4.4. Galois Action on Ramified Covers. Let ϕ1 : V1 → P1 and ϕ2 : V2 →
P1 be algebraic covers which are equivalent as ramified covers. Then there exists
a holomorphic function ξ : V1 → V2 with ϕ1 = ϕ2 ◦ ξ. A priori, ξ may be
nonalgebraic; nevertheless, β ∈ Aut(K) induces ξβ : V β1 → V β2 by ξβ = β◦ξ◦β−1,
and ϕβ1 is equivalent to ϕβ2 via ξβ .

Let ϕ : Y → P1 be a ramified cover, and let [ϕ] denote the class of covers
equivalent to ϕ. Then [ϕβ ] is a well-defined class of covers. Let R = {[ϕ] | ϕ :
Y → P1} be the set of all equivalence classes of ramified covers of P1, and let
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Aut(C) denote the group of field automorphisms of C. Then Aut(C) acts on R
by β : [ϕ] 7→ [ϕβ ].

3.4.5. Fields of Moduli of Ramified Covers. Let ϕ : Y → P1 be a ramified
cover. We wish to find testable sufficient conditions for ϕ to have a model over a
field K. A necessary condition is that ϕ is equivalent, as a cover, to ϕβ , whenever
β fixes K. This implies that the branch points form an algebraic set over K.

The field of moduli of ϕ is the fixed field of the group

{β ∈ Aut(C) | ϕβ is equivalent to ϕ}.

If ϕ can be defined over its field of moduli, then ϕ being equivalent to ϕβ implies
that ϕ can be defined over the fixed field of β. If either ϕ is normal or Aut(ϕ) is
trivial, then ϕ has a model over its field of moduli (see [FV91] Section 1.5 and
[DF94] Sections 2.4 and 3.4).

3.5. Static Ramified Covers.
3.5.1. Galois Covers. Let ϕ : Y → P1 be an algebraic cover and let β ∈

Aut(C). As above, β̂ : Y → Y β is the restriction to Y of the action of β on
projective space. Then β induces a function β∗ : Aut(ϕ) → Aut(ϕβ) given by
α 7→ β̂ ◦ α ◦ β̂−1, which is a group isomorphism.

Let F be the fixed field of β. If ϕ is defined over F , then Y = Y β , which
identifies Aut(ϕ) with Aut(ϕβ), and β∗ ∈ Aut(Aut(ϕ)). Now α ∈ Aut(ϕ) is
defined over F if and only if β∗(α) = α. View β̂ ∈ Sym(Y ) and Aut(ϕ) ≤
Sym(Y ); the subgroup of Aut(ϕ) consisting of automorphisms defined over F is
CAut(ϕ)(β̂) ≤ Sym(Y ).

Let ϕ : Y → P1 be a normal cover defined over a field K. We say that ϕ is
Galois over K if every automorphism of ϕ is defined over K. This occurs exactly
when β∗ ∈ Aut(Aut(ϕ)) is the identity, or equivalently, CAut(ϕ)(β̂) = Aut(ϕ),
for every β ∈ Aut(C/K).

3.5.2. Static Ramified Covers. A static ramified cover of P1 with group G is
a normal ramified cover ϕ : Y → P1 together with an explicit isomorphism τ :
G→ Aut(ϕ). The corresponding topological cover is a static cover in the sense
of subsection 2.4. Define morphisms for static ramified covers in the analogous
fashion.

3.5.3. Branch Cycle Descriptions of Static Ramified Covers. Let g be a
branch cycle description for a static ramified cover (ϕ : Y → P1, τ : G→ Aut(ϕ))
with respect to some bouquet. Any equivalence to another static ramified cover
induces an inner automorphism of G, so its branch cycle description differs from
g by conjugation in G. This produces a bijective correspondence between these
sets:

(1) equivalence classes of static ramified covers of P1 with group G;
(2) conjugacy classes of Nielsen tuples generating group G.
3.5.4. Fields of Definition of Static Ramified Covers. Let (ϕ : Y → bP 1, τ :

G→ Aut(ϕ)) be a static ramified cover. For β ∈ Aut(C), set τβ = β∗ ◦ τ .
Let K be a subfield of C. We say that (ϕ, τ) is defined over K if τ = τβ for

every β ∈ Aut(C/K). This happens exactly when ϕ is Galois over K.
We have an action of Aut(C) on static covers by β : (ϕ, τ) 7→ (ϕβ , τβ),

which is well-defined on equivalence classes. The field of moduli for static covers
is the fixed field of the group of field automorphisms of C which send (ϕ, τ) to
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an equivalent static cover. If G is centerless, then (ϕ, τ) has a model over its
field of moduli.

4. Function Fields Extensions

4.1. Function Field Extensions.
4.1.1. Functions Field Extensions. A function field extension of C(x) is a

finite extension L/C(x). Thus L has transcendence degree one over C, and is
a C(x) algebra. A morphism from L1/C(x) and L2/C(x) is a field embedding
α : L1 → L2 such that α(f) = f for every f ∈ C(x).

It is important to note that if we view C(x) as the unembedded quotient field
of a polynomial ring, and map the indeterminate to an element of t ∈ L which
is transcendental over C to construct a C(x) algebra, we obtain very different
algebra structures depending on the choice of t. In particular, the degree of the
algebraic part [L : C(t)] is dependent on the embedding of C(x) into L. In what
follows, assume x ∈ L.

4.1.2. Equivalence of Categories. Let ϕ : Y → P1
x be a ramified cover, and

let L = Mer(Y ). The correspondence ϕ 7→ L/C(x) produces a contravariant
functor which is an equivalence of categories between ramified covers of P1

x and
function field extensions of C(x). In particular, Aut(ϕ) ∼= Aut(L/C(x)). Indeed,
the map

Γ : Aut(ϕ) → Aut(Mer(Y )) given by Γα(f) = f ◦ α−1,

where Γα : Mer(Y ) → Mer(Y ) denotes the image of α in Aut(Mer(Y )), is a group
antiisomorphism. Applying Galois theory to this adds that deg(ϕ) = [L : C(x)].

Other invariants of ϕ have analogs in the category of function field exten-
sions. The purpose of this section is to briefly describe how we intrinsically define
the concepts of fields of definition and branch points for function field extensions,
such that these invariants are preserved by the correspondence discussed above.

4.2. Arithmetic of Function Field Extensions.
4.2.1. Fields of Definition of Function Field Extensions. Let L/C(x) be a

function field extension, and let F be a subfield of C. We say that F is a
field of definition for the extension, or that the extension can be defined over
F , if there exists a primitive element for L/C(x) whose minimum polynomial
in C(x) actually resides in F (x). Suppose θ ∈ L such that L = C(x, θ), whose
minimum polynomial over C(x) is f ∈ F (x)[y]. Then θ is algebraic over F (x),
and E = F (x, θ)/F (x) is a finite extension. Moreover f is irreducible over F (x),
and [E : F (x)] = [L : C(x)].

Let Fld(L/C(x)) be the set of subfields of C over which the extension
can be defined, and let ϕ : Y → P1

x be a ramified cover. Then Fld(ϕ) =
Fld(Mer(Y )/C(x)).

4.2.2. Regular Extensions. Let L/F be a field extension. Let algL(F ) denote
the algebraic closure of F in L, that is, the set of elements of L which are
algebraic over F ; this is a subfield of L. We say that L/F is a regular extension
if algL(F ) = F .

Let L/C(x) be a normal function field extension which is defined over a
subfield F of C, and let θ be a primitive element for L/C(x) with minimum
polynomial f ∈ F (x)[y]. Let E = F (x, θ). Then E/F is a regular extension;
however, E/F (x) may not be normal. Let Ê/F (x) be its normal closure in L,
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and let F̂ = algÊ(F ). We call F̂ the extension of constants field. Clearly Ê/F̂ (x)
is a normal extension, regular over F̂ . Restriction gives a map Gal(L/C(x)) →
Gal(Ê/F̂ (x)) which is an isomorphism, and we have an exact sequence

1 → Gal(Ê/F̂ (x)) → Gal(Ê/F (x)) → Gal(F̂ /F ) → 1.

If F̂ = F , we say that L/C(x) is Galois over F ; in this case, Gal(L/C(x)) is
isomorphic to the Galois group of a regular extension of F .

4.2.3. Arithmetic versus Geometric Monodromy Groups. Let ϕ : Y → P1
x be

a normal ramified cover defined over a field F . The function field L/C(x) of ϕ̂
can be defined over F ; let E, Ê and F̂ be as above. The topological monodromy
group of ϕ is isomorphic to Gal(Ê/F̂ (x)); call this the geometric monodromy
group of the cover. The arithmetic monodromy group over F of the cover is
Gal(Ê/F (x)).

We can produce a geometric realization of the arithmetic monodromy group
following a construction of Fried (see [BF02] Section 3.1.3). This construction
amounts to taking the orbit of Ŷ under the action of Gal(F̂ /F ), allowing the
components Ŷ β to cover P1

x via ϕ̂β , for β ∈ Gal(F̂ /F ). We call this the Galois
closure of the cover over F ; we obtain a disconnected cover defined over F , whose
automorphism group is isomorphic to Gal(Ê/F ). The normal cover ϕ is Galois
over F if and only if it equals its Galois closure, in which case the function field
extension of ϕ is regular over F , and Aut(ϕ) is isomorphic to the Galois group
of a regular extension of F .

4.3. Branch Points of Function Field Extensions.
4.3.1. Laurent Series. Let z be transcendental over C. The field of formal

Laurent series in z over C the field of fractions of the ring of formal power series
in z over C, given by

L(z) =
{ ∞∑
j=m

ajz
j | m ∈ Z and aj ∈ C

}
.

Then C(z) embeds in L(z) by expanding each rational function in its Laurent
series around zero, making L(z) a C(z)-algebra.

Let t be a positive integer. The map πt : L(z) → L(z) given by z 7→ zt

is a C(z)-algebra endomorphism with trivial kernel; thus the image L(zt) is a
subfield isomorphic to L(z). Clearly L(z)/L(zt) is a finite extension of degree
t. Suppose that ζt ∈ C is a tth root of unity, and define µt : L(z) → L(z) by
x 7→ ζtx. Then µt is an automorphism of order t, which implies that L(z)/L(zt)
is a Galois extension with cyclic Galois group generated by µt.

If L/L(z) is a finite extension of degree t, then L = L(y), where yt = z (see
[Vo96]). Let L(z) be a fixed algebraic closure of L(z), and let {z1/t | t ∈ N+} be
compatible system of roots of z in L(z); by compatible, we mean that z1/t1t2 =
z1/t1z1/t2 . Then

L(z) =
∞⋃
t=1

L(z1/t).

4.3.2. Branch Points of Function Field Extensions. Let a ∈ P1
x and set z =

(x − a) if a ∈ C, or z = 1
x if a = ∞. The field of formal Laurent series about a

is La = L(z). For a compatible system of roots of z, set Pta = L(z1/t). The field
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of formal Puiseux expansions about a is Pa = ∪∞t=1P
t
a. We embed C(x) into La

by expanding the rational functions in their Laurent series around a.
Let L/C(x) be a function field extension. Such a field extension has branch

points, as we now describe. Since Pa is algebraically closed, we obtain an em-
bedding L ↪→ Pa lifting the embedding C(x) ↪→ La, and there exists a minimal
t such that L ↪→ Pta. We call t the ramification index of L/C(x) at a. If t > 1,
we say that L/C(x) is ramified over a, and that a is a (nontrivial) branch point
of L/C(x). Denote the set of branch points by Bpt(L/C(x)). If ϕ : Y → P1

x is a
ramified cover, then Bpt(ϕ) = Bpt(Mer(Y )/C(x)).

Let L̂/C(x) denote the normal closure of L/C(x); the branch points of
L/C(x) and L̂/C(x) are the same. Let b be a branch point of index t and
ι : L̂/C(x) → Ptb be an embedding over C(x). The automorphism µt fixes
the image of C(x) and thus is an automorphism of ι(L̂). Then ι−1 ◦ µt ◦ ι ∈
Gal(L̂/C(x)). Any other embedding of L̂ differs by an element of Gal(L̂/C(x)),
so the branch point b specifies a conjugacy class in Gal(L̂/C(x)), which we denote
by Conb(L̂/C(x)). Let ϕ̂ : Ŷ → P1

x be the normal closure of ϕ. The function Γ
from subsection 4.1.2 produces an isomorphism between Aut(L̂/C(x)) and the
opposite group of Aut(ϕ̂), which is naturally identified with Mon(ϕ̂). Under these
identifications, Conb(ϕ̂) = Conb(L̂/C(x)) (see [Vo96] Theorem 5.9 Addendum).

One benefit of the above construction is that the Galois action on Puiseux
expansions may be explicitly computed and compared to the monodromy action
of the corresponding cover. We detect the Galois action by applying automor-
phisms to the coefficients of the power series.

4.3.3. Branch Cycle Argument. The branch cycle argument gives a necessary
condition for a Nielsen tuple to correspond to a cover defined over Q. Our source
for this [Fr77] Lemma for Theorem 5.1, which acknowledges [Fr73] and [Sh74]
(see also [Vo96] Lemma 2.8, [Fr94] Argument 1.2, and [BF02] Lemma 3.7).

If ϕ : Y → P1 is a normal cover and β ∈ Aut(C), composing the identifica-
tions of Mon(ϕ) and Mon(ϕβ) with Aut(ϕ) and Aut(ϕβ), with the isomorphism
β∗ : Aut(ϕ) → Aut(ϕβ), produces an isomorphism β∗ : Mon(ϕ) → Mon(ϕβ).

Proposition 1 (Branch Cycle Argument). Let ϕ : Y → P1 be a normal
ramified cover, and let K be its field of moduli. Let n = deg(ϕ) and let ζn ∈ C
be a primitive nth root of unity. Let β ∈ Aut(C/K) and let m ∈ Z such that
β(ζn) = ζmn . Let β∗ : Mon(ϕ) → Mon(ϕβ) be the induced isomorphism. Then
for every b ∈ P1 we have

Conβ(b)(ϕβ) = β∗(Conb(ϕ))m.

Proof. Let L = Mer(Y ), and let Lβ = Mer(Y β). Since β fixes K, the cover
ϕβ is equivalent to ϕ, so there exists a holomorphic isomorphism ξ : Y → Y β

such that ϕ = ϕβ ◦ ξ. This induces a field isomorphism L → Lβ which fixes
x ∈ C(x) ≤ L and extends the action of β on C; denote this map also by β.
It suffices two prove the proposition for conjugacy classes in the automorphism
groups of the corresponding field extensions. Let Cβ denote C twisted by β.

Let g ∈ Conb(L/C(x)), and let t = ord(g). Then t divides n. Let ζt = ζ
n/t
n ,

so that ζt is a primitive tth root of unity. Now β(ζt) = ζmt . Clearly β extends to
an isomorphism β̃ : Ptb → Ptb, given by acting on a the coefficients of a Puiseux
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series by β, such that the following diagram commutes:

L
β−−−−→ Lβ

ι

y yιβ
Ptb −−−−→

β̃
Ptβ(b)

Apply the Galois functor (generally contravariant, but use covariant for isomor-
phisms) to obtain this commutative diagram:

Gal(L/C(x))
β∗−−−−→ Gal(Lβ/Cβ(x))

ι∗
x xι∗β

Gal(Ptb/Pb) −−−−→
β̃∗

Gal(Ptβ(b)/Pβ(b))

Let g : (x − b)1/t 7→ ζt(x − b)1/t be a generator for Gal(Ptb/Pb). For a ∈ C,
g(a) = a; thus βgβ−1(a) = a. This allows us to compute β̃∗ on (x−β(b))1/t. Let
gβ : (x− β(b))1/t 7→ ζt(x− β(b))1/t be a generator for Gal(Ptβ(b)/Pβ(b)). Then

β̃∗(g)((x− β(b))1/t) = β̃gβ̃−1((x− β(b))1/t)

= β̃g((x− b)1/t)

= β̃(ζt(x− b)1/t)

= ζmt (x− β(b))1/t

= gmβ ((x− β(b))1/t).

Pull these back to Gal(L/C(x)) and Gal(Lβ/Cβ(x)) to obtain the result. �





CHAPTER II

Hurwitz Spaces

1. Braid Groups

1.1. Configuration Spaces. Let X be a topological space and let r a
positive integer. Let Xr be the cartesian product of X with itself r times,
endowed with the product topology. The pure configuration space of X of rank
r is

Cr(X) = {(x1, . . . , xr) ∈ Xr | xi = xj ⇒ i = j}.
The pure hyperdiagonal of X of rank r is

∆r(X) = {(x1, . . . , xr) ∈ Xr | xi = xj for some i 6= j}.

Thus Cr(X) = Xr r ∆r(X).
The group Sr acts on Xr on the right by permuting the coordinates; for

σ ∈ Sr, we have
(xi)σj = (xi)jσ,

where (xi)j ∈ Xr denotes the ordered tuple whose jth entry is xi. Let Xr denote
the quotient space. This action respects the decompositionXr = Cr(X)∪∆r(X).
The symmetrized configuration space of X of rank r is

Cr(X) = Cr(X)/Sr,

and the symmetrized hyperdiagonal of X of rank r is

∆r(X) = ∆r(X)/Sr,

each endowed with the quotient topology. Thus Cr(X) = Xr r ∆r(X). Points
in Cr(X) are viewed as subsets of X of cardinality r. The action of Sr on Cr(X)
is discrete, so we obtain a normal topological cover Cr(X) → Cr(X) with group
Sr.

1.2. General Braid Groups. The braid group on r strings over X is

Br(X) = π1(Cr(X),x),

where x = {x1, . . . , xr} ∈ Cr(X) is a suitable basepoint. The pure braid group
on r strings over X is

Br(X) = π1(Cr(X),x),

where x = (x1, . . . , xr). The topological cover Cr(X) → Cr(X) induces an exact
sequence

1 → Br(X) → Br(X) → Sr → 1;

in particular, Br(X)/Br(X). A path in Cr(X) permutes the points in {x1, . . . , xr},
giving an action of Br(X) on Nr. Then Br(X) is the kernel of this action, and
Sr is the image.

21
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We will be interested in the braid groups of the complex plane A1 and the
Riemann sphere P1. The next few sections describe a point of view on these
groups, condensed and synthesized from numerous sources, including the books
[Fr03], [BF02], [Bi75], and [MKS66], the source papers [Ar47a], [Bo47],
[FV62], [FN62], and additional works of Fried.

1.3. Artin Braid Group. Let Or = Cr(A1) and Or = Cr(A1). The Artin
braid group is Br = Br(A1) = π1(Or); this is the braid group of the complex
plane. The pure Artin braid group is Br = π1(Or), and the discrete action of
Sr on Or produces a normal cover Or → Or with group Sr, producing an exact
sequence of groups

1 → Br → Br → Sr → 1.

1.3.1. Braid Generators. Accurate identification of the braid group with a
fundamental group requires selection of a basepoint. Thus let x = (x1, . . . , xr) ∈
Or, and let x denote its image in Or. Generators for the braid group are formed
by “twisting” adjacent points around each other. More precisely, select a paths
in θi from xi to xi+1, and a path θi+1 from xi+1 to xi, such that the con-
catenation θiθi+1 is injective, has winding number −1, and is null homotopic in
A1r{x1, . . . , xi−1, xi+2, . . . , xr}. Let θj be the constant path at xj , for j 6= i, i+1.
Define a path θi in Or starting at x by θi = (θ1, . . . , θr), and let θi denote the
image of this path in Or. Then θi is a loop based at x. Let Qi denote the
homotopy class of θi. Then Qi, i = 1, . . . , r − 1, generate Br freely modulo the
following defining relations:

(B1) QiQj = QjQi for |i− j| > 1;
(B2) QiQi+1Qi = Qi+1QiQi+1 for i = 1, . . . , r − 2.
1.3.2. Braid Action on the Fundamental Group. If X is a topological space

and F ⊂ X, let Aut(X,F ) denote the set of homeomorphisms of X which restrict
to the identity on F , considered as a topological group endowed with the compact
open topology. Let X = A1 r x, and let x0 ∈ X. The Artin braid group acts on
π1(X,x0) in a manner we now describe. Let U be a bounded, connected, and
simply connected open subset of A1 which contains x but does not contain x0,
and let F = A1 r U . Select the paths θi from the previous paragraph to reside
in U . The functor π1 produces a homomorphism Aut(X,F ) → Aut(π1(X,x0)).

Define a function

δx : Aut(A1, F ) → Or by δx(ξ) = {ξ(x1), . . . , ξ(xr)},

where ξ ∈ Aut(A1, F ). This function is continuous. Let α : I → Or be a path in
Or starting at x. There exists a lift of α to a path α̃ : I → Aut(A1, F ), starting
at the identity, such that δx ◦ α̃ = α.

Let α be a loop in Or based at x so that [α] is an arbitrary member of
Br. Let α̃ be a lift of α to Aut(A1, F ), starting at the identity, and let ξ be
the endpoint of this lift. The function ξ : A1 → A1 restricts to ξ◦ : X → X,
and ξ(x0) = x0. The functor π1 produces a group isomorphism ξ∗ : π1(X,x0) →
π1(X,x0). Then ξ∗ is independent of the set F and the lift α̃ chosen, producing
a well-defined faithful action of Br on π1(X,x0). Since paths concatenate from
left to right, this is a right action, and produces an injective antihomomorphism
Br → Aut(π1(X,x0)), whose image equals the image of the homomorphism
Aut(X,F ) → Aut(π1(X,x0)).
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1.3.3. Braid Action on Classical Tuples. Let λ = (λ1, . . . , λr) be a classical
tuple in A1 with respect to x and x0; recall that in our lexicon, this means that
the λi’s are homotopy classes. Then π1(X,x0) is a free group on r generators,
freely generated by λ. One sees that the preferred generators for Br have the
effect

~λQi = (λ1, . . . , λi−1, λiλi+1λ
−1
i , λi, λi+2, . . . , λr).

Let Λ(X,x0) denote the set of all classical tuples on X with respect to x0.
If γ is a classical loop about xi, then γ is conjugate to λi, and if γ is a classical
tuple, then both Πγ and Πλ are homotopic to a loop which encircles all the
points in x. Thus

Λ(X,x0) = {γ | Πγ = Πλ and γi ∼ λiσ},
where a ∼ b means “a is conjugate to b”, and σ ∈ Sr depends on γ but not i.
The Artin braid group Br acts regularly on Λ(X,x0), and this defines its image
in Aut(π1(X,x0)). We see that Inn(π1(X,x0)) is contained in this image, and
resides therein as a normal subgroup.

Let Z = (Q1 · · ·Qr−1)r ∈ Br; this element has the effect of conjugating λ
by Πλ, and generates the center of Br.

1.3.4. Twist and Shift in Br. Call the generators Qi ∈ Br the ith twist.
Define the shift in Br to be the element:

S =
r−1∏
i=1

Qi.

Then for 1 < j ≤ r − 1, we have

QSj = Q−1
r−1 · · ·Q

−1
1 QjQ1 · · ·Qr−1

= Q−1
r−1 · · ·Q

−1
1 Q1 · · ·Qj−2(QjQj−1Qj)Qj+1 · · ·Qr−1 by B1

= Q−1
r−1 · · ·Q

−1
j−1(Qj−1QjQj−1)Qj+1 · · ·Qr−1 by B2

= Q−1
r−1 · · ·Q

−1
j+1Qj−1Qj+1 · · ·Qr−1

= Qj−1 by B1

Thus the standard set of generators {Qi | i = 1, . . . , r − 1} is contained in
the group generated by S and Qj , for any 1 ≤ j ≤ r − 1, and in particular,
〈S,Qj〉 = Br. In words, Br is generated by the shift and any twist.

1.4. Hurwitz Monodromy Group. Let Ur = Cr(P1) and Ur = Cr(P1).
The Hurwitz monodromy group is Hr = Br(P1) = π1(Ur); this is the braid group
of the Riemann sphere. The pure Hurwitz monodromy group is Hr = π1(Ur),
and the discrete action of Sr on Ur produces a normal cover Ur → Ur with group
Sr, producing an exact sequence of groups

1 → Hr → Hr → Sr → 1.

1.4.1. Hurwitz Relation. View P1 as the one point compactification of A1;
that is, P1 = A1 ∪ {∞}. We have an inclusion Or → Ur, which commutes with
the action of the symmetric group Sr to produce the commutative diagram

Or −−−−→ Ury y
Or −−−−→ Ur
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where the horizontal rows are injections and the vertical columns are normal
covers with automorphism group Sr.

We interpret these spaces as follows:

• Or is the parameter space of ordered r-tuples of points on A1;
• Or is the parameter space of subsets of A1 with cardinality r;
• Ur is the parameter space of ordered r-tuples of points on P1;
• Ur is the parameter space of subsets of P1 with cardinality r.

The injection Or → Ur induces a surjective homomorphism Br → Hr, whose
kernel is the normal closure of a third defining relation for Hr:

(B3) Q1 · · ·Qr−2Q
2
r−1Qr−2 · · ·Q1.

Since relation B3 is in Br, there is an induced map from Br → Hr, and these
groups fit into a commutative diagram

1 −−−−→ Br −−−−→ Br −−−−→ Sr −−−−→ 1y y ∥∥∥
1 −−−−→ Hr −−−−→ Hr −−−−→ Sr −−−−→ 1

which is produced by the π1 functor from the preceding diagram.
1.4.2. Braid Action on Quotient Tuples. Let x = (x1, . . . , xr) ∈ Or, and let

x denote its image in Or. Select x0 ∈ A1 r x, and set Fr = π1(A1 r x, x0)
and Gr = π1(P1 r x, x0). Let λ = (λ1, . . . , λr) be a classical tuple in A1 with
respect to x and x0. The inclusion A1 → P1 induces a surjective homomorphism
Fr → Gr, whose kernel is the normal closure of Πλ. Since Fr = 〈λ1, . . . , λr〉
is freely generated, Gr has presentation 〈λ1, . . . , λr | Πλ〉. Since Πλ is fixed
by the action of Br on Fr, the map Fr → Gr induces an antihomomorphism
Br → Aut(Gr) whose kernel is Z(Br).

1.4.3. Hurwitz Nonaction on Classical Tuples in P1. Let Nr denote the ker-
nel of Br → Hr. Since Nr is not contained in Z(Br), an induced action of Hr

on Gr is not well-defined.
Our method of defining the action of Br on π1(A1 rx, x0) uses the selection

of an open set U containing x but not x0, which allows us to fix the basepoint
through the continuous motion of x inside U . This succeeds in that case because
any loop in Or based at x is homotopic to a loop in Cr(U), and two loops in
Cr(U) which are homotopic in Or, are homotopic via a homotopy which remains
in U . In other words, the inclusion Cr(U) → Or induces π1(Cr,x) → π1(Or,x)
which is an isomorphism.

If we attempt to define an action ofHr on classical tuples in P1 in the manner
of we did in A1, the method breaks down because, for proper simply connected
open subset U ⊂ P1, the map π1(Cr(U),x) → π1(Ur,x) is not injective. In P1,
we cannot get away with fixing the basepoint, and it is this ambivalence of choice
of basepoint which results in the failure of Hr to act on classical tuples in P1.
It is well-known that the fundamental group depends on the basepoint only up
to inner automorphism, which should allow us to construct a homomorphism
Hr → Aut(Gr)/Inn(Gr). We now see that this is the best we can hope for.

1.4.4. Hurwitz Kernel. Let Nr = ker(Br → Hr). The Hurwitz relation has
the effect on a classical tuple (λ1, . . . , λr) of conjugating it by (λ1)−1. Thus
the image of Nr in Aut(Gr) is Inn(Gr) (see chapter IV for more details). The
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kernel of the map Hr → Aut(Gr)/Inn(Gr) is Z(Hr), which is cyclic of order two,
generated by Z (mod Nr) (see [Bi75] Lemma 4.2.3).

1.4.5. Twist and Shift in Hr. Let ϕ : Br → Hr be the natural homomor-
phism. Following the convention of [BF02], we use lower case for the images of
elements. Thus

(a) ϕ(Qi) = qi;
(b) ϕ(S) = s = q1 . . . qr−1;
(c) ϕ(Z) = z = sr.

The inclusion C → P1 pushes the paths θ1, . . . ,θr−1 discussed in subsection
1.3.1 to P1, and we view q1, . . . , qr−1 as homotopy classes of their images.

Note that q1 = qs
r−2

r−1 . Set q0 = qs1. Since sr = z is the unique central
involution of Hr, the order of s is 2r. However, sr has trivial conjugation action,
so qs0 = qs

r

r−1 = qr−1. Thus the left conjugation action of s cyclically permutes
(q0, q1, . . . , qr).

1.5. Mapping Class Groups.
1.5.1. Isotopy Class Groups. Let X be a locally compact Hausdorff space,

and let Aut(X) denote the set of all homeomorphisms from X to itself. En-
dow Aut(X) with the compact open topology. Then two automorphisms are
homotopic if and only if they lie in the same path component of Aut(X).

Let Iso(X) denote the set of all isotopy classes of automorphisms ofX. There
is a natural well-defined group structure on Iso(X) given by

[f ] ∗ [g] = [f ◦ g];

we call Iso(X) the isotopy class group of X. There is a natural homomorphism
Aut(X) → Iso(X) given by f 7→ [f ], and the kernel of this map is the component
of the identity in Aut(X). All the components of Aut(X) are cosets of the
identity component; thus Iso(X) is the group of components of Aut(X).

1.5.2. Mapping Class Groups. Let X be a connected orientable manifold.
The mapping class group of X, denoted by Map(X), is the index two subgroup
of Iso(X) consisting of orientation preserving isotopy classes. Typically, X is a
punctured compact Riemann surface.

Select r points B = {x1, . . . , xr} ⊂ X. The rth mapping class group of X is

Mr(X) = Map(X rB).

This is the group of path components of the setwise stabilizer of B among the
orientation preserving members of Aut(X). Since Aut(X) is highly transitive
(k-transitive for every positive integer k), the setwise stabilizers of finite sets
of points of the same cardinality are conjugate, so Mr(X) is well-defined up to
isomorphism.

1.5.3. Sphere Mapping Class Group. LetMr denote the mapping class group
of a sphere with r punctures. In this paragraph, let Aut(C) and Aut(P1)
be the groups of self homeomorphisms of C and P1, respectively. The gen-
erators Q1, . . . , Qr−1 represent paths Or which lift to paths in Aut(C) whose
endpoints are orientation preserving self homeomorphisms which fix the set of
punctures. This defines a map Br → Mr. This map is surjective, and its ker-
nel is Z(Br) = 〈Z〉. Similarly, the generators q1, . . . , qr−1 of Hr lift to paths
in Aut(P1), creating a surjective homomorphism Hr → Mr whose kernel is
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Z(Hr) = 〈z〉. Summarizing, we have

Mr
∼= Br/Z(Br) ∼= Hr/Z(Hr) ∼= Aut(π1(X,x0))/Inn(π1(X,x0)),

where X is an r-punctured sphere.
1.5.4. Sphere Mapping Class Cover. Let o : Õr → Or and u : Ũr → Ur be

the universal covers of Or and Ur, respectively. Each is a normal cover with
respective groups Br and Hr. Let x = {x1, . . . , xr} ∈ Or; we may also view
this as a point in Ur. We have an inclusion Or → Ur, and viewing points in the
universal covering space as homotopy classes of paths based at x, this inclusion
induces a map between the covering spaces.

Let E = o−1(x). Let y ∈ E, and select a tuple of classical generators to
correspond to y. Since Br acts regularly on tuples of classical generators, this
creates a correspondence between E and Λ (the set of all classical tuples on
C r x).

Let F = u−1(x). Since every path in Ur is homotopic to a path which does
not pass through a set containing ∞, the map from E to F is surjective, inducing
an equivalence relation on Λ.

We may mod out the universal covers by any subgroup of the fundamental
group of the base; if the subgroup is normal, the induced map from the quotient
to the base is also normal. Thus set

• Ǒr = Õr/Z(Br);
• Ôr = Õr/Nr;
• Wr = Õr/〈Z(Br), Nr〉;
• Vr = Ũr/Z(Hr).

We obtain the following commutative diagram:

Õr
Nr−−−−→ Ôr

inj−−−−→ Ũr

Z
y Z/2

y yZ/2

Ǒr −−−−→ Wr
inj−−−−→ Vr

Mr

y yMr

Or
inj−−−−→ Ur

The fiber of Vr → Ur over x may be identified with Λ/Inn(Gr), upon which the
mapping class group Mr acts regularly.

2. Hurwitz Spaces

2.1. Deformation Spaces.
2.1.1. Deformation Equivalence. Let Y be a compact orientable surface of

genus g, and let R(Y ) be the set of all surjective continuous maps ϕ : Y → P1

such that Y admits a complex structure which makes ϕ analytic. Then there
is a bijective correspondence between R(Y ) and the set of equivalence classes
of ramified covers with covering space of genus g. This set is a topological
space when endowed with the compact open topology. A path in R(Y ) is a
deformation.
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Let R(Y, r) denote the subspace of R(Y ) consisting of those covers with
exactly r branch points. We say that two ramified covers are deformation equiv-
alent if they lie in the same path component of R(Y, r), for some r. From this
point of view, the space R(Y, r) is difficult to analyze. We use braid groups and
Nielsen tuples to decipher it.

2.1.2. Nielsen Sets. Let G ≤ Sn be a transitive group and let r be a positive
integer. Let Gr denote the cartesian product of G with itself r times. The total
Nielsen set of G of rank r is

Ni(G, r)to = {g ∈ Gr | 〈g〉 = G and Πg = 1}.

Thus Ni(G, r)to is the collection of rank r Nielsen tuples in G. The Artin braid
group acts on Ni(G, r)to via the formula

(g1, . . . , gi, gi+1, . . . , gr)Qi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gr).

Let Abs(G) denote the subgroup of Aut(G) consisting of automorphisms which
preserve the conjugacy class of a one point stabilizer in G; then Abs(G) ∼=
NSn

(G)/CSn
(G). Any subgroup of Abs(G) acts on Ni(G, r)to coordinatewise in

a manner which commutes with the braid action.
The inner Nielsen set of G of rank r is

Ni(G, r)in = Ni(G, r)to/Inn(G);

we call its elements inner tuples.
The absolute Nielsen set of G of rank r is

Ni(G, r)ab = Ni(G, r)to/Abs(G);

we call its elements absolute tuples.
Let x = (x1, . . . , xr) be a tuple of distinct points in P1, and select a basepoint

x0 ∈ P1 not among them. Let λ = (λ1, . . . , λr) be a bouquet with respect to
(x, x0). These data define correspondences between

(a) the set Ni(G, r)in and the set of equivalence classes of static ramified
covers of P1 with branch points in x which are the normal closures of
covers whose monodromy group is G;

(b) the set Ni(G, r)ab and the set of equivalence classes of ramified covers
of P1 with branch points in x and monodromy group G.

Typically, the Hurwitz monodromy group does not act on Ni(G, r)to, since
the Hurwitz relation (B3) does not act trivially. However, the action Br on
Ni(G, r)to descends to a well-defined actions of Hr on Ni(G, r)in and Ni(G, r)ab.
These actions correspond to the continuous deformation of covers described by
the elements of the Nielsen sets along a loop in Ur; an equivalent condition for
two covers to be deformation equivalent is that the corresponding Nielsen tuples
lie in the same orbit under this action.

2.1.3. Deformation Spaces. The action of the Hurwitz monodromy group on
the sets Ni(G, r)in and Ni(G, r)ab canonically produces topological covers of the
configuration space Ur in which every point in the covering space corresponds to
a static ramified cover, as we now as we now describe.

Let ϕ : Y → P1 be a ramified cover with branch points x and branch cycle
description g ∈ Ni(G, r)to with respect to some bouquet. The set of equivalence
classes of covers with the same branch points to which ϕ can be continuously
deformed are described by the orbit of g under the action of Hr on Ni(G, r)ab.



28 II. HURWITZ SPACES

The stabilizer S of g is a subgroup of Hr which canonically produces to a cover
H(G, g)ab → Ur. Recall that the space H(G, g)ab may be defined as the set of all
paths in Ur emanating from x modulo homotopy and concatenation in S. Thus
each point p ∈ H(G, g)ab corresponds to the cover obtained by continuously
deforming ϕ along a path in Ur representing p. Each orbit of Hr on the Nielsen
class produces such a space.

Let ϕ̂ : Ŷ → P1 be the normal closure of ϕ, together with an isomorphism
τ : G → Aut(ϕ̂); two such static covers are equivalent if their branch cycle
descriptions differ by an inner automorphism, with continuous deformation also
deforming the map τ . The action of Hr on Ni(G, r)in canonically produces a
cover H(G, g)in → Ur, whose points correspond to static covers.

The inner deformation space of (G, r) is the union of the components

H(G, r)in =
⋃

g∈Ni(G,r)in

H(G, g)in.

The absolute deformation space of (G, r) is

H(G, r)ab =
⋃

g∈Ni(G,r)ab

H(G, g)ab.

As part of the definition, each of these spaces is equipped with an assignment
of an isomorphism class of covers to each point; such an assignment is determined
by a single appropriate choice for one point on each component. Since the
stabilizer in Hr of an inner tuple is necessarily contained in the stabilizer of an
absolute tuple, we obtain this sequence of covers:

Ψ : H(G, r)in Ξ→ H(G, r)ab Φ→ Ur.
These maps are understood as follows:

(a) Ψ : [ψ, τ ] 7→ Bpt(ψ);
(b) Φ : [ϕ] 7→ Bpt(ϕ);
(c) Ξ : [ϕ̂, τ ] 7→ [ϕ].

Since these deformation spaces cover Ur, which is an algebraic variety, the theo-
rem of Grauert and Remmert says that they themselves have an algebraic struc-
ture. Much more can be said; the following is essentially part of [FV91], Theo-
rem 1.

Theorem 2 (Fried-Volklein Theorem). Let G ≤ Sn be a transitive group
generated by r − 1 elements. Then Hin = H(G, r)in and Hab = H(G, r)ab have
a unique structure as algebraic varieties defined over Q so that the maps

Ψ : Hin Ξ→ Hab Φ→ Ur
are defined over Q. Let K be an algebraically closed subfield of C and let β ∈
Aut(K) so that β acts on the K points of Hin and Hab. Then

(a) if q = [ψ, τ ] ∈ Hin with Bpt(ψ) ⊂ K, we have β(q) = [ψβ , τβ ];
(b) if p = [ϕ] ∈ Hab with Bpt(ϕ) ⊂ K, we have β(p) = [ϕβ ].

The second part of this theorem implies that the minimum field of definition
of a point on a Hurwitz space is equal to the field of moduli of the corresponding
cover.

The components of these deformation spaces are defined over Q̄. The abso-
lute Galois group Gal(Q̄/Q) acts on the components, and the disjoint union of
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the components in an orbit is defined over Q. We would like to find conditions
relating to the group G which allow us to pick out these orbits.

2.2. Hurwitz Spaces.
2.2.1. Conjugacy Class Tuples. Let G ≤ Sn be a transitive group and let

C = (C1, . . . , Cr) be an r-tuple of conjugacy classes from G. We introduce
some notation to facilitate considering this as a set with multiplicity. For D =
(D1, . . . , Dr) another r-tuple of conjugacy classes from G, say that D is similar
to C, and write D ∼ C, if there exists σ ∈ Sr such that Di = Ciσ, all i. For
g = (g1, . . . , gr) ∈ Gr, say that g satisfies C, and write g � C, if there exists
σ ∈ Sr such that for all i ∈ Nn, we have gi ∈ Ciσ. Set ‖C‖ equal to the least
common multiple of the orders of the elements in the conjugacy classes of C.

If n ∈ Z, set Cn = (Cn1 , . . . , C
n
r ); we say that C is rational if Cn ∼ C

whenever gcd(n, ‖C‖) = 1. By the branch cycle argument, if g is a Nielsen tuple
corresponding to a static cover defined over Q, can C is its tuple of conjugacy
classes, then C is rational.

If α ∈ Aut(G), set α(C) = (α(C1), . . . , α(Cr)); we say that C is characteris-
tic if α(C) ∼ C for every α ∈ Aut(G). Let Abs(G,C) = {α ∈ Abs(G) | α(C) ∼
C}.

2.2.2. Nielsen Classes. A necessary condition for the two ramified covers of
P1 to be deformation equivalent is that their monodromy groups and associated
conjugacy classes be the same. This leads to our next series of definitions.

The total Nielsen class of (G,C) is

Ni(G,C)to = {g ∈ Gr | Πg = 1, 〈g〉 = G, and g � C}.
This is the set of all Nielsen tuples satisfying C.

The inner Nielsen class of (G,C) is

Ni(G,C)in = Ni(G,C)to/Inn(G).

The inner Nielsen classes partition the inner Nielsen set Ni(G, r)in, so that each
tuple C produces a distinct block.

The absolute Nielsen class of (G,C) is

Ni(G,C)ab = Ni(G,C)to/Abs(G,C).

The absolute Nielsen class embeds into the absolute Nielsen set Ni(G, r)ab. We
note that if C is not similar to α(C) for some α ∈ Aut(G), then Ni(G,C)in and
Ni(G,α(C))in form different blocks of Ni(G, r)in. However, if α ∈ Abs(G), then
Ni(G,C)ab and Ni(G,α(C))ab have the same image in Ni(G, r)ab.

2.2.3. Hurwitz Spaces. The inner Hurwitz space of (G,C), denotedH(G,C)in,
consists of the collection of components of H(G, r)in whose points correspond to
static covers whose associated conjugacy classes are given by C.

The absolute Hurwitz space of (G,C), denoted H(G,C)ab, consists of the
collection of components of H(G, r)ab whose points correspond to covers whose
associated conjugacy classes are given by C. This is the image of H(G,C)in

under the map Ψ : H(G, r)in → H(G, r)ab.
Even though the conjugacy classes of ramification are well-defined in the

monodromy group of the cover, their whereabouts under a permutation rep-
resentation depends on the enumeration of the fiber, and can get lost under
absolute equivalence. In this way, distinct inner Hurwitz spaces can map to the
same absolute space.
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The degree of the map Ξ : H(G, r)in → H(G, r)ab is |Out(G)|. The degree
of the restriction Ξ : H(G,C)in → H(G,C)ab is [Abs(G,C) : Inn(G)]. Let Hab

be a component of the absolute space, and let Hin be its preimage in the inner
space. If Hin is connected, then Aut(Ξ �Hin) ∼= Abs(G,C)/Inn(G).

The branch cycle argument implies that a necessary condition for a Hurwitz
space to be defined over Q is that the corresponding tuple be a rational tuple.
This turns out to be sufficient, which we state here (see [FV91] Theorem 1).

Theorem 3. Let G ≤ Sn and let C be a tuple of conjugacy classes from
G. Then H(G,C)in is defined over Q if and only if C is a rational tuple of
conjugacy classes.

3. Reduced Hurwitz Spaces

3.1. Reduction of Configuration Spaces.
3.1.1. General Reduction. Let X be topological space and let Aut(X) be the

group of homeomorphisms from X to itself. Let A ≤ Aut(X). Then A acts on
Cr(X) on the left coordinatewise:

α((xi)j) = (α(xi))j .

The quotient space of this action is the reduced configuration space of X of
rank r with respect to A, which we denote by Cr(X,A), with quotient map
Π : Cr(X) → Cr(X,A).

The actions of Sr and A on Cr(X) commute, so the fiber coproduct of Σ
and Π can be obtained by reducing Cr(X,A) by the action of Sr, or by reducing
Cr(X) by the action of A, or by reducing Cr(X) by the action of A×Sr. Denote
the quotient space by Cr(X,A); this is the reduced symmetrized configuration
space of X. This situation is summarized by the diagram:

Cr(X) π−−−−→ Cr(X,A)

σ

y yσ̄
Cr(X) −−−−→

π
Cr(X,A)

where we denote symmetrization by Sr with an underbar, and reduction by A
with an overbar.

Let x = (x1, . . . , xr) ∈ Cr(X), and set

x = σ(x) ↔ {x1, . . . , xr};
x = π(x);

x = σ̄(π(x)) = π(σ(x)).

Consider the fiber E = σ−1(x). The setwise stabilizer U = StbA{x1, . . . , xr}
acts on E, inducing a homomorphism ϕ : U → Sr.

Let F = σ̄−1(x); then π �E : E → F is surjective, and the points of F
correspond to the orbits of U on E. The action of Sr on E descends to a
transitive action on F , and the stabilizer in Sr of x ∈ F under this action is
ϕ(U). Thus |F | = [Sr : ϕ(U)].
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3.1.2. Sharply Transitive Reduction. Proceed under the additional assump-
tion that A is sharply k-transitive, where k < r; by a theorem of Tits (see
[DM96] Theorem 7.6B), k ≤ 3 if X is infinite. In this case, let us call k the
reduction rank; here, the map ϕ : U → Sr discussed above is injective by sharp-
ness.

Select distinct distinguished points W = {w1, . . . , wk} ⊂ X. For every
x = (x1, . . . , xr) ∈ Cr(X) there exists a unique α ∈ A such that α(x) =
(w1, . . . , wk, α(xk+1), α(xr)). This identifies Cr(X,A) with Cr−k(X r W ). In-
deed, the map Cr(X) → A× Cr−k(X rW ) constructed in this way is a homeo-
morphism, where A is endowed with the compact-open topology as a subset of
Aut(X). From this viewpoint, reduction is merely projection onto the second
factor, and in turn, the fibers are seen to be homeomorphic to A, which is home-
omorphic to Ck(X). Thus the map π admits a section, given by (xk+1, . . . , xr) 7→
(w1, . . . , wk, xk+1, . . . , xr).

3.1.3. Holomorphic Reduction. Let X be a complex manifold and let Hol(X)
denote the subgroup of Aut(X) consisting of analytic self homeomorphisms.
Then Hol(X) is a natural candidate for the reduction group. The resulting space
Cr(X,Hol(X)) parameterizes holomorphism classes of subsets of X of cardinality
r.

3.2. Reduction of Sphere Configuration Spaces. Consider the case
where X = P1

z, the Riemann sphere together with a uniformizing coordinate.
Choice of this coordinate determines an identification Hol(P1

z) ∼= PSL2(C). It is
well known that the action of PSL2(C) on P1

z is sharply three transitive.
Let J r = Cr(P1

z,PSL2(C)) and Jr = Cr(P1
z,PSL2(C)). We interpret these

spaces as follows:
• J r is the parameter space of holomorphism classes of ordered r-tuples

of points on P1;
• Jr is the parameter space of holomorphism classes of subsets of P1 with

cardinality r.
Consider the map σ̄ : J r → Jr. Let d = max{|σ̄−1(j)| | j ∈ Jr}, and set
Y = {j ∈ Jr | |σ̄−1(j)| < d} and Z = σ̄−1(Y ). Then σ̄ �J rrZ : J r rZ → Jr rY
is a normal topological cover.

3.3. Reduction of Inner Hurwitz Spaces. Let Ũr → Ur be the universal
cover of Ur, and view the points of Ũr as homotopy classes paths in Ur based
at some point x = {x1, . . . , xr}. The group PSL2(C) acts on paths by left
composition, preserving homotopy classes, and thus acts on the points of Ũr.
Denote the quotient of this action by Ũ rd

r ; we obtain a map Ũ rd
r → Jr. Any

cover of Ur can be similarly reduced; if H is a component of a rank r Hurwitz
space, we obtain maps

Ũ rd
r → Vrd

r → Hrd → Jr.
The points of Hrd correspond to weak equivalence classes of ramified covers of
P1, and the fiber of Vrd

r → Jr over x corresponds to the set of PSL2(C) orbits
of classical generators about (x, x0) modulo conjugation in π1(P1 r x, x0).

Let G be a finite group and let C be a tuple of conjugacy classes from G. The
reduced inner Hurwitz space of (G,C), denoted by H(G,C)in,rd, is the collection
of reduced components of H(G,C)in.
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We know that d = r!
|U | , where U is a setwise stabilizer of r points of minimal

order. For r = 3, U = S3 for every set of three points, and J 3 → J3 is a map
from a single point to a single point. For r ≥ 5, U is trivial for almost every set
of 5 points, and the reduced cover has degree r!.

The reduction map H → Hrd is continuous. In particular, Hrd is connected,
and covers Jr. If the rank is r = 3, then Jr is a point, thus so is Hrd. A
reduced rank three Hurwitz space consists of one point for each component of
the unreduced space. For rank r ≥ 5, the dimension of the cover drops but its
degree remains the same. Thus we concentrate on the case r = 4.

4. Reduced Rank Four Hurwitz Spaces

4.1. Reduction of Rank Four Sphere Configuration Spaces. Recall
that every elliptic curve is uniquely identified up to holomorphic isomorphism by
its j-invariant, and that the j-line P1

j parameterizes their isomorphism classes.
The λ-line P1

λ parameterizes elliptic curves together with an ordering of their
involutive points, producing a natural map P1

λ → P1
j . To motivate modular

towers, and to give background for our main example, we briefly review this in
chapter III. In this section we produce these spaces as reduced rank four sphere
configuration spaces.

Consider the reduction of the cover Ur → Ur when the rank is r = 4.
Let W = {0, 1,∞} be our set of preferred points, and note that U1 = P1.
Every ordered tuple (z1, z2, z3, z4) ∈ U4 is equivalent modulo PSL2(C) to a
unique tuple of the form (0, 1,∞, λ). This identifies J 4 with P1

λ r {0, 1,∞}.
Closure and symmetrization of this space produces a ramified cover between
copies of the Riemann sphere which can be expressed as a rational function,
which is unique up to composition with another linear fractional transformation
acting on the closure of J4. We use group actions and covering theory to find
a satisfactory representative for this class of rational functions, which we will
denote by j : P1

λ → P1
j . Under this map, {0, 1,∞} comprise a single fiber.

The setwise stabilizer in PSL2(C) of four points on P1 contains a Klein four
group consisting of transformations which swap the points in pairs, as can be
computed using the cross ratio. The cross ratio is

z 7→ z − z1
z − z3

:
z2 − z1
z2 − z3

,

where (z1, z2, z3) 7→ (0, 1,∞). Each element of Jr is represented by a tuple of
four points of the form x = (0, 1,∞, λ). Then the nontrivial transformations of
this Klein four group are:

z 7→ λ

z
↔ (1 3)(2 4);

z 7→ z − λ

z − 1
↔ (1 4)(2 3);

z 7→ z − 1
z − λ

:
0− 1
0− λ

↔ (1 2)(3 4).

Denote this Klein four group in S4 by K4, and view S3 in S4. The points in
the fiber over x correspond to the cosets of K4 in S4, which are represented by
the elements of S3. We determine the values of λ such that the stabilizer of x is
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larger thanK4. Suppose α ∈ S3 corresponds to a linear fractional transformation
f which stabilizes x. Then

(a) α = (1 2)⇒ f(z) = 1− z ⇒ λ = 1
2 ;

(b) α = (1 3)⇒ f(z) = 1
z ⇒ λ = −1;

(c) α = (2 3)⇒ f(z) = z
z−1 ⇒ λ = 2;

(d) α = (1 2 3)⇒ f(z) = 1
1−z ⇒ λ = 1±i

√
3

2 (the same for α = (1 3 2)).

In particular, these points are isolated, so the cover j has degree [S4 : K4] = 6.
Note that if f(z) = 1−z, then f(2) = −1, and if f(z) = 1

z , we have f(2) = 1
2 .

Thus {−1, 1
2 , 2} lie in the same fiber over P1

j , each point having ramification index
two. Let ζ = eπi/3; then {ζ, ζ−1} forms another fiber, each point having rami-
fication index three. So j is a normal ramified cover with three branch points,
group S3, and branch cycle description of shape ((3)(3), (2)(2)(2), (2)(2)(2)).
This Nielsen class consists of a single element, so j is completely determined by
this data, up to weak equivalence of covers.

Choose {ζ, ζ−1} to be the zeros of j, and {0, 1,∞} to be the poles. Then j
is a scalar multiple of (λ2−λ+1)3

λ2(λ−1)2 . Without further choices, it is forced upon us
that {−1, 1

2 , 2} lie in the same fiber of this rational function, and indeed it is so;
each has value 27

4 . Divide by this quantity so that the third branch point is 1;
this yields

j(λ) =
4
27

(λ2 − λ+ 1)3

λ2(λ− 1)2
.

This formula is precisely that which computes the classical j value of the elliptic
curve defined by the equation y2 = x(x− 1)(x− λ).

4.2. Reduction of Rank Four Hurwitz Spaces.
4.2.1. Reduced Rank Four Mapping Class Group. In this section we discuss

the maximal quotient of the braid group which acts nontrivially on reduced
classical tuples, expanding upon the original formulation in [DF99] and [BF02].

Select z = (z1, z2, z3, z4) ∈ U4 so that z /∈ {0, 1}, and let X = P1
z r z.

Let Hol(X) denote the group of holomorphic automorphisms of X, and view
Hol(X) as the setwise stabilizer in PSL2(C) of z. Let Aut(X) denote the group
of orientation preserving continuous automorphisms of X. We have an inclusion
Hol(X) → Aut(X) which descends to a map Hol(X) → Map(X) = M4. Since
every element of Hol(X) has nontrivial action on z, the latter map is injective.

Let K4 denote the image of Hol(X) in M4. Select a basepoint z0 ∈ X and
let Λin = Λ(z)in denote the set of equivalence classes of classical tuples in P1

with respect to (z, z0), modulo conjugation. Now Mr acts regularly on Λin, and
two classical tuples are equivalent modulo PSL2(C) if and only if they lie in the
same K4 orbit. Thus Λin,rd = Λin/K4 is the set of inner reduced classical tuples.

In order to compute the action of K4 on Λin, recall that the map H4 →M4

discussed in subsection 1.5.3 is given by the induced action of H4 on X. Let K̂4

denote the pullback of K4 to H4, so that K̂4 is the subgroup of H4 which has
trivial action Λin,rd. Since the kernel Z(H4) of the map H4 → M4 is a group
of order two, Z(H4) → K̂4 → K4 is a central extension and |K̂4| = 8. We now
explicitly compute K̂4.

We choose an basepoint for U4; this choice effects our results only up to inner
automorphism of H4. Let z = (0, 1,∞, λ) so that j(λ) /∈ {0, 1,∞}. Choose λ
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to be a negative real number. Let f(z) = λ
z , and let z0 = −i

√
|λ| so that

f(z0) = z0, and z0 becomes a convenient basepoint for the computation. Let
α0, α1, α∞, and αλ denote the homotopy classes of paths in P1 which proceed
in lines from z0 towards 0, 1, ∞, and λ, in that order, go around these points in
small disks, and proceed back to z0 along the same lines, as indicated below.

s s

s

s

ac

R λ 0

z0

∞

1��
��

��
��

��
��

��
��- -

�

-

αλ α0

α∞

α1

�
�

�
�

��

H
HHH

HHH
HHH

Paths for braid computation of f(z) = λ
z .

Let α = (α0, α1, α∞, αλ) denote the classical tuple thus described, and com-
pose these paths with f to obtain f(α) = (α∞, αλ, α0, α1). This effect is given
by the square of the shift, that is, f(α) = α(q1q2q3)2.

Next we consider the linear fractional transformation f(z) = λ z−1
z−λ . The

fixed points of this transformation are λ±
√
λ2 − λ; select z0 = λ−

√
λ2 − λ as a

basepoint. In order to relate this computation to the previous one, we draw a line
from −i

√
|λ| to λ −

√
λ2 − λ, and concatenate it to the paths above to adjust

the basepoint. This effects our computation only up to inner automorphism
of the fundamental group, and so has no effect on inner equivalence classes of
classical tuples. With this adjustment, paths for this calculation are drawn in
the following diagram.

s s s sacR ∞ z0 λ 0 1��
��

��
��

��
��

��
��

� � � �α∞ αλ α0 α1

Paths for braid computation of f(z) = λ z−1
z−λ .

Compose these paths with f and rewrite the result in terms of the original
paths to see that f(α) = (α−1

∞ α1α∞, α
−1
1 α−1

∞ α0α∞α1, αλ, α∞). Conjugate on
the right by αλ and use the product one condition to see that, up to inner
equivalence, we have f(α) = (α0α1α

−1
0 , α0, αλ, α

−1
λ α∞αλ). A braid which has

this effect is q1q−1
3 .

Let a = (q1q2q3)2 and b = q1q
−1
3 . Clearly K̂4 = 〈a, b〉, and ab has the same

effect on α as does f(z) = z−λ
z−1 . Note that a2 = b2 = z, the unique involution

generating the center of H4, and in particular, a and b have order four. If s is the
shift in H4, we have seen that qsi = qi−1; since a = s2, we have bs = q3q

−1
1 = b−1,
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so a and b are noncommuting elements of order four, which tells us that K̂4 is
isomorphic to the quaterions.

Now s commutes with a and normalizes 〈b〉. Moreover q1 commutes with b

and aq1 = q−1
1 qa

−1

1 a = q−1
1 q3a = b−1a ∈ K̂4. Since q1 and s generate H4, this

shows that K̂4 /H4. The images of a, b, and ab in M4 are the nontrivial elements
of K4, which is normal in M4.

The reduced mapping class group of rank 4 is M̄4 = M4/K4 = H4/K̂4. It is
the quotient of H4 by the additional relation

(B4) Q1 = Q3.

Plug this relation into relations (B2) and (B3) for this simplification:

M̄4 = 〈Q1, Q2 | Q1Q2Q1 = Q2Q1Q2, Q1Q2Q1Q1Q2Q1〉;

the second relation is the Hurwitz relation. Use the first relation to rewrite the
second relation as Q1Q2Q1Q2Q1Q2. Let γ0 = Q1Q2 and γ1 = Q1Q2Q1 inside
this group; the reason for this notation will become clear in the next subsection.
We have γ2

1 = 1 by the Hurwitz relation and γ3
1 = 1 by its rewritten form. Also

Q1 = γ−1
0 γ1 and Q2 = γ1γ

−1
0 , so 〈Q1, Q2〉 = 〈γ0, γ1〉.

We show that
M̄4 = 〈γ0, γ1 | γ3

0 , γ
2
1〉

is an alternate presentation. Set Q1 = γ−1
0 γ1 and Q2 = γ1γ

−1
0 . It suffices to

derive the relations for the first presentation from those for the second. Now
Q1Q2 = γ−1

0 γ1γ1γ
−1
0 = γ0, since γ1 has order two and γ0 has order three; also

Q1Q2Q1 = γ0Q1 = γ1. Thus Q1Q2Q1 = γ1 = γ1γ
−1
0 γ0 = Q2γ0 = Q2Q1Q2.

Finally Q1Q2Q1Q1Q2Q1 = γ2
1 = 1. This completes the demonstration.

4.2.2. Reduced Rank Four Mapping Class Cover. Let H denote the open
upper half plane. Its group of holomorphic self homeomorphisms is Hol(H) =
PSL2(R). Consider the set of lattices in C of the form Z ⊕ τZ, where τ ∈ H.
Then PSL2(R) acts on this set via its action on H. The kernel of the action is
PSL2(Z). Let R denote the set of points in H which have nontrivial stabilizers
in PSL2(Z); let Y = H r R and let X = Y/PSL2(Z). We obtain a normal
topological cover Y → X with group PSL2(Z).

Let Ψ : Vrd
4 → J4 be the reduced mapping class cover of rank four. As an

aside, note that since the center of H4 is contained in K̂4, we have Ũ rd
4 = Vrd

4 . Let
J ◦ = J4 r{0, 1}, V◦ = Vrd

4 rΨ−1({0, 1}), and Ψ◦ = Ψ �V◦ . Then Ψ◦ : V◦ → J ◦

is a topological cover.
Let j ∈ J ◦; then j = z for some z = (z1, z2, z3, z4) ∈ Ur. The fiber

over j corresponds to classical tuples on P1 with respect to z modulo inner
automorphisms of π1(P1 r z) and modulo the action of PSL2(C). The action of
the fundamental group of J ◦ on this fiber, via path lifting, is the effect on the
classical tuples of continuous motion in P1 of the points z via the braid action,
modulo reduction; it is the action of M̄4. Thus Aut(Ψ◦) = M̄4.

It is well known that PSL2(Z) is freely generated by an element S of or-
der three (which stabilizes e2πi/6 ∈ H) and an element T of order two (which
stabilizes i ∈ H). The isomorphism M̄4 → PSL2(Z) given by (γ0, γ1) 7→ (S, T )
establishes an isomorphism H → Vrd

4 .
4.2.3. Reduced Rank Four Nielsen Classes. Let Ni(G,C)in be a rank four

inner Nielsen class. The group K4 acts on Ni(G,C)in via its lift to K̂4. Since
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K̂4 /H4, its orbits create a block system for the action of H4 on Ni(G,C)in. Let
Ni(G,C)in,rd = Ni(G,C)/K̂4 denote the set of blocks; this is the reduced Nielsen
class.

The action of H4 on Ni(G,C)in descends to an action of M̄4 on Ni(G,C)in,rd.
The points of Ni(G,C)in,rd correspond to weak equivalence classes of ramified
covers with specified ramification in (G,C) over a given PSL2(C) equivalence
class of branch points.

4.2.4. Reduced Rank Four Hurwitz Spaces. Let Φ : H(G,C)in,rd → J4 be
the cover given by reduction of an inner Hurwitz space of rank 4. In this case,
H(G,C)in,rd is a Riemann surface. For j ∈ J4 r {0, 1}, the points in the fiber
over j correspond to the members of Ni(G,C)in,rd.

Let J ◦ = P1
j r {0, 1} and let H◦ = H(G,C)in,rd r Φ−1({0, 1,∞}). Let

Φ◦ = Φ �H◦ . Then Φ◦ : H◦ → J ◦ is a topological cover of the punctured sphere,
which induces a ramified cover Φ• : H• → J •, ramified over j = 0, 1,∞.

The cover ϕ• is produced by the action of M̄4 on the reduced Nielsen
class Ni(G,C)in,rd. Enumerating the set Ni(G,C)in,rd induces a permutation
representation which can, in some cases, be explicitly computed. For this to
completely describe the cover H(G,C)in,rd → J4, we need explicit paths in
P1
j r {0, 1,∞} with respect to which a branch cycle description can be stated.

4.3. Images of Braid Generators in P1
j r {0, 1,∞}.

4.3.1. Branch Point Set Images on the j-line. Let U4 = P4 r D4 and let
z = {z1, z2, z3, z4} ∈ U4. The reduction map j : U4 → P1

j r {∞} maps a set
of four unordered points to the j-value of the corresponding elliptic curve. We
wish to construct a formula for j as a function of z. It simplifies matters if we
assume z4 = ∞, and this suffices for our purposes. If we map z2 to 1 and z3 to
0, then z1 maps to

λ(z) =
z1 − z3
z2 − z3

.

Recall that

j(λ) =
4
27

(λ2 − λ+ 1)3

λ2(λ− 1)2
.

Now let a = (z1− z3) and b = (z2− z3) so that a− b = z1− z2 and λ = a
b . Then

27
4
j(z) =

(a
2

b2 −
a
b + 1)3

a2

b2 (ab − 1)2

=
(a2 − ab+ b2)3

a2b2(a− b)2

=
[(z2

1 − 2z1z3 + z2
3)− (z1z2 − z1z3 − z2z3 + z2

3) + (z2
2 − 2z2z3 + z2

3)]3

(z1 − z3)2(z2 − z3)2(z1 − z2)2

=
(z2

1 + z2
2 + z2

3 − z1z2 − z2z3 − z3z1)3

(z1 − z2)2(z2 − z3)2(z3 − z1)2
.

This yields

j(z) =
4
27

[(z1 + z2 + z3)2 − 3(z1z2 + z2z3 + z3z1)]3

(z1 − z2)2(z2 − z3)2(z3 − z1)2
.

Note that this function is symmetric in z1, z2, and z3.
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4.3.2. Braid Generator Images on the j-line. Composing the embedding of
O4 into U4 with reduction U4 → J4, we obtain a map f : O4 → J4. Taking par-
ticular paths forQ1, Q2, andQ3 as generators for π1(O4,z0), we wish to compute
the images on the j-line via the map f , taking care that the images avoid the set
{0, 1,∞}. We anticipate that (f(Q2), f(Q1Q2), f(Q1Q2Q3)) have the same path
lifting action on Vrd

4 as a bouquet γ on P1
j with respect to ((∞, 0, 1), j0), where

j0 > 1 is a positive real number; we would like to absolutely identify this bou-
quet. Then this bouquet, together with the action of γ on the reduced Nielsen
class, will produce a branch cycle description for a reduced Hurwitz space cover
of P1

j .
Before undergoing the explicit computation, let us make some observations

about what we can expect. Assume the basepoint z ∈ Ur lies on the real line,
and that the nonfixed part of the Qi’s are circles in the complex plane symmetric
with respect to the real line and parameterized at a constant rate by t ∈ [0, 1].
Let j0 = j(z). Then

(a) j(t) = j(1− t) (where bar indicates the complex conjugate);
(b) j(Qi) intersects the real line only at t = 0, 1

2 , and 1;
(c) if t = 0, 1, then j(t) = j0 ∈ (1,∞);
(d) if t = 1

2 , then j(t) is in the interval (0, 1) or (∞, 0);
(e) j(Qi) is symmetric with respect to the real line, and is in one half plane

for t ∈ (0, 1
2 ) and in the other for t ∈ ( 1

2 , 1).

Since the circles are based at real numbers and are parameterized at a con-
stant rate, the upper part of Qi evaluated at t is the complex conjugate of the
lower part of Qi evaluated at 1− t. Since j is an algebraic function of z, we have
j(z) = j(z). This gives (a).

The preimage of (1,∞) under j(λ) is the real part of the lambda line, and
(c), (d) are consequences of this. The other points follow.

4.3.3. Braid Image Computation. First we select a basepoint for U4 consist-
ing of four points on the real circle, taking care that their λ value is unramified.
Select z1 = 0, z2 = 2, z3 = 6, and z4 = ∞. Then j(z) = 4

27
(82−3·12)3
22·42·62 = 73

35 , that
is,

j(z) =
343
243

.

Call this value j0; it is the basepoint for the image paths.
Set v(t) = e−πit for t ∈ [0, 1] and select specific paths for Q1 and Q2:

Q1(t) = (1− v(t), 1 + v(t), 6,∞)

Q2(t) = (0, 4− 2v(t), 4 + 2v(t),∞)

Compute the image of Q1 in P1
j r {0, 1,∞} by taking its j values along the

path:

j(Q1) =
4
27

(82 − 3((1− v2) + (6 + 6v) + (6− 6v)))3

(2v)2(v − 5)2(v + 5)2

=
1
27

(v2 + 25)3

v2(v2 − 25)2
.

The intersection of this path with the real line occurs when the first two
coordinates are complex conjugate pairs, which happens when t = 1

2 , that is,
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when v2 = −1. This real intersection is

j |v2=−1=
−243

27
· 262 < 0.

For t ∈ (0, 1
2 ), the path is in either the upper of lower half plane, and for

t ∈ ( 1
2 , 1), it is in the opposite half plane. Thus evaluating j at t = 1

4 will give
the initial direction of the path. When t = 1

4 , v2 = −i, so compute

j |v2=−i=
i(25− i)5

(25 + 1)2
,

whose imaginary part is positive. So this path leaves j0, moves leftward through
the upper half plane, intersects the real line in the interval (−∞, 0), and proceeds
back towards j0 in the lower half plane.

Similarly,

j(Q2) =
4
27

(82 − 3(16− 4v2))3

(4 + 2v)2(4v)2(4− 2v)2

=
1
27

(4 + 3v2)3

v2(v2 − 4)2
.

Now we have

j |v2=−4=
83

27 · 4 · 52
,

which is in the interval (0, 1), and

j |v2=−4i=
i(1− 3i)3(1− i)2

27 · 4
.

Compute the angle θ of this latter quantity:

θ =
π

2
− π

4
− arctan(3) <

π

4
− arctan(

√
3) = − π

12
< 0.

So this path starts in the lower half plane.
The above computations show that the image of the tuple (Q1, (Q2Q1)−1, Q−1

2 )
is a bouquet for P1

j r {0, 1,∞} with respect to ((∞, 0, 1), j0). Modulo the rela-
tions in M̄4, we have Q−1

2 = Q2 and

(Q1, (Q2Q1)−1, Q2)Q1Q2Q1Q2 = (Q2, Q1Q2, Q1Q2Q1).

Let γ∞, γ0, and γ1 be the elements of π1(P1
j r{0, 1,∞}, j0) which are homo-

topic classes of nonintersecting paths leaving j0 and traveling in the lower half
plane to (∞, 0, 1) respectively, winding clockwise around each, and returning to
j0 in the lower half plane, as indicated in this diagram.

s s s acR ∞ 0 1 z0��
��

��
��

��
��

� � �γ∞ γ0 γ1

Primary paths for cover of J4.
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The bouquet γ = (γ∞, γ0, γ1) is homotopic to (f(Q1), f(Q2Q1)−1, f(Q2)−1).
Thus the action of γ on the fiber of V• → J • over j0, or on a reduced rank four
Hurwitz space covering J •, can be computed as the action of (Q2, Q1Q2, Q1Q2Q1)
on reduced tuples of classical generators, or on the reduced Nielsen class.





CHAPTER III

Modular Towers

1. Group Covers

1.1. Group Covers.
1.1.1. Group Covers. A group cover is a surjective homomorphism ϕ : H →

G between groups. We say that cover is finite if H is finite. A morphism of group
covers from ψ : I → G to ϕ : H → G is a surjective homomorphism ξ : I → H
such that ψ = ϕ ◦ ξ. This produces the category of group covers.

1.1.2. Group Cover Factors. Let ϕ : H → G be a group cover. A factor of
ϕ is a group cover ϕ1 : H2 → H1 such that there exist covers ϕ2 : H → H2 and
ϕ0 : H1 → G with ϕ = ϕ0 ◦ ϕ1 ◦ ϕ2. A factor is trivial if it is an isomorphism,
and it is proper if either ϕ2 or ϕ0 is nontrivial. Denote the entire sequence by

ϕ : H
ϕ2→ H2

ϕ1→ H1
ϕ0→ G,

and call this sequence a factorization of ϕ.
1.1.3. Lifts of Elements. Let ϕ : H → G be a group cover. A lift of g ∈ G is

an element h ∈ H such that ϕ(h) = g. Let K = ker(ϕ), and suppose that K is
abelian. Then G acts on K on the right by lifted conjugation, that is, we define
ag = ah for a ∈ K, where h ∈ H is any lift of g ∈ G; this is well-defined because
K is abelian, producing G → Aut(K) which lifts to H → Aut(K). Because of
this, it makes sense to write CK(g) to mean CK(h).

We are interested in understanding the order of h from the order of g. In
every case, we know that if CK(h) = {1}, then ord(h) = ord(g). This is because
hord(g) ∈ CK(h). If K is abelian and ord(g) is relatively prime to |K|, we can
use an elementary argument to say more.

Proposition 4. Let ϕ : H → G be a finite group cover with abelian kernel
K. Let g ∈ G with gcd(ord(g), |K|) = 1. Then there exists h ∈ H with ϕ(h) = g
and ord(h) = ord(g). Let C = Ck(h) and let D be a complement of C in K.
Then D acts regularly on hK by conjugation, and the fiber over g is the disjoint
union

Kh =
⊔
a∈C

ahD,

where elements of ahD have order ord(a)ord(g). In particular, there are [K :
Ck(h)] elements of order m = ord(g) over g, all of which are conjugate.

Proof. Let m = ord(g) and let h be a lift of g; then hm ∈ K. Assume
hm = a is nontrivial. Since gcd(ord(a),m) = 1, the map 〈a〉 → 〈a〉 given by
x 7→ xm is an isomorphism; let b ∈ 〈a〉 be the preimage of a, that is, b is the
unique mth root of a in 〈a〉. Then ϕ(hb−1) = g, and since h commutes with b
we have (hb−1)m = hma−1 = an = 1.

41
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Thus select h ∈ H to be a lift of g of order m. Since C is the kernel of the
conjugation action of K on hk and D acts as K/C, the action of D is faithful
and transitive. It is also free, since hd1 = hd2 ⇒ d1d

−1
2 ∈ C ⇒ d1 = d2. Thus

the action of D on Kh breaks into |C| orbits, with ah and bh in different orbits
for distinct a, b ∈ C. If a ∈ C, then gcd(ord(a), ord(h)) = 1, so ord(ah) =
ord(a)ord(g). �

1.2. Group Cover Types.
1.2.1. Elementary Covers. An elementary cover is a group cover ϕ : H → G

such that ker(ϕ) is an elementary abelian p-group. In this case, M = ker(ϕ)
is a vector space over Fp, and becomes a module for the group algebra Fp[G].
The submodules of M are exactly the subgroups of M which are normal in
G, so they describe the factors of the cover. This is the realm of modular
representation theory, which we use only indirectly. See [Fr95], [BF02], and
[Se02] for discussions of how modular representation theory impacts the theory
of Modular Towers.

Let g ∈ G with m = ord(g), ps = |CM (g)|, and pr = |K|. Proposition 4 tells
us that if gcd(m, p) = 1, then ϕ−1(g) consists of pr−s elements of order m, all
of which are conjugate, and pr − ps elements of order mp. What remains to be
known is the order of lifts of elements which centralize an element of the kernel
and whose order is divisible by p. This depends on the cover, but presently we
will discover the answer in an interesting case.

1.2.2. Central Covers. A central cover is a group cover ϕ : H → G such that
ker(ϕ) ≤ Z(H). Note that a group cover with abelian kernel is central if and
only if the action of G on ker(ϕ) is trivial.

Let G be a finitely presented group, where F is a free group of rank r and
R / F with G = F/R. The Schur multiplier of G is

M(G) =
[F, F ] ∩R

[F,R]
.

Up to isomorphism, this is independent of the presentation (see [Ro93] Section
11.4).

We would like to view M(G) as the kernel of a group cover. One way to do
this is to set

S(G) =
[F, F ]R
[F,R]

.

Then the image of R in S(G) is central, and the canonical map ϕ : S(G) → G
has kernel M(G). The image of ϕ in G is the commutator subgroup of G. If
G is a perfect group, then ϕ is surjective, and is known as the universal central
extension of G.

Actually one can define a cover ϕ : S → G with ker(ϕ) ∼= M(G) and
ker(ϕ) ≤ Z(S) ∩ [S, S] whenever gcd(|G/[G,G]|, |M(G)|) = 1, which is unique
up to isomorphism (see [Ro93] Exercise 11.4.15). For our purposes it is easier
to work with Frattini covers.

1.2.3. Frattini Covers. A Frattini cover is a group cover ϕ : H → G with the
property that no proper subgroup of H maps onto G. A group homomorphism
ϕ : H → G if a Frattini cover if and only if any set of generators for G lift
to generators for G. A Frattini cover is totally nonsplit, in the sense that no
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nontrivial factor of it splits. The study of a Frattini cover of a finite group
produces information intrinsic to the group, yet previously hidden from view.

Let H1, H2, and G be finite groups, and let ϕ1 : H1 → G and ϕ2 : H2 → G
be Frattini covers. Let ϕ : H1 ×G H2 → G denote the fiber product. Select
a minimal subgroup H ≤ H1 ×G H2 which maps surjectively to G, so that
ϕ �H : H → G is a Frattini cover with ϕ1 and ϕ2 as factors. This construction
tempts one to form a projective system of Frattini covers of G. We wish to
obtain universal objects for covers of finite groups. In order to do this, we must
pass to a larger category.

1.3. Universal Frattini Covers.
1.3.1. Profinite Groups. A profinite group is the projective limit, in the cat-

egory of topological groups, of a system of finite groups endowed with the dis-
crete topology. Such a limit always exists, and can be explicitly constructed (see
[FJ86] Section 1.2). We obtain a compact topological group which is Hausdorff;
in such a group, a subgroup is open if and only if it is a closed subgroup of finite
index. An abstract compact topological group may be recognized as profinite
if it has a basis of open subgroups whose intersection is trivial; thus a closed
subgroup of a profinite group is profinite. A morphism of profinite groups is a
continuous group homomorphism whose kernel is closed; this gives the category
of profinite groups.

Let C be a subcategory of the category of finite groups. Then C induces
the subcategory of pro-C groups as those profinite groups whose finite quotients
are in C. This gives the meaning of pro-p, pronilpotent, procyclic, and so forth.
A maximal pro-p subgroup of a profinite group is called a p-Sylow subgroup.
These exist by Zorn’s Lemma. We say that a profinite group G is a pro-C profree
(respectively pro-C projective) group if it is free (respectively projective) in the
category of pro-C groups. Profree groups are projective.

Theorem 5. Profinite groups have these properties:
(a) An epimorphism from a finitely generated profinite group to itself is an

automorphism.
(b) An open subgroup of a profree profinite group is profree.
(c) A closed subgroup of a projective profinite group is projective.
(d) The p-Sylows of a profinite group are closed and conjugate to each other.
(e) All p-Sylows of a pronilpotent group are normal.
(f) A pro-P group is projective if and only if it is profree pro-p.

Proof. All proofs are in [FJ86], as follows: (a) is Proposition 15.3, (b)
is Proposition 15.27, (c) is Corollary 20.14, (d) is Proposition 20.43, (e) is
Proposition 20.44, and (f) is Proposition 20.37. �

1.3.2. Frattini Subgroups. The Frattini subgroup of a profinite group G is the
intersection of all open maximal subgroups of G, and is denoted Φ(G). This is
the set of nongenerators of G, in the sense that any set of generators will still
generate after any elements from the Frattini subgroup are removed. Moreover,
the Frattini subgroup is pronilpotent; that is, all of its maximal pro-p subgroups
are normal, so it is isomorphic to the direct product of its p-Sylow subgroups.

A homomorphism ϕ : H → G between profinite groups is a Frattini cover if
and only if ker(ϕ) ≤ Φ(H); hence the name.
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A p-Frattini cover is a Frattini cover whose kernel is a pro-p group. Since
the kernel of a Frattini cover is nilpotent, such a cover is the fiber product of
p-Frattini covers.

1.3.3. Universal Frattini Cover. The universal Frattini cover of a finite group
G is a Frattini cover ψ : G̃ → G which is versally repelling in the category of
Frattini covers of G. View this as the projective limit of all finite Frattini covers
of G. Such an object always exists, and is unique up to isomorphism, although
it admits nontrivial automorphisms.

To see that the universal Frattini cover always exists, let r be the rank of G,
that is, r is the minimal number of generators for G. Let F̃r be the free profinite
group on r generators. Map the generators for F̃r to generators for G. Select
a minimal subgroup G̃ of F̃r which maps surjectively onto G. Since F̃r is free,
G̃ is projective (in fact, we may characterize the universal Frattini cover as the
minimal projective cover; see [FJ86] Proposition 20.33). If we select different
generators in G, we obtain another cover, say by group G̃∗. Use the projective
property plus the Frattini property to obtain surjective maps G̃ → G̃∗ and
G̃∗ → G̃. Since these groups are profinite, these maps must be isomorphisms.

1.3.4. Universal p-Frattini Cover. Let G be a finite group and let ψ : G̃→ G
be the universal Frattini cover of G. Then Φ(G̃) = ψ−1(Φ(G)). Since ker(ψ) is
a subgroup of a pronilpotent group, it is also pronilpotent, and is the product of
its pro-Sylow subgroups. The primes p which divide the order of G are exactly
those that contribute nontrivial portions ker(ψ).

Let p be prime and let pG̃ denote the quotient of G̃ by the product of the
Sylow q-subgroups of ker(ψ), where q is prime to p. Then ψ factors through
ϕ : pG̃ → G; this is the universal p-Frattini cover of G. Let K = ker(ϕ); this is
a pro-p group. If p does not divide the order of G, then K is trivial; assume p
divides the order of G.

Let P be a p-Sylow subgroup of G. Then P̃ = ϕ−1(P ) is a p-Sylow subgroup
of G̃, and [P̃ : K] = |P |. In particular, K is a closed subgroup of finite index,
and since G̃ is projective, K is a profree pro-p group.

Set ker0 = K, and inductively define

keri+1 = kerpi [keri, keri],

where by convention we take the closed normal subgroup generated by these
elements. Set 0

pG̃ = G, and define i
pG̃ = pG̃/keri. This gives a sequence of finite

groups
· · · → i+1

p G̃→ i
pG̃→ · · · → G

such that the kernel between successive steps is an elementary abelian p-group.
The universal p-Frattini cover of ipG̃ is pG̃ for each i in this sequence.

1.3.5. Universal Elementary p-Frattini Cover. It is often convenient to change
notation and set Gk = k

pG̃. Consider the group cover Gk+1 → Gk, and label its
kernel Mk, so that Mk = kerk/kerk+1. This cover is universal for Frattini covers
of Gk with elementary abelian p-group kernel, and is referred to as the universal
elementary p-Frattini cover of Gk. View Mk as an Fp vector space with a Gk
action given by lifted conjugation, that is, Mk is an Fp[Gk] module, which we
refer to as the universal elementary p-Frattini module of Gk.

1.3.6. Subgroup Frattini Principle. Let G be a finite group with universal
p-Frattini cover ϕ : pG̃ → G. Let H ≤ G; then ϕ−1(H) is a closed subgroup
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of pG̃, and so it is projective; the map ϕ �ϕ−1(H): ϕ−1(H) → H lifts to a
map ψ : ϕ−1(H) → pH̃, which is necessarily surjective and maps ker0(G) onto
ker0(H). This induces a surjective homomorphism M0(G) → M0(H), which is
an isomorphism of Fp[H] modules if and only if ψ is an isomorphism of profinite
groups (see [FK97] Subgroup Frattini Principle 2.3).

Let ϕ : 1
pG̃ → G be the universal elementary p-Frattini cover. The con-

siderations above induce a surjective homomorphism ψ : ϕ−1(H) → 1
pH̃ such

that ψ−1(M0(H)) = M0(G). Use this is find the order of lifts of elements in G;
compare the following with Proposition 4.

Proposition 6. Let G be a finite group and let ϕ : 1
pG̃→ G be its universal

elementary p-Frattini cover. Let g ∈ G be of order pm and let g̃ ∈ 1
pG̃ with

ϕ(g̃) = g. Then ord(g̃) = p2m.

Proof. Without loss of generality, we may assume that m = 1, so that
H = 〈g〉 is cyclic of order p. Clearly ord(g̃) ≤ p2. The universal elementary
p-Frattini cover of H is cyclic of order p2, say 1

pH̃ = 〈x〉, with kernel 〈x2〉. Now
ϕ−1(H) maps surjectively onto this with g̃ not in 〈x2〉. Thus p2 divides the order
of g̃, and hence equals it. �

1.3.7. Split Groups. Let G = K o H, with gcd(|K|, |H|) = 1. Then the
universal Frattini cover of G is G̃ ∼= K̃ o H̃. This remains true for the universal
p-Frattini covers; that is pG̃ ∼= pK̃ o pH̃ (see [Ri85] Theorem 3.2).

Let p be a prime dividing the order of G and let P ≤ G be a Sylow p-
subgroup of G. Suppose that P / G. Then G = P o H, where H ∼= G/P has
order relatively prime to p, and pH̃ ∼= H. The universal p-Frattini cover of a
p-group is pF̃t, where t is the rank of the group. Thus pG̃ ∼= pF̃t oH.

The profinite Nielsen-Scheier formula reveals that the kernel of the map
pF̃t → P is a profree pro-p group on 1 + (t − 1)|P | generators (see [FJ86]
Proposition 15.27). Thus the universal elementary p-Frattini module of P is a
vector space over Fp of this dimension.

1.4. Central Frattini Covers.
1.4.1. Universal Central Frattini Cover. Let G be a finite group and let

ϕ̃ : G̃→ G be its universal Frattini cover, with ker(ϕ) = K. Set

Ĝ =
G̃

[G̃,K]
.

The induced map ϕ̂ : Ĝ → G is called the universal central Frattini cover. Its
kernel ker(ϕ̂) = K/[G̃,K] is called the kernel universal central Frattini kernel.
These properties are clear from the construction:

(a) ϕ̂ is a Frattini cover;
(b) ker(ϕ̂) ≤ Z(Ĝ);
(c) ϕ̂ is versally repelling for Frattini covers of G with central kernels.

Let ξ̃ : G̃ → Ĝ be the canonical homomorphism. Let X be a minimal
set of generators for G̃; note X is finite. Let F be the free group on X, and
let ι : F → G̃ be the induced homomorphism. Let R = ker(ϕ̃ ◦ ι). Then
ker(ξ̃ ◦ ι) = [F,R], and since Ĝ is finite, we have Ĝ ∼= F/[F,R]. The image of
([F, F ] ∩ R)/[F,R] in Ĝ is ([G̃, G̃] ∩K)/[G̃,K]; this is the part of the universal
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central Frattini kernel which comes for the Schur multiplier. If G is perfect, the
universal central Frattini kernel is the Schur multiplier, and the universal central
extension is the universal central Frattini cover.

1.4.2. Universal Central Elementary p-Frattini Cover. Let ϕ̃ : pG̃ → G be
the universal p-Frattini cover of G, and let K = ker(ϕ̃). Set

pĜ = pG̃

Kp[pG̃,K]
,

and let ϕ̂ : pĜ→ G be the induced map. Call this the universal central elemen-
tary p-Frattini cover of G. Its kernel is called the universal central elementary
p-Frattini kernel of G. Then

(a) ϕ̂ is a Frattini cover;
(b) ker(ϕ̂) ≤ Z(Ĝ) is an elementary p-group;
(c) ϕ̂ is versally repelling for Frattini covers of G with central elementary

p-group kernels.

We say that G is p-perfect if gcd([G : [G,G]], p) = 1. If G is p-perfect, then
the universal central elementary p-Frattini kernel of G is the maximal elementary
p-group quotient of the Schur multiplier.

1.4.3. Antecedent Central Elementary p-Frattini Cover. Recall kerk+1 = kerpk[kerk, kerk].
Set ker∗k = kerpk[G̃, kerk], and ker′k = (ker∗)p[kerk, ker∗k]. Obtain a map kerk/ker∗k →
kerk+1/ker′k+1 by x 7→ xp. This is injective (see [BF02] Proposition 9.6 and
[FK97] Schur Multipliers Result 3.3); denote the pullback of the image to pG̃
by ker′′k+1. Then

ker∗k+1 ≤ ker′k+1 ≤ ker′′k+1 ≤ kerk+1 ≤ ker∗k ≤ kerk.

We call ker′′k+1/kerk+1 the antecedent of the universal central elementary p-
Frattini kernel at level k. When G is p-perfect, this is the part of the elementary
p-group quotient of Schur multiplier which is induced from the previous level.

With ker′′0 = ker∗0, set

k
pĜ

∗ = pG̃

ker′′k
;

we call kpĜ
∗ → k

pG̃ the antecedent central elementary p-Frattini cover at level k.
Let Gk = k

pG̃. Let Ĝk → Gk be the universal central elementary p-Frattini
cover of Gk. Let Mk = ker(Gk+1 → Gk) and Vk = ker(Gk+1 → Ĝk). Then the
antecedent Ĝ∗k+1 → Gk+1 is characterized as the central Frattini cover of Gk+1

with the property that the elements of Mk which lift in Ĝ∗k+1 to have order p
are exactly those in Vk.

2. Factored Covers

2.1. Factored Topological Covers.
2.1.1. Factored Topological Covers. Let ψ : Z → X and ϕ : Y → X be

topological covers. A factored topological cover is a strong morphism from ψ to
ϕ; that is, it is a map ξ : Z → Y such that ψ = ϕ◦ξ, in which case ξ is necessarily
a topological cover. Given ϕ and ξ, we construct ψ by composition, and given ψ
and ξ, we construct ϕ via ϕ = ψ ◦ ξ−1, which is well-defined. However, given ψ
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and ϕ, Aut(ϕ) acts regularly on the set of possible ξ’s which satisfy ψ = ϕ ◦ ξ;
yet all such ξ’s are equivalent as covers. Use notation

ψ : Z
ξ→ Y

ϕ→ X,

or (ψ, ξ), to describe the factored cover.
2.1.2. Automorphism Group Homomorphisms. Let ψ : Z → X be a normal

cover. Each subgroup H of π1(X,x0) containing K = ψ∗(π1(Z, z0)) acts dis-
cretely on Z to produce covers ξ : Z → Y = Z̄ and ϕ : Y → X, with ψ = ϕ ◦ ξ.
Then ξ is a normal cover with Aut(ξ) ∼= H/K, and ϕ equivalent to the cover
produced by H as above. We may view Aut(ξ) as the subgroup of Aut(ψ).
Then ϕ is a normal cover if and only if Aut(ξ) /Aut(ψ), in which case the map
ξ∗ : Aut(ψ) → Aut(ϕ) given by α 7→ ξ ◦ α ◦ ξ−1 is well defined with kernel
Aut(ξ), and Aut(ϕ) ∼= Aut(ψ)/Aut(ξ). Otherwise, the conjugates of Aut(ξ) in
Aut(ψ) produce equivalent covers. We have an order reversing bijection between
conjugacy classes of subgroups of π1(X,x0) containing ψ∗(π1(Z, z0)) and equiv-
alence classes of covers of X through which ψ factors. These conjugacy classes
of subgroups correspond to conjugacy classes of subgroups of the automorphism
group.

2.1.3. Monodromy Group Homomorphisms. If ψ : Z → X is not normal,
the correspondence is between conjugacy classes of subgroups of Mon(ψ) and
equivalence classes of covers of X through which the normal closure ψ̂ : Ẑ → X
factors. A cover of X is a factor of ψ if and only if the corresponding subgroup
of Mon(ψ) is contained in Stb(ψ) (the stabilizer).

Consider a factored cover ψ : Z
ξ→ Y

ϕ→ X. Let n = deg(ψ), m = deg(ϕ),
and d = deg(ξ), with n = md. Select basepoints x0 ∈ X, y0 ∈ ϕ−1(x0),
and z0 ∈ ξ−1(y0). The core of ϕ∗(π1(Y, y0)) in π1(X,x0) contains the core
of ψ∗(π1(Z, z0)) in π1(X,x0), inducing a canonical homomorphism Mon(ψ) →
Mon(ϕ). For computation, we view these monodromy groups as embedded in
permutation groups.

Let Yx0 = ϕ−1(x0) and Zx0 = ψ−1(x0) be the fibers over the basepoint.
Enumerate these sets so that z0 and y0 correspond to 1. This produces a func-
tion e : Nn → Nm induced by restriction of ξ to the fibers. It also produces
monodromy representations Tψ : π1(X,x0) → Sn and Tϕ : π1(X,x0) → Sm.
Set H = Tψ(π1(X,x0)), V = Tψ(ψ∗(π1(Z, z0))), G = Tϕ(π1(X,x0)), and U =
Tϕ(ϕ∗(π1(Y, y0))). Thus V = StbH(1) and U = StbG(1).

The function e induces a homomorphism f : H → G which produces a
morphism of group actions; that is, with H and G acting on the right of Nn
and Nm respectively, we have e(ih) = e(i)f(h). This satisfies f(V ) ≤ U . Let
K = ker(g); since V is coreless in H, we have V ∩K = {1}, so f �V : V → U is
injective. This implies that |H|/n ≤ |G|/m, and that |K| ≤ d.

Let T = f−1(U) so that K = KH(T ). Note that T is the setwise stabilizer in
H of e−1(1). If ψ∗(π1(Z), z0) ≤ ker(Tϕ), then T corresponds to the cover ϕ, and
K corresponds to its normal closure. The monodromy group of ξ is isomorphic
to T/KT (V ), and its action is given by the action of T on e−1(1), or equivalently,
on the right cosets of V in T .

2.2. Factored Ramified Covers.
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2.2.1. Factored Ramified Covers. A factored ramified cover is a sequence
ψ : Z

ξ→ Y
ξ→ X of nonconstant analytic maps between compact connected

Riemann surfaces. If Bpt(ψ) is the set of branch points of ψ, remove them from
X and their preimages from Y and Z to obtain a factored topological cover

ψ◦ : Z◦
ξ◦→ Y ◦ ϕ

◦

→ X◦.
Clearly we have a containment of the branch points Bpt(ϕ) ⊂ Bpt(ψ). If

Bpt(ϕ) = Bpt(ψ), then call (ψ, ξ) conservative, because the branch point set
is conserved. This is the primary situation in this dissertation. The opposite
condition is Bpt(ξ) ∩ ϕ−1(Bpt(ϕ)) = ∅, to which we give the moniker liberal.
These definitions are of most interest in the case the Y (and therefore X) is of
genus zero.

2.2.2. Branch Cycle Descriptions of Factored Covers. Let ψ : Z
ξ→ Y

ϕ→ X
be a factored ramified cover such that Y is of genus zero. Then ξ : Z → Y has
a branch cycle description. Given any two of ψ, ϕ, and ξ, the equivalence class
of the third is completely determined. Thus, its branch cycle description with
respect to a given bouquet is also determined, up to equivalence.

The monodromy group of ξ can be computed as specified in the previous
section. However, this process does not find appropriate generators for the mon-
odromy group which will lead to a branch cycle description for ξ.

Problem 7. Given branch cycle descriptions for any two of ψ, ϕ, and ξ,
find a branch cycle description of the third.

Here, the phrase branch cycle description includes the classical generators
and the branch cycles, so that the cover is determined. Thus, this problem
incorporates the following problem.

Problem 8. Let x be a tuple of points in P1 and let λ be classical tuple
about x. Let ϕ : Y → X be a ramified cover such that the genus of Y is zero,
and let g be the branch cycle description for ϕ with respect to λ. Find generators
for ϕ∗(π1(Y, y0)), written in terms of λ, which lift to a classical tuple on Y .

We will discuss these problems further in chapter V.
2.2.3. Branch Cycle Descriptions from Monodromy Homomorphisms. Let

ψ : Z → P1 be a ramified cover of degree n whose branch cycle description is
h = (h1, . . . , hr) with respect to classical generators λ. Let H = 〈h〉 ≤ Sn, and
let V = StbH(1). Let f : H → G be a group homomorphism, where G ≤ Sm,
U = StbG(1), and f(V ) ≤ U . Then there exists a function e : Nn → Nm such
that f is induced by e; define e(j) = i if 1 · h = j and 1 · f(h) = i.

The pullback of U through f and then back to the fundamental group pro-
duces a cover ϕ : Y → P1 whose branch cycle description, with respect to λ,
is (f(h1), . . . , f(hr)), such that there exists an analytic map ξ : Z → Y with
ψ = ϕ ◦ ξ.

Suppose we are given ψ as above and ξ : Z → Y . Then ξ induces a block
system for the action of Mon(ψ), which in turn produces the functions e and f ,
and a branch cycle description for a cover ϕ : Y → P1 with ψ = ϕ ◦ ξ. This is
the easy case of the Problem 7.

3. Moduli of Elliptic Curves

3.1. Elliptic Curves.
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3.1.1. Elliptic Curves. An elliptic curve (E, e) is a topological torus E en-
dowed with a complex structure, together with a specified basepoint e. Topo-
logically, the universal cover of E is a plane, and the cover induces a uniquely
determined complex structure on the plane; this complex structure determines
a coordinate system for the plane which is unique up to the action of

Hol(C) = {f : C → C | f(z) = az + b for some a ∈ C∗, b ∈ C}.

Select a coordinate z so that the universal cover ξ : Cz → E satisfies ξ(0) = e.
Any other such choice differs from this one by multiplication by some a ∈ C∗.

Let y ∈ E and let z1, z2 ∈ ξ−1(y). Since ξ is a normal cover, there exists
a unique automorphism µ ∈ Aut(ξ) such that µ(z1) = z2; since ξ ◦ µ = ξ, µ is
necessarily an holomorphic isomorphism, so µ(z) = az + b for some a, b ∈ C. If
a 6= 1, then b

1−a is a fixed point of µ, and any automorphism of a cover with a
fixed point is the identity; take a = 1. Thus z2 = µ(z1) = z1 + b, so z2 − z1 = b.

Let L = ξ−1(e); then µ(0) = b, so b ∈ L. Thus L is a discrete additive
subgroup of C, and the fibers of ξ are the cosets of L in C. This canonically
produces an abelian group structure on E such that ξ is a group homomorphism.
Moreover, L ∼= Aut(ξ) ∼= π1(E, e) ∼= Z× Z.

A lattice in Rn is the free abelian subgroup of the additive group Rn gen-
erated by a basis for Rn. Thus a lattice in C is any discrete free abelian group
of rank two, and L = ξ−1(e) is a lattice in C. Conversely, given a lattice L in
C, we see that C/L is a topological torus with an holomorphic group structure,
and this structure is precisely that which would be given by the above process.

3.1.2. Isogenies. An isogeny between elliptic curves is a nonconstant holo-
morphic map ϕ : E2 → E1 which sends the origin to the origin. This is necessar-
ily surjective, and the Riemann Hurwitz formula dictates that it is unramified.

A universal cover ξ : C → E2 composes with ϕ to give a universal cover
ψ : C → E1; if L2 and L1 are the lattices thus produced, it is clear that L1 ≤
L2 as a subgroup, and that ϕ may be viewed as the canonical homomorphism
C/L2 → C/L1. If ω1 and ω2 are generators for L1, then there exist m,n ∈ Z
such that mω1 and nω2 are generators for L2. Thus ϕ is a normal cover of degree
mn with group Z/mZ ⊕ Z/nZ. Isogenies become the obvious morphisms for a
category of elliptic curves. From the construction, one sees that two lattices
produce isomorphic elliptic curves if and only if one lattice is a complex scalar
multiple of the other.

3.1.3. Automorphisms of Elliptic Curves. Let E be an elliptic curve given
by a lattice L. An automorphism of E descends from an automorphism of C
given by scalar multiplication by some a ∈ C which preserves L, so we may
view the automorphism group as a subgroup of C∗. Since Aut(E) permutes the
points of L which have minimal distance to the origin, Aut(E) is finite, and so
is a finite subgroup of the unit circle U, and thus cyclic. Since multiplication by
−1 is an automorphism, the automorphism group has even order. Let a = eπi/n

be a generator for Aut(E).
Without loss of generality, suppose that L is generated by {1, τ}, where 1 is

the minimal distance to the origin among nontrivial points in L. Then 〈a〉 ⊂ L,
and Aut(E) = 〈a〉 = L ∩ U.

Typically, |τ | > 1, so that a = −1 and |Aut(E)| = 2. Otherwise we may
take τ = a. Since |eπi/n − 1| < 1 for n ≥ 4, either n = 2 or n = 3. In these
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special cases, we respectively have τ = i and |Aut(E)| = 4, or τ = 1+i
√

3
2 and

|Aut(E)| = 6.

3.2. Moduli of Elliptic Curves.
3.2.1. Isomorphism Classes of Elliptic Curves. Let E denote the set of all

isomorphism classes of elliptic curves, L the set of all lattices in C, and G the
set of all unordered pairs {ω1, ω2} of generators for lattices in C. We have a
sequence of maps G → L → E. Let L and G denote these sets modulo the action
of C∗, producing a well-defined sequence G → L → E, where the latter map is
bijective.

Let H denote the set of complex numbers with positive imaginary parts. For
{ω1, ω2} ∈ G, the ratio ω2/ω1 is nonreal, and τ is in the upper half plane if and
only if τ−1 is in the lower half plane. Thus we identify G with the set of ordered
pairs (ω1, ω2) such that ω2/ω1 is in H, giving an injective map G → C2. The
action of C∗ projectivizes this, producing G → Hτ ↪→ P1

τ given by (ω1, ω2) 7→
ω1/ω2 = τ . Each element of G may be written uniquely in the form [1, τ ]; thus
G → Hτ is a bijection, which places a complex structure on G.

The group of holomorphic self homeomorphisms of the upper half plane is
Hol(H) = PSL2(R), via the action of PSL2(R) on projective points of the form
[ω1, ω2]. This group acts transitively on H, and this descends to an action on
L. Two bases for R2 generate the same lattice if and only if they are related
by an invertible matrix with integer coefficients, so the kernel of this action is
PSL2(Z). Thus G/PSL2(Z) is identified with L, and the category of elliptic
curves is parameterized by the upper half plane modulo the action of PSL2(Z).

3.2.2. The λ-line. Let τ ∈ H, L the lattice generated by {1, τ}, and E =
C/L, with ξ : C → C/L the natural homomorphism. The elements of order two
in E are ξ(1/2), ξ(τ/2), and ξ((1+ τ)/2), generating a Klein four group K ≤ E.
The map ι : E → E given by y 7→ −y is an holomorphic group automorphism,
and the action of ι on E r K is discrete. Thus the quotient of this action is a
Riemann surface punctured at four points, which the Riemann Hurwitz formula
dictates to be of genus 0. We obtain a ramified cover ϕ : E → P1 of degree two
with four branch points.

Let ψ : C → P1 be given by ψ = ϕ ◦ ξ. Choose a coordinate x for P1 so that
ϕ, and thus ψ, are holomorphic; any other choice for x differs by an element of
Hol(P1) = PSL2(C). Since PSL2(C) is sharply three transitive, we may adjust
x, as it is traditional to do, so that ψ(0) = ∞, ψ(1/2) = 1, and ψ(τ/2) = 0.
Denote the image of ψ((1 + τ)/2) by λ. This produces a well-defined surjective
map λ(τ) : Hτ → C r {0, 1}, which is holomorphic. We refer the closure of the
image as the λ-line, denoted by P1

λ.
Let f(x) = x(x − 1)(x − λ) and consider V = {(x,w) ∈ C2 | w2 − f(x)}.

Project V onto P1
x and compactify to obtain a ramified cover V • → P1

x. This
ramified cover has the same branch cycle description as ϕ, and so it is equivalent
to ϕ; in particular, E ∼= V •, which induces the structure of an algebraic variety
on E.

3.2.3. The j-line. Let E be an elliptic curve given uniquely by an equivalence
class of lattices L ∈ L. It is possible to select representatives of L given by
generators (1, τ) such that any of the three points of order two in E is the image
of any of the values 1/2, τ/2, (1+τ)/2. For all but two exceptional elliptic curves,
there are six possible λ values, corresponding to the action of S3 on the elements
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of order two in E, This gives an S3 action on P1
λ r {0, 1,∞}. The quotient

space is a punctured Riemann sphere whose points correspond to equivalence
classes of elliptic curves, and the map to the quotient space is branched over the
two exceptions. Placing the exception with an extra order three automorphism
at j = 0 and the exception with an extra order two automorphism at j = 1
completely determines coordinates for the quotient, whose closure we call the
j-line, denoted by P1

j . We have a normal ramified cover j(λ) : P1
λ → P1

j with
group S3, produced as a rational function in subsection II.4.1. Composition of
this with λ(τ) yields the function j(τ) : H → P1

j given by j(τ) = j(λ(τ)).
The j-invariant of E is j(τ). Each isomorphism class of elliptic curves is

uniquely identified by its j-invariant, and the j-line is the moduli space of elliptic
curves. Specifically, an elliptic curve has a minimal field of definition, which is
given by the minimal field of definition of its j-invariant.

3.3. Moduli of Isogenies. The kernel of an isogeny factors into cyclic
groups; thus the isogeny itself factors into isogenies with cyclic kernels. Focusing
on this case, consider objects (E,N) where E is an elliptic curve and N is a
subgroup of E of order n. Define

Γ0(n) =
{ [

a b
c d

]
∈ PSL2(Z) | c ≡ 0 (mod n)

}
.

Given two pairs (E1, N1) and (E2, N1), there is an isomorphism E1 → E2 sending
N1 to N2 if and only if defining τ ’s for E1 and E2 are in the same orbit of the
action of Γ0(n) on the upper half plane. Let Y0(n) denote the upper half plane
modded out by the action of Γ0(n); then Y0(n) forms a parameter space for
equivalence classes of such pairs (E,N). The space Y0(n) is called an open
modular curve. We obtain a map Y0(n) → P1

j by sending the equivalence class
of (E,N) to the equivalence class of E; this map dictates a compactification of
Y0(n), which is denoted by X0(n), by filling in the points over j = ∞. Moreover,
there is a natural map X0(n) → X0(m) whenever m divides n.

A cyclic group factors into cyclic groups of prime power order, so we might
as well take n = pr for some r. This produces a sequence of open modular curves

· · · → Y0(pr+1) → Y0(pr) → · · · → Y0(p) → P1
j .

Let ξ : E2 → E1 be an isogeny with ker(ξ) a cyclic group of order pr,
viewed as an unramified cover between Riemann surfaces. There is exists a cover
ϕ : E1 → P1 ramified over four points, and these four points are determined up
to the action of PSL2(C). Let ψ = ϕ ◦ ξ; this is a normal cover with normal
factors, whose monodromy group is a nonabelian extension of Z/pr by Z/2; thus
the monodromy group is Dpr . The cover is ramified over four points with order
two ramification.

Let G be Dp in the regular representation and let C be the conjugacy class
in G of an involution. The branch cycle description of ψ is in the Nielsen class
Ni(G,C4)to. This gives a map Y0(pr) → H(G,C4)ab,rd, which is a holomorphic
isomorphism which commutes with the map to P1

j . In this way, reduced Hurwitz
spaces generalize open modular curves.

The group homomorphism Dpr+1 → Dpr has a p-group kernel and the prop-
erty that any lift of the involutions generating Dpr also generate Dpr+1 . The
map Y0(pr+1) → Y0(pr) is identified with H(Dpr+1 , C4)ab,rd → H(Dpr , C4)ab,rd,
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and this latter map may be viewed as coming from the corresponding group ho-
momorphism. The Modular Towers construction generalizes this situation, with
any group G replacing Dp, and any conjugacy classes which generate G replacing
the involutions.

4. Modular Towers

4.1. Hurwitz Maps.
4.1.1. Nielsen Maps. A Nielsen map is a function δ : Ni1 → Ni2, where Ni1

and Ni2 are rank r inner or absolute Nielsen classes, such that for every g ∈ Ni1
and every Q ∈ Hr we have δ(gQ) = δ(g)Q. Thus a Nielsen map is a morphism
of Hr actions.

4.1.2. Hurwitz Maps. A Hurwitz map is a function ∆ : H1 → H2, where H1

and H2 are rank r inner or absolute Hurwitz spaces, which commutes with the
maps to Ur. Thus a Hurwitz map is a morphism of topological covers.

It is clear that Nielsen maps produce Hurwitz maps, and vice versa. We
may also use this terminology for reduced Nielsen classes and Hurwitz spaces.

The Hurwitz maps of primary interest are those that are induced from mor-
phisms of the ramified covers corresponding to the points on the Hurwitz space.
As we have seen, such morphisms come from group covers.

4.2. Hurwitz Covers.
4.2.1. Inner Hurwitz Covers. Let f : H → G be a surjective homomorphism

between finite groups. Let D be a collection of conjugacy classes from H and
let C = f(D). This produces a function between the total Nielsen classes which
descends to δ : Ni(H,D)in → Ni(G,C)in. Since f is a homomorphism, this map
commutes with the braid action of Hr, so it is a Nielsen map, which induces
a Hurwitz map ∆ : H(H,D)in → H(G,C)in. Now ∆ has the property that
∆([ψ]) = [ϕ], where ϕ : Y → P1 is the static cover induced from ψ : Z → P1 by
the monodromy homomorphism f . We refer to such a ∆ as an inner Hurwitz
cover.

4.2.2. Absolute Hurwitz Covers. Let H ≤ Sn and G ≤ Sm be transitive
groups and let V = StbH(1) and U = StbG(1). Let f : H → G be a surjective
homomorphism of f such that f(V ) ≤ U and K = ker(f) is stabilized by Abs(H).
The latter condition is necessary for f to produce an absolute Nielsen map, which
in turn produces a Hurwitz map ∆ : H(H,D)ab → H(G,C)ab which again
reflects the monodromy homomorphism; call this an absolute Hurwitz cover.
Here’s a picture.

H(H,D)in −−−−→ H(H,D)aby y
H(G,C)in −−−−→ H(G,C)ab

4.2.3. Restraining Conditions. We address the issue of which group covers
f : H → G and conjugacy classes are resonant for analysis of Hurwitz covers.
In practice, the technique for analyzing this situation will certainly be to start
with knowledge of the Hurwitz space of G, and attempt to lift it to knowledge
of the Hurwitz space for H.

If f is a Frattini cover, any lift of g ∈ Ni(G,C)to to h will generate H,
although the product may or may not be 1; focus on this case. Every Frattini
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cover has a nilpotent kernel, and factors into covers with elementary p-group
kernels. Any p-Frattini cover of G is a quotient of kpG̃ for some k. Will will take
these are the primary examples, but the first few lemmas can be stated for the
case of abelian kernels.

If C is a conjugacy class, let ord(C) denote the order of any element in it.
If C is a tuple of conjugacy classes, let ord(C) be the least common multiple of
the orders of the elements in the conjugacy classes.

Let f : H → G be a group cover with abelian kernel K. Choice of conjugacy
classes breaks into two distinct cases: gcd(ord(C), |K|) = 1, and gcd(ord(C), |K|) >
1. In this dissertation, we assume the first case. The next proposition is essen-
tially [Fr95] Lemma 3.7, where the proof uses the Schur-Zassenhaus Theorem.

Proposition 9. Let f : H → G be a cover of finite groups whose kernel K
is abelian, and let C be a conjugacy class in G. If gcd(ord(C), |K|) = 1, then
there exists a unique conjugacy class D ⊂ H such that ord(D) = ord(C) and
f(D) = C.

Proof. By Proposition 4, all elements in H which lift g ∈ G and have the
same order as g are conjugate. Since a lift of a conjugate is a conjugate of a lift,
the rest follows. �

Thus in the situation of the above proposition, we use the notation C to
denote the conjugacy classes in H as well as in G.

4.2.4. Lifts of Nielsen Tuples. The size of the fiber over a given Nielsen tuple
may be bounded in terms of the sizes of the kernel centralizers of its entries.

Proposition 10. Let f : H → G be Frattini cover with abelian kernel K
and let C be a rank r tuple of conjugacy classes of G with gcd(ord(C), |K|) = 1.
Let ci = [K : CK(gi)], where gi ∈ Ci. Let g ∈ Ni(G,C)in, and let X = {h ∈
Ni(H,C)in | f(h) = g}. Then

|X| ≤
|Z(H)|

∏r−1
i=1 ci

|K||Z(G)|
.

Proof. Let g = (g1, . . . , gr) and assume that there exists h = (h1, . . . , hr) ∈
Ni(H,C)to with f(h) = g. Let Vi be a complement of CK(gi) in K. Let v =
(v1, . . . , vr−1) ∈ V1 × . . .× Vr−1 and set hv = (hv11 , . . . , h

vr−1
r−1 , (h

v1
1 · · ·hvr−1

r−1 )−1).
Note that the last entry lies over gr; it is in the same conjugacy class as hr if
and only if it has the same order as hr. The last entry is forced upon us by
the product one condition, so by Proposition 4, all tuples in Ni(H,C)to over
g are of this form, and the tuples of this form are distinct. Thus there are∏r−1
i=1 ci preimages of g with product one and the correct conjugacy classes in

the first r−1 slots. Adjust by the number of inner automorphisms to obtain the
result. �

4.2.5. Lifts of Nielsen Classes. Let f : H → G be a Frattini cover with
abelian kernelK. Let C be a tuple of conjugacy classes inG such that gcd(ord(C), |K|) =
1. Set

Nif (G,C)to = {g ∈ Ni(G,C)to | ∃h ∈ Ni(H,C)to such that f(h) = g}.
We now generalize the argument of [BF02] Lemma 7.9 to count the size of a
lifted Nielsen class, under certain conditions.
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Proposition 11. Let f : H → G be Frattini cover with abelian kernel K
and let C be a rank r tuple of conjugacy classes of G with gcd(ord(C), |K|) = 1.
If K ≤ Z(H), then

|Ni(H,C)in| = |Nif (G,C)in|.

Proof. By Proposition 4, if g ∈ ∪C, there exists a unique element h ∈ H
with ord(h) = ord(g). Thus there is only one choice for a lift of a given Nielsen
tuple, and this choice is in Nif (G,C) if the product is one. Thus |Ni(H,C)to| =
|Nif (G,C)to|. Since the kernel is central, |Inn(H)| = |Inn(G)|, and the result
follows. �

Proposition 12. Let f : H → G be a Frattini cover with abelian kernel
K. Let C be a tuple of conjugacy classes from G with gcd(ord(C), |K|) = 1.
Suppose that for every g ∈ ∪C, we have CK(g) = {1}. Then

(a) for every g ∈ Ni(G,C)to there exists h ∈ Ni(H,C)to such that f(h) =
g;

(b) |Ni(G,C)to| = |Ni(G,C)to||K|r−1;
(c) |Ni(H,C)in| = |Ni(G,C)in||K|r−2|Z(H)|

|Z(G)| = |Ni(G,C)in||K|r−2

[Z(G):f(Z(H))] .

Proof. Let C = (C1, . . . , Cr) and let (g1, . . . , gr) ∈ Ni(G,C)to. By Propo-
sition 4 and the hypothesis, the fiber over gi consists entirely of elements of the
same order as gi, and are all conjugate. Let hi ∈ f−1(gi) for i = 1, . . . , r − 1,
and let hr = (

∏r−1
i=1 hi)

−1. Then f(hr) = gr, so hr has the same order as gr,
and h = (h1, . . . , hr) ∈ Ni(H,C)to with f(h) = g. There are |K|r−1 choices
for h1, . . . , hr−1, so |Ni(H,C)to| = |Ni(G,C)to||K|r−1, giving (b). Divide both
sides by the number of inner automorphisms to obtain (c). The second equal
sign of (c) results from the fact that the hypothesis implies that Z(H) injects
into Z(G). �

Let f : H → G be a group homomorphism with abelian kernel K, and let C
be a tuple of conjugacy classes from G with gcd(ord(C), |K|) = 1. We say that
C has a common centralizer complement with respect to f if there exists V ≤ K
with V / H such that V is a complement in K of CH(Ci) for i = 1, . . . , r.

Proposition 13. Let f : H → G be Frattini cover with abelian kernel K
and let C be a rank r tuple of conjugacy classes of G with gcd(ord(C), |K|) = 1
and a common centralizer complement V with respect to f . Then

|Ni(H,C)in| = |Nif (G,C)in||V |r−1|Z(H)|
|K||Z(G)|

.

Proof. Let H̄ = H/V . Since Nielsen tuples generate the group, the ker-
nel of f̄ : H̄ → G is central, so Proposition 11 implies that |Ni(H̄,C)to| =
|Nif̄ (G,C)to|. The map H → H̄ with kernel V satisfies the hypothesis of
Proposition 12, so |Ni(H,C)to| = |Ni(H̄,C)to||V |r−1. Moreover Nif̄ (G,C)to =
Nif (G,C)to, and we have |Ni(H,C)to| = |Nif (G,C)to||V |r−1. Divide both sides
by the number of inner automorphisms to obtain the result. �

4.3. Modular Towers.
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4.3.1. Modular Towers. Let G be a finite group whose order is divisible by
p, and let C be a tuple of conjugacy classes from G with gcd(ord(C), p) = 1.
An inner Modular Tower is the sequence of Hurwitz spaces

· · · → H(k+1
p G̃,C)in → H(kpG̃,C)in → · · · → H(G,C)in

induced from the universal elementary p-Frattini covers. We call H(kpG̃,C)in the
kth level of the Modular Tower.

For each k ≥ 0, select a coreless subgroup kU ≤ k
pG̃ such that k+1U maps into

kU . Embed k
pG̃ in Snk

, where k = [kpG̃ : kU ], via its coset representation. An
absolute Modular Tower is the resulting sequence of absolute Hurwitz spaces.
Apply the action of PSL2(C) on either the inner or absolute Modular Tower
to obtain a reduced Modular Tower. In general, denote a Modular Tower by
MTp(G,C), with extra decoration if we wish to concentrate on inner, absolute,
or reduced versions.

Recall that the points on a Hurwitz space are defined over the field of moduli
of a corresponding cover, and that if either G is centerless in the inner case, or
G is self-normalizing in the absolute case, a cover exists in each equivalence class
which is defined over its field of moduli. Thus we would like to know when
these conditions lift through the Modular Tower. See [Fr95] Definition 3.5 and
Problem 3.8 for a discussion of this. We report the following.

Theorem 14. If G is perfect and centerless, then k
pG̃ is perfect and center-

less, for k ≥ 0.

Proof. [Fr95] Lemma 3.6. �

4.3.2. Modular Tower Sublevels. Let MTp(G,C)in be an inner Modular
Tower. Let Gk = k

pG̃ and Mk = ker(Gk+1 → Gk). Suppose that K ≤ Mk

is normal in Gk+1, and let H = Gk+1/K. The sequence Gk+1 → H → Gk of
Frattini covers induces a sequence of Hurwitz spaces,

H(Gk+1,C)in → H(H,C)in → H(Gk,C)in;

we call H(H,C)in a sublevel of level k + 1 of the inner Modular Tower. Analo-
gously define this for absolute Modular Towers and their reduced versions.

Information regarding sublevels of a Modular Tower can help push knowledge
of level k to knowledge of level k + 1, as is the technique in chapter VII.

4.3.3. Obstruction. Let f : H → G be a Frattini cover with abelian kernel
K, and let C be a tuple of conjugacy classes in G such that gcd(ord(C), |K|) = 1.
Let g ∈ Ni(G,C)to, and select h ∈ Hr which lifts g to a tuple of elements of
the same order(s). Let a = Πh ∈ K; then h ∈ Ni(H,C)to if and only if a = 1.
Note that a is unaffected by the action of braiding, and the conjugacy class of a
is invariant for inner tuple classes. Set

νf (g) = {a ∈ K | Πh = a for some h with f(h) = g and h � C}.

This is the lifting invariant of g with respect to f ; it is a union of orbits under
the action of G on K, which are conjugacy classes in H. If O is an orbit for
the action of Hr on Ni(G,C)in, then νf is constant on O; that is, it is a braid
invariant, and we can set νf (O) = νf (g) for any g ∈ O.
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LetHO be the component ofH(G,C)in corresponding to O. The preimage of
HO in H(H,C)in is a collection of components. If 1 /∈ νf (g), then this collection
is empty, and we say that HO is obstructed by f .

Consider the case where f : Gk+1 → Gk as in the previous subsection. If
a component of H(Gk,C)in is obstructed by f , we say it is obstructed at level
k + 1. There is a precise group theoretical necessary condition for this.

Theorem 15. Let MTp(G,C)in be an inner Modular Tower of a group G.
If MTp(G,C)in is obstructed at level k + 1, then the universal elementary p-
Frattini cover f : Gk+1 → Gk factors as Gk+1 → H2 → H1 → Gk such that
ker(H1 → H2) = Cp ≤ Z(H1), with Cp cyclic of order p.

Proof. [FK97] Obstruction Lemma 3.2. �

The conclusion above is equivalent to saying that Gk+1 → Gk has a central
elementary p-Frattini factor. This implies that elements in Gk relatively prime
to p have nontrivial centralizers in Mk, so this result includes Proposition 12
(a).



CHAPTER IV

Real Points

1. Kappa Operators

1.1. Real Covers.
1.1.1. Complex Conjugation. Let η : P1 → P1 denote complex conjugation.

Then η is the unique nontrivial field automorphism of C which is continuous,
and we can use this to our advantage to detect real points on Hurwitz spaces.
The ideas of this section have their roots in [DF90] and [DF94], who in turn
cite [Hu91] and [KN71].

Let ϕ : Y → P1 be a ramified cover. View Y as an embedded projective
variety in Pn, and let η̂ denote the action of complex conjugation on Pn. Set
Y η = η̂(Y ) and define the cover ϕη : Y η → P1 by ϕη = η ◦ϕ ◦ η̂−1. This induces
an function η∗ : Aut(ϕ) → Aut(ϕη) given by α 7→ η̂ ◦ α ◦ η̂−1, which is a group
isomorphism.

1.1.2. Real Covers. We say that ϕ : Y → P1 is a real cover if it is defined over
R. This is the case exactly if ϕ = ϕη; suppose this is so. Then Y = Y η, which
identifies Aut(ϕ) with Aut(ϕη), so that η∗ becomes an automorphism of Aut(ϕ).
An automorphism α ∈ Aut(ϕ) is defined over R if and only if α = η∗(α). The
subgroup of Aut(ϕ) of automorphisms defined over R is the set of points fixed
by η∗ ∈ Aut(Aut(ϕ)). View η̂ ∈ Sym(Y ) and Aut(ϕ) ≤ Sym(Y ). The subgroup
of Aut(ϕ) consisting of automorphisms defined over R is CAut(ϕ)(η̂) ≤ Sym(Y ).

We say that ϕ is a real Galois cover if ϕ is a normal cover defined over R
such that every automorphism of ϕ is defined over R. This occurs exactly when
η∗ ∈ Aut(Aut(ϕ)) is the identity, so CAut(ϕ)(η̂) = Aut(ϕ). This implies that the
function field extension of ϕ over C descends to a Galois extension over R(x).

Let (ϕ : Y → P1, τ : G → Aut(ϕ)) be a static cover, and set τη = η∗ ◦ τ .
We say that (ϕ, τ) is a real static cover if ϕ is a real cover and τ = τη, that is,
η∗ ∈ Aut(Aut(ϕ)) is the identity. This happens if and only if ϕ is a real Galois
cover; it is independent of τ .

1.1.3. Pseudoreal Covers. We say that ϕ is a pseudoreal cover if ϕ is equiv-
alent to ϕη. This implies that the branch points of ϕ are an algebraic set over
R, i.e., the nonreal points among the branch points come in complex conjugate
pairs.

All real covers are pseudoreal. It may or may not be the case that a pseu-
doreal cover is equivalent to a cover which is defined over R. If ϕ is pseudoreal,
then the field of moduli of ϕ is contained in R. If Aut(ϕ) is trivial or ϕ is nor-
mal, then ϕ can be defined over its field of moduli (see [FV91] Section 1.5 and
[DF94] Sections 2.4 and 3.4), so in this case, ϕ is equivalent to a real cover.

57
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We say that (ϕ, τ) is a pseudoreal static cover if (ϕ, τ) is equivalent, as a static
cover, to (ϕη, τη). Here, ϕ is normal, and if additionally Aut(ϕ) is centerless,
then (ϕ, τ) can be defined over its field of moduli.

Pseudoreal covers arise from the fact that our method of specifying covers
by branch cycle descriptions identifies them only up to equivalence. Without
extra conditions, we can only hope to detect the field of moduli. Static covers
arise from our interest in identifying fields of definition of the automorphisms,
using the combinatorics supplied by branch cycle descriptions.

1.2. General Kappa Operators.
1.2.1. Conjugation of Branch Cycle Descriptions. Let ϕ : Y → P1 be a

ramified cover whose branch points x = (x1, . . . , xr) form and algebraic set over
R. Let x0 ∈ R be a basepoint for X = P1 r x. Let Yx0 = ϕ−1(x0) be the
fiber over x0, and let ε : Yx0 → Nn be an enumeration of Yx0 , which induces a
monodromy representation T : π1(X,x0) → Sn whose image is G.

Let λ be a loop in X based at x0, and let λ̄ = η ◦ λ. Since η is continuous
and η(x0) = x0, λ̄ is also a loop at x0, which induces an automorphism η∗ :
π1(X,x0) → π1(X,x0) given by [λ] 7→ [λ̄].

We may compose a lift of λ with η̂ to obtain a lift of λ̄. If the lift of λ to
y1 ∈ Yx0 ends at y2 ∈ Yx0 , then the lift of λ̄ to η̂(y1) ends at η̂(y2).

Let λ = (λ1, . . . , λr) be a classical tuple with respect to (x, x0), and let
λ̄ = (λ̄1, . . . , λ̄r). Also let ε̄ : η̂(Yx0) → Nn be given by ε̄(η̂(y)) = ε(y). Let
gi = T (λi) so that g = (g1, . . . , gr) is a branch cycle description for ϕ with
respect to λ and ε. Composing paths in P1 with η and their lifts to Y with η̂
shows that T (λ) = g is the branch cycle description for ϕη with respect to λ̄

and ε̄. Thus T (λ̄) is the branch cycle description for ϕη with respect to ¯̄λ = λ
and ε̄.

Let G ↪→ Sn and let g ∈ Ni(G, r)to, and let Tg : π1(X,x0) → G be given by
λi 7→ gi. Let κλ : Ni(G, r)to → Ni(G, r)to be defined by κλ(g) = Tg(λ̄). Then
κλ is an involutive permutation of the Nielsen class which detects the effect of
complex conjugation of covers. We call κλ the kappa operator with respect to λ.
We call any bouquet isotopic to λ admissible for κλ.

Proposition 16. Let ϕ : Y → R be a ramified cover whose branch points
are an algebraic set over R, and let ϕ̂ : Y → R be the normal closure of ϕ.
Let τ : G → Aut(ϕ̂) be an isomorphism. Let λ be a bouquet with respect to the
branch points of ϕ and a real basepoint, and let g be a branch cycle description
of ϕ with respect to λ, and G = 〈g〉. Then

(a) ϕ is a pseudoreal cover if and only if κλ(g) ≡ g (mod Abs(G));
(b) (ϕ̂, τ) is a pseudoreal static cover if and only if κg(g) ≡ g (mod Inn(G)).

1.2.2. Complex Conjugators. Let ϕ : Y → P1 be a ramified cover defined
over R, and continue notation from above. Then the fiber Yx0 is an algebraic
set over R, so η̂(Yx0) = Yx0 , and η̂ acts on Yx0 . The enumeration ε of Yx0

produces an element c ∈ Sn describing this action, where c = ε̄ ◦ ε−1, as well
as an antihomomorphism Aut(ϕ) → Sn whose image we denote by A. Clearly
c is an element of order two, unless the entire fiber consists of real points, in
which case c is trivial. We call c the complex conjugator of ϕ with respect to the
enumeration of the fiber.
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Let λ be a loop in X based at x0. The continuity of η and η̂ leads to the
conclusion that T ([λ̄]) = cT ([λ])c. In particular, c ∈ NSn(G).

Consider the significance of this when ϕ is a normal cover, in which case G
is in its regular representation. The automorphism group of ϕ is A = CSn

(G),
and as we have seen, G = CSn

(A). Thus if ϕ and all of its automorphisms are
defined over R, then c ∈ G.

A necessary condition for a cover ϕ : Y → P1 to be able to be defined over
R is

∃c ∈ NSn
(G) such that c2 = 1 and κλ(g) = gc.

This is sufficient when Aut(ϕ) is trivial or ϕ is normal, because in these cases,
ϕ can be defined over its field of moduli. Thus under these conditions, a cover
with branch cycle description g with respect to λ can be defined over R if and
only if g is a fixed point under the action of κλ on Ni(G, r)ab.

We explain further. Suppose κλ(g) = ga for some a ∈ NSn(G). Since g
generates G and a has involutive action on g, Inn(G) contains a unique involution
whose action is that of a, and we have a2 ∈ CSn

(g). When CSn
(G) = Aut(ϕ)

is trivial, we automatically have a2 = 1, and a is uniquely determined to be c.
When G is in its regular representation, Aut(G) embeds in NSn(G), so there
exists b ∈ NSn(G) with b2 = 1 and ga = gb. But here we cannot find c just by
looking at the group.

A necessary condition for a normal cover ϕ : Y → P1 to be able to be defined
over R together with its automorphisms is

∃c ∈ G such that c2 = 1 and κλ(g) = gc.

This is also sufficient (see [DF94] Section 3.4). When Mon(ϕ) has a trivial cen-
ter, c is uniquely determined by its action. Under the condition of a trivial center,
an static cover can be defined over R if and only if its branch cycle description
g with respect to λ is a fixed point under the action of κλ on Ni(G, r)in.

1.3. Specific Kappa Operators.
1.3.1. Debes-Fried Kappa Operators. In order to compute the operator κλ,

one selects specific paths for λ, reflects them across the real axis, and rewrites the
result in terms of the original paths. We review the paths used in [DF90] and
the resulting formulae, which were then again applied in [DF94]. Our paths
are morally the same, although we have taken the liberty to write them with
counterclockwise loops, as is standard in this dissertation.

If x ∈ C, let <(x) and =(x) respectively denote its real and imaginary
parts. Let x = (x1, . . . , xr) be a tuple of branch points in P1, defined as a set
over R. Suppose that s of these points are real; we call this an (r, s) branch
point configuration. Order the points so that the real points are first, xs+2t+1

is conjugate to xs+2t+2 with =(xs+2t+1) < 0, and otherwise so that <(xi) ≤
<(xi+1), where ∞ ≤ x for any real x. Select x0 ∈ R so that x0 > <(xi) for all
i. Draw the simplest paths which proceed from x0 to the points in the given
order, as indicated below with four real branchpoints and two pairs of complex
conjugates:



60 IV. REAL POINTS

s��
�� s��

�� s��
�� s��

��
s��

��
s��

��

s��
��

s��
��

ac- - - -

-

-

-

-

R x1 x2 x3 x4

x5

x6

x7

x8

x0

Representative paths for the Debes-Fried Kappa Operator.

Let λ = (λ1, . . . , λr) be the resulting bouquet, which we call a Debes-Fried
bouquet. Reflect these paths across the real axis to compute λ̄. Let ρi =

∏r
j=i λj .

Then

λ̄i =


ρ−1
i+1λ

−1
i ρi+1 if i ≤ s;

ρ−1
i+2λ

−1
i+1ρi+2 if i = s+ 2t+ 1;

ρ−1
i+1λ

−1
i−1ρi+1 if i = s+ 2t+ 2.

Substitute gi for λi to obtain the effect of κλ on the Nielsen tuple g = (g1, . . . , gr).
Operators on Nielsen sets given by this formula, with r branch points of which s
are real, we will call Debes-Fried kappa operators of type (r, s), denoted by κ(r,s).
To give the flavor of the results one can expect from these considerations, we
review an application from [DF94].

Proposition 17. Let ϕ : Y → P1 be a ramified cover which is Galois over
R, all of whose branch points are real, and let G = Mon(ϕ). Then G is generated
by involutions.

Proof. We paraphrase [DF94]. Let g = (g1, . . . , gr) be the branch cycle
description of the cover with respect to a Debes-Fried bouquet and some enu-
meration of the fiber over a basepoint x0, with G = 〈g〉 ≤ Sn. Let c ∈ G be the
complex conjugator, and let κ(r,r)(g) = (ḡ1, . . . , ḡr) = cgc. Set ai =

∏r
j=i+1 gj

for i = 1, . . . , r − 1, so that caic =
∏r
j=i+1 ḡi, and compute that this latter

product is a−1
i . Thus cai has order two, and G = 〈c, ca1, . . . , car−1〉. �

1.3.2. Reflection Kappa Operators. We introduce a simplified formula for
the case of complex conjugate pairs. The bouquet we use can be constructed for
any cover without real branch points. In this case, select x0 ∈ R such that x0

is larger than the maximum real part of one of the branch points, and so that
lines in C passing through x0 intersect at most one branch point. Enumerate the
branch points in decreasing order of the slopes of these lines. Draw paths from
the basepoint along these lines toward the branch points, around and back. Call
the resulting bouquet ω = (ω1, . . . , ωr).
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Assume that the branch points are an algebraic set over R; in this case,
r is even. Then the set of lines described above is invariant under complex
conjugation.
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Representative paths for the Reflection Kappa Operator.
The action of conjugation on the bouquet results in the formula

κω(g1, . . . , gr) = (g−1
r , . . . , g−1

1 ).

Because of the shapes of the paths, we call κω the reflection kappa operator.

1.4. Harbater-Mumford Covers.
1.4.1. Harbater-Mumford Tuples. A Harbater-Mumford tuple is a Nielsen tu-

ple g = (g1, . . . , gr) of even rank such that g2t+1 = g−1
2t ; this definition is from

[Fr95], and is used extensively in [BF02]. A Harbater-Mumford cover is a ram-
ified cover whose branch points are complex conjugate pairs and whose branch
cycle description with respect to a Debes-Fried bouquet is a Harbater-Mumford
tuple. We note that having a given tuple as a branch cycle description with
respect to some bouquet is a braid invariant; thus a Harbater-Mumford com-
ponent of a Hurwitz space is a component which corresponds to the orbit of a
Harbater-Mumford tuple under the braid action. See [Fr95] Section III.F for an
interpretation of these covers in terms of coalescence of the branch points.

This dissertation makes use of the easy combinatorics provided by the shape
of the branch cycle description, and we offer a different geometric interpretation
which reflects our usage.

1.4.2. Superreal Covers. Let ϕ : Y → P1 be a ramified cover. Let A ⊆
(P1 r Bpt(ϕ)), YA = ϕ−1(A), and ϕA = ϕ �A. Then ϕA : YA → A is a topo-
logical cover, perhaps with disconnected covering space. Let ι : A → P1 denote
inclusion. This induces an injective homomorphism ι∗ : Aut(ϕ) → Aut(ϕA).

Consider the case where A is homeomorphic to a circle; for example, perhaps
A represents a classical generator for the cover. Let Zd denote the cyclic group
of order d. Let d1, . . . , dt be the distinct degrees of the components of YA over
A, and let ndi

be the number of components with degree di. Then Aut(ϕA) ∼=
⊕ti=1Zdi o Sndi

.
Assume that ϕ has no real branch points, and specify that A = P1(R) =

R ∪ {∞}. Let YR = ϕ−1(P1(R)) and let ϕR = ϕ �YR . Let ι : YR → Y denote the
inclusion map. In this case, the invariants di and ndi can easily be determined
from the branch cycle description of ϕ with respect to the simple bouquet ω.
The real circle is homotopic to the product of the last r/2 paths; the disjoint
cycle decomposition of this product indicates the effect of lifting the loop given
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by P1(R). Thus the number of components of YR is the number of disjoint cycles,
and the degrees are the lengths of the cycles. If no two components of YR have
the same degree, then Aut(ϕ) is abelian. On the other hand, if ϕ is normal, then
all these degrees are the same, and Aut(ϕR) ∼= Zd o Sn/d.

If ϕ is real, then the map Y 7→ Y η induces an orientation reversing self
homeomorphism of Y , denoted by η̂, which is an automorphism of ϕR. A su-
perreal cover is a real cover ϕ : Y → P1 without real branch points such that
η̂ ∈ ι∗(Aut(ϕ)); conjugation of ϕ produces an automorphism of ϕR.

Proposition 18. Let ϕ : Y → P1 be a ramified cover whose branch points
are pairs of complex conjugates. Let λ be a Debes-Fried bouquet for complex
conjugate pairs, and let g be the branch cycle description of ϕ with respect to λ.
The following are equivalent:

(a) κλ(g) = g;
(b) g is a Harbater-Mumford tuple;
(c) ϕ is a Harbater-Mumford cover.

If additionally ϕ is defined over R, these are equivalent to

(d) ϕ is a superreal cover.

If additionally ϕ is normal and Aut(ϕ) is centerless, or Aut(ϕ) is trivial, these
are equivalent to

(e) every point in YR is real.

Proof. That (a) implies (b) is an inductive calculation, and that (b) im-
plies (a) is substitution. Also (b)⇔ (c) by definition. Note (a) strongly implies
that ϕ is pseudoreal.

Let 〈g〉 = G ≤ Sn be the monodromy group of ϕ, and let c ∈ NSn(G)
be the complex conjugator of ϕ. Now (a) implies that c ∈ CSn(G), which is
identified with Aut(ϕ). Since c determines an automorphism of ϕR, we see that
ϕ is superreal if it is real.

The additional conditions for (e) ensure that c is trivial. �

1.5. Summary of Formulae. Recall the paths γ = (γ∞, γ0, γ1) which
were drawn in chapter II subsection 4.3. These paths are admissible for the
Debes-Fried operator for three real branch points. Set κs = κ(4,s). In the case
of two pairs of complex conjugate branch points, these determine a circle in C,
and we select the basepoint x0 on this circle. Using the product one relation, we
have

κγ(g1, g2, g3) = (g−1
1 , (g−1

2 )g3 , g−1
3 );

κ4(g1, g2, g3, g4) = (g−1
1 , (g−1

2 )g
−1
1 , (g−1

3 )g4 , g4);

κ2(g1, g2, g3, g4) = (g−1
1 , (g−1

2 )g
−1
1 , g−1

4 , g−1
3 );

κ0(g1, g2, g3, g4) = ((g−1
1 )g

−1
2 g−1

1 , (g−1
2 )g

−1
1 , g−1

4 , g−1
3 );

κω(g1, g2, g3, g4) = (g−1
4 , g−1

3 , g−1
2 , g−1

1 ).

2. Beta Operators

2.1. Abstract Kappa Operators.
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2.1.1. Abstract Kappa Operators. We begin this section by generalizing the
idea behind the kappa operators that have been developed. If we replace com-
plex conjugation with any self homeomorphism of P1 which preserves a set of
points, we can again rewrite image paths in terms of the original paths to obtain
operators on Nielsen classes. Behind this is an automorphism of the fundamental
group of P1 minus the branchpoints, which is induced by the homeomorphism.
Thus we may work more generally with such automorphisms.

2.1.2. Fundamental Automorphisms. Let x = (x1, . . . , xr) be a tuple of
points from P1. Set X = P1 r x and let x0 ∈ X. Let Gr = π1(X,x0) and let G
be a group which can be generated by r−1 elements. Let Epi(Gr, G) denote the
set of all epimorphisms from Gr to G. Choose a classical tuple λ = (λ1, . . . , λr)
with respect to (x, x0). This choice induces a function

Ωλ : Epi(Gr, G) → Ni(G, r)in given by f 7→ f(λ).

The fibers of Ωλ consist of epimorphisms which differ by conjugation in Gr.
Now Aut(Gr) acts on the right of Epi(Gr, G) via composition, which induces an
action on Ni(G, r)in, explicitly given by

f(λ)α = f(α(λ)).

Let αλ denote the right operator on Ni(G, r)in induced by α in this way.
Let κ denote the automorphism of Gr induced by complex conjugation,

where x is an appropriate set of points. Then κλ, as previously defined, is equal
to the operator so labeled from this new point of view.

To see how this depends on the choice of λ, recall that any other choice of
classical generators is of the form λQ for some Q ∈ Br. Let g = f(λ). Since (by
definition) braid action commutes with any homomorphism f ∈ Epi(GR, G), we
have

(gQ)αλQ = f(λQ)αλQ = (f ◦ α)(λQ) = f(λ)αλQ = gαλQ.

Thus αλQ = Q−1αλQ.
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2.2. General Beta Operators.
2.2.1. Hurwitz Kernel Generators. Define the following elements of Br:

R1 = Q1 · · ·Qr−2Q
2
r−1Qr−2 · · ·Q1;

R2 = Q2 · · ·Qr−2Q
2
r−1Qr−2 · · ·Q2

1 = Q−1
1 R1Q1;

R3 = Q3 · · ·Qr−2Q
2
r−1Qr−2 · · ·Q2

1Q2 = Q−1
2 R2Q2;

...

Rr = Qr−1Qr−2 · · ·Q2Q
2
1Q2 · · ·Qr−1 = Q−1

r−1Rr−1Qr−1.

Let R = (R1, . . . , Rr). This may be viewed as a “universal Nielsen tuple”, as we
now discuss.

Proposition 19. The elements R1, . . . , Rr generate Nr = ker(Br → Hr).
The braid action of Br on Gr and selection of a classical tuple λ = (λ1, . . . , λr)
induces a surjective homomorphism

ψλ : Nr → Gr given by Ri 7→ λi,

where the braid action of Ri on λ equals the left conjugation action of λi. The
kernel of ψλ is cyclic, generated by

∏r
i=1Ri = (Q1 · · ·Qr−1)±2r, and Nr/〈ΠR〉 ∼=

Gr.

Proof. Recall the shift S = Q1 · · ·Qr−1, and the central element Z =
Sr. The Hurwitz relation is R1, and Nr is its normal closure in Br. Since
{Q1, Q1Q2, . . . , S} generate Br, and {R1, . . . , Rr} is the orbit of R1 under con-
jugation by these generators, these elements generate a normal subgroup, which
is Nr. Compute that

λRi = λiλλ
−1
i (mod Πλ = 1).

Thus the braid action of Nr on Gr induces a surjective homomorphism Nr →
Inn(Gr) given by mapping Ri to left conjugation by λi. This is the opposite
map of the restriction to Nr of the map Br → Aut(Gr) we previously discussed.
Compose this with the inverse of the isomorphism Gr → Inn(Gr), given by that
fact that Gr is centerless, to obtain ψλ.

Let Fr be the free group generated by λ̂1, . . . , λ̂r, with map Fr → Gr given
by λ̂i 7→ λi. The kernel is cyclic, generated by

∏r
i=1 λ̂i. This factors through

ψλ, showing that ker(ψλ) = 〈
∏r
i=1Ri〉. In particular, Nr/〈ΠR〉 ∼= Gr.

This kernel is necessarily a subgroup of Z(Br) = 〈Z〉 = ker(Br → Aut(Gr)),
generated by the lowest power of Z or Z−1 which is in Nr. From subsection
1.4.4, this element is Z2 or Z−2. �

Proposition 20. Let Qi be a standard generator for Br. Then

QiRjQ
−1
i =


RiRi+1R

−1
i if j = i;

Ri if j = i+ 1;
Rj otherwise.
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Proof. By construction, RQi

i = Ri+1, so QiRi+1Q
−1
i = Ri. Now suppose

that j /∈ {i, i+ 1}. Assume j < i; the other case is similar. Compute

RjQi = Qj · · ·Q2
r−1 · · ·Q2

1 · · ·Qj−1Qi

= Qj · · ·Q2
r−1 · · ·QiQi−1Qi · · ·Q2

1 · · ·Qj−1 relation (B1)

= Qj · · ·Q2
r−1 · · ·Qi−1QiQi−1 · · ·Q2

1 · · ·Qj−1 relation (B2)

= Qj · · ·Qi−1QiQi−1 · · ·Q2
r−1 · · ·Q2

1 · · ·Qj−1 relation (B1)

= Qj · · ·QiQi−1Qi · · ·Q2
r−1 · · ·Q2

1 · · ·Qj−1 relation (B2)

= QiRj .

Finally, since Qi commutes with Rj unless j ∈ {i, i+ 1}, we have

RiRi+1R
−1
i = QiQi+1 · · ·Q2

r−1 · · ·Q2
1 · · ·Qi−1Ri+1Q

−1
i−1 · · ·Q

−2
1 · · ·Q−2

r−1 · · ·Q
−1
i

= Qi · · ·Q2
r−1 · · ·QiRi+1Q

−1
i · · ·Q−2

r−1 · · ·Q
−1
i

= Qi · · ·Q2
r−1 · · ·Qi(Q−1

i RiQi)Q−1
i · · ·Q−2

r−1 · · ·Q
−1
i

= QiRiQ
−1
i .

�

2.2.2. Beta Operators. Let G be a group generated by r − 1 elements and
select g ∈ Ni(G, r)to. Let f(λ,g) : Gr → G be given by λ 7→ g. Let ψg : Nr → G
be given by ψg = f(λ,g) ◦ ψλ; that is, by Ri 7→ gi. We note that the dependence
on λ is now extraneous, since we have seen that Nr/〈ΠR〉 ∼= Gr, and its necessity
as a connection to braiding disappears if G is centerless; in that case, ψg(Ri) = gi
is the unique element of G whose conjugation action equals the braiding action
of Ri.

Let β ∈ Aut(Nr)opp, and define the right action of β on Ni(G, r)to by

gβ = ψg(Rβ1 , . . . , R
β
r ).

By Proposition 20, if β is left conjugation by Q ∈ Br on Nr, then the above
action gives gβ = gQ. Thus this naturally extends the braid action. If we take
β to be an inner automorphism of Nr, given as left conjugation by R, then the
effect on tuples is that of conjugation by ψg(R).

Let β ∈ Aut(Nr). Also denote by β the induced map

β : Ni(G, r)in → Ni(G, r)in;

this is what we refer to as a beta operator.
Let α be a self homeomorphism of P1 which stabilizes a set {x1, . . . , xr}

and fixes ∞. Let x = (x1, . . . , xr) and use x as a basepoint for Ur. Then α
induces an self homeomorphism of Ur, which in turn induces an automorphism
of Hr = π1(Ur,x) which lifts to an automorphism β ∈ Aut(Br). This β stabilizes
Nr, and is a candidate for a beta operator.

2.2.3. Conjugation Beta Operators. Let x1, . . . , xr ∈ R with x1 < · · · < xr.
Let Q1, . . . , Qr−1 denote the standard generators for the braid group, as outlined
in chapter II. The image of Qi is a circle whose center is on the real line. Then
complex conjugation induces an automorphism of Br = π1(Or,x) given by this
effect on the generators:

β : (Q1, . . . , Qr−1) 7→ (Q−1
1 , . . . , Q−1

r−1).
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2.3. Specific Beta Operators.
2.3.1. Focus on r = 4. We intend to compute the complex conjugation op-

erator given in the above manner for the case r = 4. In this case, our generators
for Nr are

R1 = Q1Q2Q3Q3Q2Q1;
R2 = Q2Q3Q3Q2Q1Q1;
R3 = Q3Q3Q2Q1Q1Q2;
R4 = Q3Q2Q1Q1Q2Q3.

2.3.2. Conjugation Beta Operator. Let x1, x2, x3, x4 ∈ R with x1 < x2 <
x3 < x4. Let Q1, Q2, and Q3 denote the standard generators for the braid
group, as outlined in chapter II.

Proposition 21. Let β : Ni(G, r)in → Ni(G, r)in denote the beta operator
induced by

(Q1, Q2, Q3) 7→ (Q−1
1 , Q−1

2 , Q−1
3 ).

Let κ4 : Ni(G, r)in → Ni(G, r)in be the Debes-Fried kappa operator for four real
branch points. Then

gβ = gκ4 for every g ∈ Ni(G, r)in.

Proof. It suffices to check this on R. We have Rκ4 = (R−1
1 , (R−1

2 )R
−1
1 , (R−1

3 )R4 , R−1
4 ).

Clearly Rβ1 = R−1
1 and Rβ4 = R−1

4 . Proposition 20 implies that

Rβ2 = Q−1
2 Q−1

3 Q−1
3 Q−1

2 Q−1
1 Q−1

1 = Q2
1R

−1
2 Q−2

1 = Q1R
−1
1 Q−1

1 = R1R
−1
2 R−1

1 ;

Rβ3 = Q−1
3 Q−1

3 Q−1
2 Q−1

1 Q−1
1 Q−1

2 = Q−2
3 R−1

3 Q2
3 = Q−1

3 R−1
4 Q3 = R−1

4 R−1
3 R4.

�

3. Real Points on Hurwitz Spaces

3.1. Real Components on Hurwitz Spaces.
3.1.1. Real Components of the Configuration Space. Let Sn denote the unit

sphere in Rn, and let Tn = ×ni=1S1 be the n dimensional torus. These are smooth
manifolds. Identify S1 with real projective one space, P1(R) = R ∪ {∞}.

The set of real points in Ur, denoted Ur(R), may be viewed as the configu-
ration space Cr(S1), which is a connected space homeomorphic to Tr r ∆r(S1).

The set of real points of Ur, denoted Ur(R), consists of one component for
each possible configuration of the branch points. The number of components is
r
2 +1 if r is even, and r+1

2 if r is odd. Let R(r,s) denote the component of Ur(R)
whose points correspond to subsets of P1 containing r points, of which s are real.
Then R(r,s) is homeomorphic to Cs(S1)× C(r−s)/2(H).

Let x = (x1, . . . , xr) be a tuple of points from P1 such that x ∈ R(r,s). The
inclusion R(r,s) ↪→ Ur induces a group homomorphism π1(R(r,s),x) → π1(Ur,x),
where the range is the Hurwitz monodromy group Hr; let H(r,s) denote the
image. The components of the preimage of R(r,s) in a Hurwitz space H(G,C)in

correspond to the orbits of H(r,s) on Ni(G,C)in. With r = 4, appropriate choices
produce H(4,4) = 〈Q1Q2Q3〉 and H(4,0) = 〈Q1Q

−1
3 〉.
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3.1.2. Real Components of the Hurwitz Space. Let H = H(G,C)in be an in-
ner Hurwitz space, with branch point map Φ : H → Ur defined over R. Complex
conjugation acts on this cover via an embedding of H into projective space such
that [ϕ] 7→ [ϕη], where [ϕ] denotes the point on H corresponding to the cover ϕ.
Thus [ϕ] is real point on H if and only if ϕ is equivalent to ϕη.

Let UR = Ur(R), HR = Φ−1(UR), and ΦR = Φ �HR . The κ operator acts
locally to ensure that each component of HR is of one of three types:

(a) the component is defined over R, all points in the component are defined
over R;

(b) the component is defined over R, but no point in the component is
defined over R;

(c) the component is a complex conjugate of another component.
Consider case (a). Our production of the complex conjugator c depended not
only on λ but also on an enumeration of the fiber. Since we can continue an
fiber enumeration along a path in UR, we see that we can choose c to be constant
on any component defined over R. If G is centerless, c is uniquely determined
from its action on a given g. We consider how c depends on a representative. In
a manner similar to braiding, the κ operator commutes with conjugation inside
G. If κλ(g) = gc, then κλ(gx) = κλ(g)x = gcx = gxc

x

. Thus the conjugacy
class of c is well-defined, and it becomes an invariant of the real component.

3.1.3. Real Tuples of Conjugacy Classes. LetG ≤ Sn and let C = (C1, . . . , Cn)
be a tuple of conjugacy classes from G. Set C−1 = (C−1

1 , . . . , C−1
n ). We call C

a real tuple of conjugacy classes if C−1 ∼ C.
Complex conjugation of a loop causes its winding number around a real

point to be negated. If λ is a classical loop around x ∈ R, λ̄−1 is also. Thus the
action of a kappa operator on the Nielsen set Ni(G, r)to restricts to an action on
Ni(G,C)to if and only if C is a real tuple. The following is implied by [Fr95]
Lemma C.1.

Theorem 22. Let G ≤ Sn and let C be a tuple of conjugacy classes from G.
Then H(G,C)in is defined over R if and only if C is a real tuple of conjugacy
classes.
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3.2. Real Points on Reduced Hurwitz Spaces.
3.2.1. Cover Points and Brauer Points. Let G be a centerless group. Then,

every point on an inner Hurwitz space for G produces a static cover defined over
the minimum field of definition for the point. This is no longer the case for
reduced inner Hurwitz spaces.

Let p ∈ H(G, r)in,rd, and let K be its minimum field of definition. We say
that p is a K-cover point if p is represented by a cover ϕ : Y → P1 which is
Galois over K. Otherwise, p is a K-Brauer point. See [BF02] section 4.4 for an
in-depth discussion of this.

Consider the case K = R and r = 4. The action of a κ operator on an inner
Nielsen class is well-defined modulo reduction. This is because if α(z) = az+b

cz+d

is a linear fractional transformation, then ᾱ(z) = āz+b̄
c̄z+d̄

is also. Thus if ϕ and ψ

are weakly equivalent covers with αϕ = ψ, then ψ̄ = αϕ = ᾱϕ̄. Moreover, the
setwise stabilizer in PSL2(C) of a set of four points defined over R is actually in
PSL2(R), so if one cover with these branch points is defined over R, then so are
its reduced equivalent covers with the same branch points.

The point p corresponds to a reduced inner Nielsen tuple g, which is a set
of inner Nielsen tuples. The κ operator on Ni(G, r)in may permute the points
within the set without fixed points, while leaving the set fixed. If this is the
case, then p is defined over R, and so it is a R-Brauer point. It is the action of
κ on reduced inner Nielsen classes that discovers the real points on the reduced
Hurwitz space. For such a point, it the action of κ on inner tuples inside a
reduced inner tuple which detects whether it is a cover or a Brauer point; it
either acts trivially, or it acts without fixed points.

3.2.2. Cover Intervals. Each cover with four branch points produces a point
on j ∈ J4 which is the PSL2(C) equivalence class of the branch points. If the
cover is defined over R, the configuration of the branch points tells us something
about the j value. The following is [BF02] Lemma 6.5.

Proposition 23. Let ϕ : X → P1
z is a four branch point cover over R with

either 0 or 4 real branch points. Then, the corresponding j value is in the interval
(1,+∞) along the real line.

If ϕ has, instead, two complex conjugate and two real branch points, then
the corresponding j value is in the interval (−∞, 1).

Proof. Recall the cross ratio of distinct points z1, . . . , z4: λz = (z1−z3)(z2−z4)
(z2−z3)(z1−z4)

(see [Ah79] page 79). Four points in complex conjugate pairs (or on the real
line) lie on a circle and the cross ratio is real. The cross-ratio is invariant under
a transform of the points z by α ∈ PSL2(Z). Since there is an α ∈ PSL2(C)
that takes two complex conjugate pairs of points to four real points, with no loss
assume z has either two or four real points in its support. For these cases apply
β ∈ PSL2(R) to assume 0 = z1 and ∞ = z2. Then, λz = z4

z3
.

In the former case λz runs over the unit circle (excluding 1) and in the latter
case over all real numbers (excluding 0, 1 and ∞). The jz value corresponding
to λz is j(λ) = 4

27
(1−λz+λ2

z)3

λ2
z(1−λz)2) .

For λz ∈ R \ {0, 1} the connected range of jz includes large positive values
and is bounded away from 0. So the range of jz for real λz is (1,∞). For
λz = e2πiθ = λ(θ) in the unit circle (minus 1), the range of jz includes both
sides of 0. Also, for θ close to 1, the numerator of jz is positive and bounded,
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while the denominator is approximately (iθ)2. Therefore the range is the interval
(−∞, 1). �

3.2.3. Reduction of κ Operators. Let G be a centerless group and let C be
a real tuple of conjugacy classes of G. We relate the effects of various kappa
operators on Ni(G,C)in, to see their effect on Ni(G,C)in,rd. It convenient and
harmless to assume that the kappa operators act from the right.

Proposition 24. Let g ∈ Ni(G,C)in. Let α = (Q1Q2Q3)2 and β = Q1Q
−1
3

be generators for the reduction kernel. Then gκωαβ = gκ4, so κω = κ4 on
reduced Nielsen classes.

Proof. Compute:

gκωαβ = (g1, g2, g3, g4)κω(Q1Q2Q3)2(Q1Q
−1
3 )

= (g−1
4 , g−1

3 , g−1
2 , g−1

1 )(Q1Q2Q3)2(Q1Q
−1
3 )

= ((g−1
3 )g4 , (g−1

2 )g4 , (g−1
1 )g4 , (g−1

4 )g4)(Q1Q2Q3)(Q1Q
−1
3 )

= ((g−1
2 )g3g4 , (g−1

1 )g3g4 , (g−1
4 )g3g4 , (g−1

3 )g3g4)(Q1Q
−1
3 )

= ((g−1
1 )g2g3g4 , (g−1

2 )g3g4 , (g−1
3 )g3g4 , (g−1

4 )g
−1
3 g3g4)

= ((g−1
1 ), (g−1

2 )g3g4 , (g−1
3 )g4 , (g−1

4 ))

= (g1, g2, g3, g4)κ4

= gκ4.

Thus κω and κ4 are equal on the reduced Nielsen class. �

The above computation was inspired by a geometric picture. Let z =
(z1, z2, z3, z4) arranged clockwise along a circle, with z1 conjugate to z4, z2 con-
jugate to z3, and z1, z2 in the lower half plane, as in the picture describing κω.
Let x = (x1, x2, x3, x4) as in the picture of κ4. Let α ∈ PSL(C) be such that
α(z) = x ⊆ R preserving order, so the α(zi) = xi for i = 1, 2, 3, 4. Then α
maps the circle inscribed by z to the real line. Since α does not fix the real line
(setwise), it is not defined over R, so if ϕ is a ramified over z and defined over
R, then α(ϕ) is not defined over R. However, the paths chosen for the operator
κω map to paths admissible for the operator κ4, which shows geometrically why
these operators are equal on the reduced Nielsen class.

Let λ = (λ1, λ2, λ3, λ4) be a bouquet admissible for κ0. Rewrite the paths
in the bouquet ω in terms of the paths in λ; one sees that up to homotopy we
have

(λ1, λ2, λ3, λ4) = (ω1ω2ω
−1
1 , ω1ω3ω

−1
1 , ω1, ω4).

Find a braid that takes one bouquet to the other:

ωQ1Q2 = (ω1ω2ω
−1
1 , ω1ω3ω

−1
1 , ω1, ω4) = (λ1, λ2, λ3, λ4) = λ.

Therefore,

gκ0 = gQ−1
2 Q−1

1 κωQ1Q2.

We now consider the practical implications of these considerations.
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3.2.4. Computational Implications. Enumerate the elements of Ni(G,C)in,rd,
and compute the action of M̄4 on this set to obtain the monodromy group
M ≤ Sn (where n = |Ni(G,C)in,rd|) of the cover H(G,C)in,rd → J4 with
respect to some basepoint j0 ∈ (1,∞). According to Proposition 23, the real
points in the fiber over j0 are fixed points of the action of a kappa operator
for configurations of either 4 real branchpoints or 2 pairs of complex conjugate
branchpoints.

These kappa operators act directly on the Nielsen class to produce elements
in NSn

(M), and they reflect the action of complex conjugation on the cover H →
J4, which is defined over R by Theorem 22. Therefore, there exists c ∈ NSn

(M)
which reflects the action of complex conjugation on the fiber over the basepoint.
Let γ = (γ0, γ1, γ∞) denote the images of these paths in M . Then

γc = (γ−1
∞ , (γ−1

0 )γ1 , γ1).

Such a c with this effect is unique up to multiplication by an element of CSn
(M);

note that every outer automorphism of G produces such an element.
Assume that K4 = ker(M4 → M4) acts faithfully on Ni(G,C)in. Every

point in the fiber over j0 is represented by two inner classes of covers with four
real branchpoints (related by (Q1Q2Q3)2) and two inner classes of covers with
no real branchpoints (related by (Q1Q

−1
3 )). These points correspond to integers

in the enumeration only by attaching the same bouquet to every element in the
inner Nielsen class (for some configuration of points mapping to j0), and taking
the corresponding cover, and reducing. Each bouquet produces a different κ
operator, which we also view as elements of NSn(M). We ask which bouquet λ
produces a kappa operation κ = κλ such that γκ = γc.

Proposition 25. Let c be the image of κ4 in NSn
(M). Then

γc = (γ−1
∞ , (γ−1

0 )γ1 , γ1).

Proof. It suffices to show that if β is the beta operator induced by complex
conjugation as in Proposition 21, then β has the desired effect. Let qi and γj
also denote their images in M . Then

γβ = (qβ2 , (q1q2)
βγ−2

1 , (q1q2q1)β)

= (q−1
2 , q−1

1 q−1
2 q−1

1 (q−1
2 q−1

1 )q−1
1 q−1

2 q−1
1 , q−1

1 q−1
2 q−1

1 )

= (γ−1
∞ , (γ−1

0 )γ1 , γ1).

�

Thus the complex conjugator equivalent to κγ is given by the action of κ4

on the Nielsen class. However, our preferred operator for the detection of real
points will be κ0, because of its relation to Harbater-Mumford tuples. These are
now related.

Let q = q1q2 = γ0 be the image of this braid in M . Let κ4, κ0, and κω

denote the images in M . Then κ4 = κω = κq0. In particular, let Fκ be the set of
integers fixed by an operator κ. Then F qκ0

= Fκ4 .
3.2.5. Following. Let H be the closure of a component of a reduced inner

Hurwitz space, with ramified cover H → P1
j . Select a basepoint j0 ∈ (1,∞), and

let y ∈ H be a point over j0. For x = 1 or x = ∞, let δx,y denote the cycle of γx
which involves y.
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Proposition 26. Let y be a real point over j0. If ord(δx,y) = 2n, then yγnx
is also real.

Proof. Let c be the complex conjugator for H → P1
j . Let ord(δyx) = 2n.

Since y is real, it is a fixed point of c, so δcx,y = δ−1
x,y, and the unique other point

involved in δx,y which is fixed by c is yδnx,y. �

There is a geometric interpretation of this. Starting at y, move along the
preimage of the closed interval [1,∞] in H towards the ramification point over 1.
If this point is ramified, continue through the shift node and back towards the
fiber over ∞. Alternately and repeatedly apply γ1 and γ∞ to the appropriate
orders, until either one of the nodes does not have even order, or y is again
achieved. If all nodes have even order, this produces a real component of kH.

On the other hand, if one of the nodes of γ1 or γ∞ involving a real point does
not have even order, this process discovers real points over the interval (−∞, 1).

4. Harbater-Mumford Fibers

4.1. The Case r = 4 and p = 2.
4.1.1. The Case r = 4. We focus for the rest of the paper on the case r = 4.

Here, the reduced Hurwitz spaces are quotients of the upper half plane covering
the j-line.

4.1.2. The Case p = 2. The case p = 2 presents a special situation for a
Modular Tower, given by the following.

Proposition 27. Let MTp(G,C)in be an inner Modular Tower with cen-
terless groups of even order and p = 2. Let Φk : Hk+1 → Hk denote the map of
the inner Hurwitz spaces between the indicated levels. Let [ψ] ∈ Hk+1(R). Then
Bpt(ψ) * R. If Bpt(ψ) ∩ R = ∅, then Φk([ψ]) is a Harbater-Mumford cover.

Proof. Since G is centerless and ψ is a static cover, it is defined over R.
All involutions of Gk+1 are in the Frattini subgroup, so the branch points of ψ
cannot be contained in R by Proposition 17.

Let fk : Gk+1 → Gk be the universal elementary 2-Frattini cover. Let h be
a branch cycle description for ψ with respect to a bouquet λ which is admissible
for κ(r,0). Then g = fk(h) is a branch cycle description for ϕ with respect to
λ, where [ϕ] = Φk([ψ]). Then there exists c ∈ Gk+1 such that κλ(h) = hc.
Since Gk+1 is centerless, c is an involution, so c ∈ ker(fk). Clearly fk(κλ(h)) =
κλ(fk(h)); therefore κλ(g) = g. �

This shows that the real points on level k+1 of an inner Modular Tower with
p = 2 lie over points on level k given by Harbater-Mumford covers. We call points
given by Harbater-Mumford covers Harbater-Mumford points. Since Harbater-
Mumford tuples always lift to the next level, projective systems of real points
on a Modular Tower with p = 2 are exactly those given by Harbater-Mumford
points.

4.2. Duals and Perturbations.
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4.2.1. Setup. Let f : H → G be a Frattini cover between centerless groups
with characteristic elementary 2-group kernel K. Let C be a tuple of conjugacy
classes in G whose elements have odd order. Our goal is to understand the
cover H(H,C)in,rd → H(G,C)in,rd. To do this, we first analyze the fiber over a
Harbater-Mumford tuple. It clarifies notation in what follows if we sometimes
denote the identity of K by e.

4.2.2. Complements. Application of Proposition 4 requires finding a com-
plement for the centralizer in K of an element h ∈ H. We can do this explicitly,
as follows.

Proposition 28. Let H be a finite group with a normal abelian subgroup
K. Let h ∈ H and set V = {a−1ah | a ∈ K} ∪ {1}. Then

(a) V = [K,h] ≤ K;
(b) K = CM (h)⊕ V .

Proof. Let a ∈ K; then ah ∈ K, so V ⊆ K. The elements of V are
commutators: [a, h] = a−1ah. Clearly 1 ∈ V . Let a1, a2 ∈ A. Since K is
abelian, a−1

1 ah1a
−1
2 ah2 = (a1a2)−1(a1a2)h ∈ V , so this is indeed a subgroup of

K. Moreover, this shows that the map K → V given by a 7→ a−1ah is a group
homomorphism. The kernel is exactly CM (h), producing the splitting in (b). �

4.2.3. Duals. Let g = (g1, g−1
1 , g2, g

−1
2 ) ∈ Ni(G,C)to be a Harbater-Mumford

tuple, and let h = (h1, h
−1
1 , h2, h

−1
2 ) ∈ Ni(H,C)to be a Harbater-Mumford tuple

over g, that is, f(h) = g. Let w ∈ K. The dual of h with respect to w is

h[e|w] = (h1, h
−1
1 , hw2 , (h

−1
2 )w).

This is another Harbater-Mumford tuple in the fiber of g. If w ∈ CK(h2), then
h[e|w] = h.

Suppose that w1 and w2 are in different cosets of CK(h2) in K, but that
h[e|w1] = h[e|w2] in the inner Nielsen class. Then there exists c ∈ CK(g1) such
that w2 = w1c and w1w2c ∈ CK(g2). Since H is centerless, generated by h1 and
h2, we have CK(g1)∩Ck(g2) = {1}. If W is a complement for CK(g1)⊕CK(g2)
in K, then h[e|W ] = {h[e|w] | w ∈W} is the complete set of duals of h. We have
|h[e|W ]| = |K|

|CK(g1)||CK(g2)| .
4.2.4. Perturbations. Let a ∈ K. Then h−1

2 h1(h−1
1 )a lies over g2, so there

exists b ∈ K such that h1(h−1
1 )ahb2h

−1
2 = 1. The perturbation of h with respect

to a is
h[a|e] = (h1, (h−1

1 )a, hb2, h
−1
2 ).

Say that b fulfills a. Clearly we can restrict a to a complement V of CK(g1) in K,
in which case b is determined up to an element of CV (g2). Then h[V |e] = {h[a|e] |
a ∈ V } is the complete set of perturbations of h, with |h|[V |e] = [K : CK(g1)].

The perturbation with respect to a is homogeneous if a fulfills a. This occurs
exactly when a centralizes the middle product:

h1(h−1
1 )aha2h

−1
2 = 1 ⇔ (h−1

1 h2)a = h−1
1 h2.

4.2.5. Description of the Fiber. Let a,w ∈ K, and set

h[a|w] = (h1, (h−1
1 )a, hbw2 , (h−1

2 )w),

where b fulfills a. Let W be a complement of CK(g1)⊕ CK(g2) in K, and let V
be a complement of CK(g1) in K.
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Proposition 29. The fiber over g in Ni(H,C)in is

h[V |W ] = {h[a|w] | a ∈ V,w ∈W}.

Proof. First note that the perturbations of distinct Harbater-Mumford tu-
ples are nonoverlapping, so the perturbations of the duals are all distinct mem-
bers of Ni(H,C)in. Thus

|h[V |W ]| = |K|2

|CK(g1)|2|CK(g2)|
.

By Proposition 10, this is largest possible size of the entire fiber. �

4.2.6. Real Points in the Fiber. Henceforth, we take the real points on the
reduced Hurwitz space to be those corresponding to Nielsen tuples which are
fixed by the κ0 operator.

Proposition 30. Let h[a|e] = (h1, (h−1
1 )a, hb2, h

−1
2 ) be a perturbation of a

Harbater-Mumford tuple. Then h[a|e] produces a real point on the inner Hurwitz
space if and only if

∃c ∈ CK(g1) | cabh
−1
2 ∈ CK(g2).

Proof. Note that hb2(h
−1
2 ) = bbh

−1
2 . Compute modulo inner equivalence

h[a|e]κ0 = (habb
h
−1
2

1 , (h−1
1 )bb

h
−1
2 , h2, (h−1

2 )b)

= (h1, (h−1
1 )a, habb

h
−1
2

2 , (h−1
2 )ab

h
−1
2 ).

The result follows. �





CHAPTER V

Nielsen Graphs

1. Twist Graphs

1.1. Motivation. Let ψ• : Z•
ξ•→ P1

y
ϕ•→ P1

x be a factored ramified cover of
compact Riemann surfaces. Let x = (x1, . . . , xr) be the branch points of ψ•; the
branch points of ϕ• are among these. Remove the branch points and the fibers
over them to obtain a factored topological cover ψ : Z

ξ→ Y
ϕ→ X. Let x0 ∈ X

and let λ be a bouquet on X based at x0 with respect to x.
In the case that the genus of Y is zero, we would like to compute a branch

cycle description for ξ, given branch cycle descriptions for ψ and ϕ with respect
to λ. We need a tuple of classical generators on Y with respect to which this
branch cycle description will be given. Computing this will not yet depend on
ψ, but only on ϕ. Let g = (g1, . . . , gr) be a branch cycle description for ϕ with
respect to λ.

Let y1, . . . , ym be the fiber over x0. Select a basepoint, which we may as
well call y1, over x0. For each point y ∈ (ϕ•)−1(x), we obtain a loop in Y based
at y1 around y as follows. The point y is in the fiber over xi for some i, and
corresponds to one of the disjoint cycles of gi. Let d be the order of this cycle,
and select an integer j in the support of this cycle. Then λdi lifts to a loop at yj .
Since π1(X,x0) acts transitively on the fiber over x0, we may find an element
αj ∈ π1(X,x0), written as a product of λ’s, such that αj lifted to y1 ends at yj .
Then βj = αjλ

d
iα

−1
j is an element of π1(X,x0) which stabilizes y1, so it lifts to

a loop at y1 which proceeds towards y, goes around it, and returns to y1.
Lifting these β’s to Y gives a candidate for a bouquet on Y . Indeed, one

may use these β’s to find the shape of the branch cycle description for the cover
ξ. However, there is no guarantee that the paths in Y do not cross, so we do not
yet have a bouquet or a legitimate branch cycle description for ξ. To alleviate
the situation, we need to further control the paths αj so that we are certain the
corresponding βj ’s proceed from y1 in the correct order. To do this, use a special
type of graph which tracks the relative order of the edges at a vertex.

We begin by introducing much terminology with respect to graphs. We have
tried to make most of this standard, as put forth in [Tr93], although there are
some minor adjustments made for our purposes. “Twist graph” and “Nielsen
graph” are our terms; a similar concepts of “fat graphs” was later found in
[MP93]. Our usage of Nielsen graphs at level zero is similar to “dessins”, as we
found described in [CG95], which points to further literature.

1.2. Graphs. A graph (V,E) consists of a finite set V together with a
subset of the power set of V , E ⊂ P(V ), such that e ∈ E ⇒ |e| = 2. The
elements of V are called vertices and the elements of E are called edges. For

75
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v ∈ V , let V (v) = {w ∈ V | {v, w} ∈ E} and E(v) = {e ∈ V | v ∈ e}. There
is an obvious bijective correspondence between V (v) and E(v). If w ∈ V (v), we
say that v is adjacent is w. If v ∈ e, we say that e involves v. The degree of a
vertex v, denoted d(v), is |V (v)|.

Let (V1, E1) and (V2, E2) be graphs. A morphism from (V1, E1) to (V2, E2)
is a function

f : V1 → V2 such that {v, w} ∈ E1 ⇒ {f(v), f(w)} ∈ E2.

This produces the category of graphs, and defines the notion of equivalence of
graphs as isomorphism in this category.

A subgraph (V0, E0) of a graph (V,E) consists of a subsets V0 ⊂ V and E0 ⊂
E such that {v, w} ∈ E0 ⇒ v, w ∈ V0. In this case we write (V0, E0) ≤ (V,E).
If (V1, E1) and (V2, E2) are subgraphs of (V,E), say that (V1, E1) ≤ (V2, E2) if
V1 ⊂ V2 and E1 ⊂ E2; that is, if (V2, E2) is a subgraph of (V1, E1). This places
a partial ordering on the collection of subgraphs of a given graph.

Let (V,E) be a graph and construct a topological space CW(V,E) as follows.
For each edge e ∈ E, let Ie = [0, 1] be a copy of the closed unit interval and
let σe : ∂Ie → e be injective. Set U =

∐
e∈E Ie and collect the σe’s together to

produce a function σ : ∂U → V . Then CW(V,E) is the fiber coproduct of σ and
the inclusion ι : ∂U → U :

∂U
ι−−−−→ U

σ

y yωE

V −−−−→
ωV

CW(V,E)

If (V0, E0) ≤ (V,E), then CW(V0, E0) is naturally a subspace of CW(V,E).
A drawing of a graph (V,E) on a smooth manifold X is a continuous function

f : CW(V,E) → X such that

(a) for v ∈ V and x ∈ CW(V,E), f(x) = f(ωV (v)) ⇒ x = ωV (v);
(b) for t1, t2 ∈ Ie, f(t1) = f(t2) ⇒ t1 = t2;
(c) the composition f ◦ ωE : U → X is smooth on the interior of U .

A drawing of (V,E) induces a drawing of any subgraph of (V,E). Any graph can
be drawn on any Riemann surface by selecting the image of the vertex set and
selecting paths according to the edges. In particular, any graph can be drawn
on C.

A drawing is an embedding if it is injective. A graph is planar if it can be
embedded in C. This is equivalent to the ability to embed the graph in P1. Every
graph can be embedded in some compact Riemann surface; we briefly describe
why. First draw the graph on P1. There will be a finite number of points of
intersection of the edges. For each intersection, attach a tubular handle to act
as a bridge and remove the point of intersection. This increases the genus by 1
for every point of intersection eliminated from the drawing.

The genus of a graph is the minimum genus of a compact Riemann surface
in which the graph can be embedded. We point out that any embedding can
be “extended” to an embedding into a manifold of arbitrarily higher genus by
attaching handles along the boundaries of disks which avoid the image of the
graph (see [Tr93] chapter 7).
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An embedding of a graph into a Riemann surface X induces, for each v ∈ V ,
a cyclic permutation of V (v) as follows. Select a smooth loop λ around a vertex
which intersects every edge attached to that vertex exactly once, and intersects
no vertices or other edges. Construct a cyclical ordering of the edges attached
to v by following λ in a clockwise direction. This produces a transitive (cyclic)
permutation of V (v) which is independent of λ and dependent only on the isotopy
class of the embedding.

1.3. Walks and Trees. A walk in a graph (V,E) is a finite sequence of
vertices (v0, . . . , vn) with n ≥ 1 such that {vi, vi+1} ∈ E for i ∈ {0, . . . , n − 1};
pairs of consecutive vertices in a walk are called the edges of the walk. The
number n is called the length of the walk. We call v0 the initial vertex and vn
the terminal vertex of the walk. Similarly, {v0, v1} and {vn−1, vn} are the initial
and terminal edges. The graph is connected if for every v1, v2 ∈ V there exists a
walk in V whose initial vertex is v1 and whose terminal vertex is v2.

A subwalk of a walk (v0, . . . , vn) is a walk of the form (v0, . . . , vm), with
m ≤ n. A corner is a walk of length 2. A trail is a walk with distinct edges.
A simple trail is a walk with distinct vertices except possibly at the initial and
terminal positions. A circuit is a walk whose initial vertex equals its terminal
vertex. A cycle is a simple trail which is a circuit.

A tree is a connected graph which does not admit a circuit. Note that every
trail in a tree is simple. Given two vertices in a tree, there is exactly one trail
from one to the other. A subtree is a subgraph which is a tree. In the partial
ordering of subgraphs, a maximal subtree is precisely a subtree which contains
all vertices.

A root in a graph is a specified vertex, and a rooted graph (V,E, v) is a
connected graph (V,E) together with a root v. A rooted walk in (V,E, v) is a
walk whose initial vertex is v. In a rooted tree, there is a unique rooted trail
terminating at every vertex other than the root.

A bush is a rooted tree (V,E, v) such that v ∈ e for every e ∈ E. Given
a rooted graph (V,E, v), obtain the corresponding rooted bush (V,E(v), v) by
setting

E(v) = {{v, w} | w ∈ V r {v}}.
We move towards setting up an induction which converts an embedded tree into
the corresponding embedded bush with special homotopy properties.

Let (V,E, v) be a rooted tree and let w ∈ V r {v}. We construct a new
rooted tree (V,E(w), v) whose vertex set is V such that w has a unique adjacent
vertex. Let {w1, w} be the terminal edge of the unique trail in V from v to w.
Note that since V is a tree, there are no edges in E between distinct elements of
V (w). Set

E(w) = (E r {{w,w2} | w2 ∈ V (w) r {w1}}) ∪ {{w1, w2} | w2 ∈ V (w) r {w1}}.

Repeating this process for every vertex other than the root leads to a bush.

1.4. Twist Graphs. A twist structure on a graph (V,E) is a function δ :
V → Sym(V ) such that δ(v) is an element of order d(v) which fixes every point
of V r V (v); that is, δ(v) is a cycle which acts transitively on V (v). We may
write δv instead of δ(v).
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A twist graph (V,E, δ) is a graph (V,E) together with a twist structure δ on
(V,E).

Let (V,E, δ) and (W,F, ε) be twist graphs. A morphism from (V,E, δ) to
(W,F, ε) is a graph morphism f : V →W together with a group homomorphism
f∗ : δ(V ) → ε(W ) such that ε ◦ f = f∗ ◦ δ. This produces the category of twist
graphs and defines equivalence in this category.

Let c = (v0, v1, v2) be a corner in a twist graph. The twist of c, denoted τ(c),
is defined to be the minimum positive integer t such that δtv1(v0) = v2. Note
that τ(v0, v1, v0) = d(v1).

Let c1 and c2 be two corners in a twist graph with the same initial edge.
We say that c1 ≤ c2 if τ(c1) ≤ τ(c2). This puts a partial ordering on the set of
corners of a twist graph.

Let W1 = (v0, . . . , vn) and W2 = (w0, . . . , wm) be two walks in a twist graph
with the same initial edge. We say that W1 ≤W2 if W2 is a subwalk of W1, or if
τ(vj−1, vj , vj+1) ≤ τ(wj−1, wj , wj+1), where vi = wi for i ≤ j and vj+1 6= wj+1.
This imposes a partial ordering on walks in a twist graph. In a graph with at
least one edge, walks can always be made longer, so there are no minimal walks.

A drawing of a graph (V,E) on a Riemann surface induces a unique twist
structure δ on the graph; the vertices adjacent to a given vertex v are permuted
by δv in the order they emerge from v. Refer to this as the twist structure
induced by the drawing.

A twist drawing of a twist graph (V,E, δ) is a drawing of the twist graph on a
Riemann surface such that the twist structure is induced by the drawing. A twist
drawing of any twist graph exists on any Riemann surface. A twist embedding
of a twist graph (V,E, δ) is a twist drawing which is an embedding. Every twist
graph has a twist embedding; this can be seen by taking a twist drawing and
resolving the intersections as we have previously discussed. The twist genus of
a twist graph is the minimum genus of a compact Riemann surface into which
a twist embedding exists. Clearly this is greater than or equal to the genus of
the underlying graph. A twist graph is contrived if the twist genus is greater
than the genus, and a twist embedding is contrived if the genus of the image is
greater than the genus of the graph.

1.5. Rooted Twist Graphs. A root (v, e) for a twist graph (V,E, δ) con-
sists of a vertex v ∈ V and an edge e ∈ E with v ∈ e. A rooted twist graph
(V,E, δ, v, e) is a connected twist graph (V,E, δ) together with a choice of root
(v, e). We call v the root vertex and e the root edge. Rooted subgraphs of a rooted
twist graph contain the edge e.

Let (V,E, δ, v, e) be a rooted twist graph. We extend the partial order on
walks initiating at v as follows. Let e = {v, w}. Let W1 = (v0, . . . , vn) and
W2 = (w0, . . . , wm) be walks in V with v0 = w0 = v but v1 6= w1. Declare
W1 ≤W2 if τ(w, v, v1) ≤ τ(w, v, w1). In this way we obtain a linear ordering on
the set of walks in V initiating at v.

Let (V, F, v) be a maximal rooted subtree of a rooted twist graph (V,E, δ, v, e),
with e = {v, w}. Distinct rooted trails in (V, F, v) terminate in distinct vertices,
so the linear ordering on these trails produces a linear ordering on V r {v}.
This in turn induces a twist structure δ(v) on the rooted bush (V,E(v), v); the
permutation attached to v cycles the adjacent vertices according to the above
linear ordering. Now w is the maximum vertex in this order, and the trails
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in (V,E(v), δ(v), v, e) are linearly ordered, correspond to the trails in (V, F, v)
according to the terminal vertex, and this correspondence preserves the linear
ordering. Call (V,E(v), δ(v), v, e) the corresponding rooted twist bush.

We now take a twist embedding of (V,E, δ, v, e) and a maximal subtree
(V, F ) to derive a twist embedding for the corresponding rooted twist bush. We
may do this by removing extra edges from one vertex at a time. Recall that
given w ∈ V r {v}, we obtained a new rooted graph (V, F(w), v). To obtain a
compatible embedding of this graph, we proceed one edge at a time.

Let w0 be the vertex that precedes w in the unique rooted trail from v to w.
Select w1 so that τ(w0, w, w1) is minimal. If w1 = w0, we are done, so assume
that w0 6= w1. Set

E[w] = (E ∪ {{w0, w1}}) r {{w,w1}},
and consider the graph (V,E[w]). We find a specific embedding of this graph.

Let f : CW(V,E) → X be a twist embedding of (V,E, δ, v, e) into a com-
pact Riemann surface X. Let U be a simply connected open neighborhood of
f(ωV (w)) with smooth boundary and the property that the intersection of ∂U
with f(CW(V,E)) consists of exactly one point for each edge involving w.

Consider a path which moves from w0 along f(ωE(I{w0,w})) up to its in-
tersection with ∂U , then along ∂U in a clockwise fashion up to its intersection
with f(ωE(I{w,w1})), then from this intersection point to w1. There is a slight
homotopy of this path in X r ωV (v) which ends in smooth path which does not
intersect the interior of f(ωE(I{w0,w} ∪ I{w,w1})); call the resulting path µ. Let
ν : [0, 1] → I{w0,w1} be an appropriate parametrization, and define

f[w] : CW(V,E[w]) → X by f[w](x) =

{
f(x) if x ∈ f(CW(V,E)) r ωE(I{w,w1});
µ(t) if x = ωE(ν(t)).

Now f[w] is an embedding of CW(V,E[w]) into X.
Inductively define E[w]i+1 = (E[w])[w]. Repeat the above process to take

an embedding of (V,E[w]i) and produce an embedding of (V,E[w]i+1). For n =
d(w)− 1, we have E(w) = E[w]n , and we obtain an embedding of (V,E(w)) with
properties inherent from the construction. Repeat this process for every vertex
w other than the root to obtain an embedding of the bush (V,E(v)).



80 V. NIELSEN GRAPHS

2. Nielsen Graphs

2.1. Nielsen Graphs.
2.1.1. Nielsen Graphs. A Nielsen graph of degree m and rank r is a con-

nected twist graph with the following properties:
(a) The vertex set is partitioned in r+1 blocks labeled 0 through r. Blocks

1 through r are called positive blocks. Vertices in block 0 are called hubs
and vertices in positive blocks are called nodes.

(b) There are exactly m hubs, labeled 1 through m.
(c) For every hub and every positive block there exists a unique edge be-

tween the hub and a node in the block. No other edges exist.
(d) For every hub, the associated cycle is of the form (u1 ... ur), where

ui is in block i.
(e) For every hub, every minimal trail initiating at that hub is a cycle.

A morphism between Nielsen graphs of the same rank is a twist morphism
which preserves the block numbers. This produces the category of Nielsen
graphs, and defines equivalence in this category. As we will see, a Nielsen graph
is an uncontrived twist graph.

2.1.2. Nielsen Tuples produce Nielsen Graphs. There is an equivalence of
categories between Nielsen tuples and Nielsen graphs. We briefly describe this.

Let g = (g1, . . . , gr) be a Nielsen tuple of degree n; thus G = 〈g〉 ≤ Sn is a
transitive subgroup, and Πg = 1. Then g produces a Nielsen graph as follows:

• the hubs are the integers 1, . . . , n;
• the nodes in block i are the disjoint cycles of gi, including singletons;
• the edges are pairs {j, c} where j is a hub and c is a cycle involving j;
• δ(c) = c for c a node.

Similarly, a Nielsen graph produces a Nielsen tuple by viewing δ(c), for c a
node, as an element of Sm, and taking the product of such cycles in block i to
obtain gi. The transitivity is given by the connectedness of V and the product
one condition is assured by Nielsen graph property (e).

2.2. Branch Cycle Designs.
2.2.1. Branch Cycle Designs. A branch cycle design is an isotopy class of un-

contrived twist embeddings of a Nielsen graph in a compact orientable manifold.
These canonically produce covers of the Riemann sphere, via their correspon-
dence with branch cycle descriptions, which we now describe.

2.2.2. Embedded Bushes produce Bouquets. Let (V,E, δ, v, e) be a twist bush
embedded in a compact Riemann surface X•. Let {x0, x1, . . . , xr} be the image
in X• of the vertex set, where x0 is the image of v and {x0, xr} is the image of
e. Let µi be the path from x0 to xi determined by the embedding. Let ∆i be a
small disk around xi with the property that its boundary intersects the image of
CW(V,E) in a single point, say x∗i . Let δi be a parametrization of the boundary
of ∆i in a clockwise orientation. Let µ∗i be the path from x0 to x∗i along µi. Set
ηi = µ∗i · δi · (µ∗i )−1. Then η = (η1, . . . , ηr) is a bouquet of classical loops on X•

with respect to (x, x0).
2.2.3. Bouquets produce Embedded Bushes. Let x = (x1, . . . , xr) be a tuple

of distinct points in a compact Riemann surface X• and let X = X• r x. Let
x0 ∈ X and let λ be a bouquet with respect to (x, x0), chosen so that ∆i, δi,
and µ∗i all exist as above with λi = µ∗i · δi · (µ∗i )−1.
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Set V = {0, . . . , r} and E = {{0, i} | i = 1, . . . , r}. Let δ0 be the cyclical
permutation of 1, . . . , r in that order; we obtain an associated twist bush (V,E, δ).
Select µ+

i to be a smooth path in ∆i from x∗i to xi such that µi = µ∗i · µ
+
i is

smooth. Define f : CW(V,E) → X• by f �ωE(I0,i)= µi; this is a twist embedding
of the associated twist bush.

2.2.4. Ramified Covers produce Descriptions. A ramified cover of P1 of de-
gree n with r branch points produces a branch cycle description of degree n and
rank r. To fix notation, we briefly recall this process. Notation will accumulate
in the rest of this section.

Let ϕ• : Y • → P1 be a ramified cover of degree m. Let x = (x1, . . . , xr) be
the branch points of the cover. Let X = P1 rx and Y = Y •rϕ−1(x) and obtain
a topological cover ϕ : Y → X. Select a basepoint x0 ∈ X and let y1, . . . , ym be
the fiber over x0. Then π1(X,x0) acts on this fiber through path lifting, creating
a permutation representation ρ : π1(X,x0) → Sm.

Let λ = (λ1, . . . , λr) be a bouquet of classical loops with respect to (x, x0).
Let [λ] denote the homotopy class of a loop λ. Let gi = ρ([λi]) and g =
(g1, . . . , gr). Then g is the branch cycle description of ϕ• with respect to λ.

2.2.5. Bouquets in the Base Space produce Twist Embeddings of Designs.
Just as selection of a bouquet puts geometric meaning to a branch cycle descrip-
tion in the form of a ramified cover, it simultaneously induces a twist embedding
of the corresponding Nielsen graph into the covering space, thus giving a branch
cycle design.

Continue notation from section 2.2.4. Set

VX = {0, . . . , r} and EX = {{0, i} | i = 1, . . . , r}.

Let δX : VX → Sym(VX) be given by the identity for i > 0 and δ(0) =
(1 2 ... r). We have seen that the bouquet λ produces a twist embedding of
the twist bush (V,E, δ) via paths µ = (µ1, . . . , µr) as constructed in subsection
2.2.3.

Let (VY , EY , δY ) be the branch cycle design corresponding to g.
The preimage in Y • of the twist embedding of the twist bush (VX , EX , δX)

produces a twist embedding on Y • of the branch cycle design (VY , EY , δY ) cor-
responding to g. The hubs map to the preimages of the basepoint x0 and the
nodes in block i map to the preimages of the ith branch point xi. Specifically,
fY : CW(VY , EY ) → Y • is constructed by defining the image of an arbitrary
edge Ie; now e is an edge between a hub, say the integer j, and a node, say ci,l
(the lth cycle in the ith branch permutation). Then fY (ωE(Ie)) equals the lift of
µi to yj .

2.2.6. Twist Embeddings of Designs produce Bouquets in the Covering Space.
Let (V,E, δ) be a branch cycle design and let f : CW(V,E) → Y • be a twist
embedding of (V,E, δ) into a compact Riemann surface Y •. Let Y equal Y •

with the image of V removed.
Select a vertex v ∈ V and an edge e ∈ E(v) to use as a root. Let (V,E(v), δ(v), v, e(v))

be the twist bush corresponding to (V,E, δ, v, e) as described in section 1.5. In
that section we selected a maximal rooted subtree of (V,E, δ, v, e) and produced
a twist embedding f (v) : CW(V,E(v)) → Y • compatible with the ordering of
the vertices. Let y0 be the image of v under this embedding. As discussed in
subsection 2.2.2, this embedding produces a bouquet based at y0.
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Proposition 31. Let η = (η1, . . . , ηs) be the bouquet corresponding to the
twist bush embedding f (v). Then η is a bouquet of classical loops on Y based at
y0.

Proof. By construction the loops emanate from y0 in the given order. Also
by construction, each is a classical loop. �

2.2.7. Classical Generators in the Covering Space. Continue notation from
subsection 2.2.5. Let v0 ∈ VY be a hub and (VY , ETY , v0) be a maximal rooted
subtree of (VY , EY ). Let η be the bouquet produced by the embedding fY :
CW(VY , EY ) → Y •, with respect to these choices. We now describe the bouquet
η on the covering space combinatorially in terms of the bouquet λ on the base
space. This will allow us to compute information about covers of X factoring
through Y using finite group theory.

Let W = (v0, . . . , vn) be a walk in (VY , EY ); the embedding fY allows us to
view W as a path in Y • between the images of v0 and vn. If n is odd, then vn
is a node; associate to this walk a loop β(W ) in X based at x0, and hence an
element of π1(X,x0), as follows.

Let b(v) denote the block of vertex v. Set bj = b(vj), dj = d(vj), and
tj = τ(vj−1, vj , vj+1). Define

α(W ) =
∏

0<j<n
j odd

λ
tj
bj
.

The lift of α(W ) to Y is a path in Y between the images of v0 to vn−1, that is,
between two points in the fiber over x0. The loop in X associated to the walk
W is

β(W ) = αλdn

bn
α−1.

The hub v0 maps to some element of ϕ−1(x0) = {y1, . . . , ym}, say y0. Select
e0 = {0, r} to use as a root edge so that the order of the adjacent vertices to v0
corresponds to the order of the branchpoints as determined by λ. This produces
a linear order on the set of walks in (VY , ETY ) initiating at v0. Let W1, . . . ,Ws

be the trails of odd length in (VY , ETY ), with Wi ≤ Wj when i ≤ j. Note that
there is a unique such trail terminating at each node. Let βj = β(Wj).

Proposition 32. Let β = (β1, . . . , βs). Then

(a) ηi is homotopic in Y to the lift of βi to y0;
(b) 〈β〉 = ϕ∗(π1(Y, y0));
(c) Πβ = 1.

Proof. It suffices to demonstrate (a). This follows from the construction,
because the λ’s proceed around xi in a clockwise direction, and the η’s were
formed by avoiding the preimages of xi’s by tracing circles around them in a
clockwise direction. �

We call β the tuple of design generators produced from the branch cycle
design, and the selected rooted maximal tree.
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3. Condensing, Crunching and Splicing

Let ψ : Z
ξ→ Y

ϕ→ X be a factored cover, where ϕ : Y → X is as above. We
assume that the genus of Y is zero. Let m = deg(ϕ), d = deg(ξ), and n = deg(ψ)
so that n = md.

We use the branch cycle design produced above to construct algorithms for
producing the branch cycle descriptions for ξ and ψ. Condensing is the process of
constructing a branch cycle description for ϕ given ones for ψ and ξ. Crunching
is the process of constructing a branch cycle description for ξ given ones for ψ
and ϕ. Splicing is the process of constructing a branch cycle description for ψ
given ones for ϕ and ξ.

3.1. Condensing. Let h be a branch cycle description for ψ with respect
to a bouquet λ on X and suppose that f : {1, . . . , n} → {1, . . . ,m} is a function
which describes the map between the enumerated fibers over x0 in Z• and Y •

given by ξ. Then the fibers of f are blocks of imprimitivity for the action of
H = 〈h〉; then f∗ : H → Sm is a well defined homomorphism. Let G = f∗(H)
and g = f∗(h) so that G = 〈g〉. Now g is a branch cycle description for ϕ with
respect to λ.

3.2. Crunching. Let h be a branch cycle description for ψ with respect to
the paths λ. We wish to find a branch cycle description for ξ with respect to β;
to do this, we need to find the action of β on the fiber over yk.

The action of βi on the fiber in Z over x0 is given by plugging h into the
description of βi as a product of λ’s; that is, we find the image of β in the
monodromy group H of ψ via the homomorphism π1(X,x0) → H ≤ Sn given
by path lifting. Now these paths act on the fiber over y1 because each stabilizes
y1. Compute the action of β on this fiber by restriction. This produces a branch
cycle description for ξ.

3.3. Splicing. Let u be a branch cycle description for ξ with respect to the
paths β. We wish to find a branch cycle description for ψ with respect to the
paths λ; to do this, we need to find the action of λ on the fiber in Z over x0.
For reference in future work, we offer (without proof) an algorithm to do this,
which has been implemented in [GAP]. This subsection may be skipped.

Let g be the branch cycle description of ϕ with respect to λ, and let D be
the Nielsen graph produced by g. Let T be a maximal tree in D based at 1
(corresponding to y1 ∈ Y ).

First we enumerate the fiber in Z over x0. Define a function

spl : Nm × Nd → Nn by spl(i, j) = (i− 1)d+ j.

This function is bijective. The components of the inverse are defined as

bot : Nn → Nm by bot(i) = [(i− 1)/d] + 1,

where [x] is largest integer less than x, and

top : Nd → Nd by top(i) = ((i− 1) (mod d)) + 1.

In this way, each integer between 1 and n has a top part and a bottom part.
We enumerate the fiber in Z over x0 so that ξ(zi) = ybot(i). Thus it remains
to attach the top part, which is an integer between 1 and d, to each element of
ξ−1(yj) for j ∈ Nm.
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The existence of u presupposes assignment of the top part for the fiber over
y1; let {z′1, . . . , z′d} be this fiber. In order to push this enumeration to the fibers
over the other yj ’s, construct a path in Y from y1 to yj . We do this as follows.
Select one of the branch points on X to be the primary branch point for this
process; for simplicity, we choose the first. Then j in involved in a unique cycle
c of λ1, and there is an edge from yj to c in D. Let W ′ be the unique trail in
T from y1 to c. Either yj is the second to last vertex in W ′, or yj is not in W ′.
In the first case, let W be the subwalk of W ′ which terminates at yj . In the
second, let W be W ′ extended by yj ; in this case, W is a walk in D but may
not be in T . Either way, W produces a well-defined homotopy class of a path in
Y from y1 to yj . Lift this path to the various points of the fiber in Z over y1 to
transfer the top enumeration to the fiber in Z over yj . This enumerates ψ−1(x0)
as {z1, . . . , zn}.

Now we need to compute the action of the classical generators λ for π1(X,x0)
on this fiber. The algorithm is:

(1) For j ∈ {1, ...,m}, apply the action of ui to the fiber over yj ; that is,
construct a permutation hi of {1, . . . , n} so that h∗i (k) = spl(bot(k), top(k)ui).

(2) Construct a conjugator v so that if hi = (h∗i )
v, then (h1, . . . , hs) is a

branch cycle description for ψ.

Construct v as follows: Let Wi,j denote the walk described above, only this
time to any node involving yj over branch point xi. Then W1,j and Wi,j both
terminate at vj . Concatenate the second to last vertex of W1,j to Wi,j and call
this L1. Similarly concatenate the second to last vertex of Wi,j to W1,j and call
this L2. Let Wk denote the walk corresponding to the kth entry of u. Then v is
the product of uk, in the order of the walks, for every k satisfying L1 ≤Wk and
Wk ≤ L2, when L1 ≤ L2. If L2 < L1, then switch the roles of L1 and L2 in the
above statement and take the inverse of the product thus obtained.

We need to explain how this works. Let’s first give a simple case. Let m = 5
and d = 8. Suppose that the cycle of λ1 containing 1 is (1 4 5 2 3). and that
β1 = λ5

1. Lifting λ1 to y1, and then to the fiber {z′1, . . . , z′8} over y1, induces
and enumeration of the fiber over y4; specifically, the endpoint of the lift to z′3
is z27 since spl(4, 3) = 3d+ 3 = 27. Powers of λ1 push the enumeration around
the cycle until it gets back to the beginning, at λ5, and these fiber points have
already been enumerated. But λ5 is just β1, and we are given the action of β1

on {z′1, . . . , z′8}; it is u1.
All of the β’s are conjugates of powers of some given λ, and the above point

of view carries over to conjugates (the conjugation is part of the numbering
scheme). So this gives the action of λi with respect to enumeration by paths
which are lifts of paths to a point near ramification of λi. The trick is to relate the
enumeration induced by varying the branch point. This is done by constructing
the path which proceeds to a node over branch point 1 containing an integer
j and the path which proceeds to a node over branch point i containing j.
Concatenating the first path with the inverse of the second creates a loop in Y .
This loop is the product of some classical generators for π1(Y, y0). The action of
this loop on the enumeration of the fiber over y1 is exactly the renumbering we
need to accomplish.

The walks that correspond to classical generators of π1(Y, y0) are either
completely inside the loop given by W1,j ∗W−1

i,j , or intersect it by entering the
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loop through the point of concatenation yj , are exactly those Wk described by
L1 ≤Wk ≤ L2.

4. Full and Final Ramification

4.1. Designs on Reduced Rank 4 Hurwitz Spaces.
4.1.1. Set Up. In our study of collections of ramified covers with fixed mon-

odromy groups, our usage of branch cycle designs is not on the covers themselves
but rather on the reduced rank 4 inner Hurwitz spaces which parameterize them.
We outline the idea.

Let f : H → G be a p-Frattini cover of finite groups, and let C be a rank 4
tuple of conjugacy classes with gcd(ord(C), p) = 1. Let H2 ⊂ H(H,C)in,rd be a
component and let H1 ⊂ H(G,C)in,rd be its image, yielding a factored ramified
cover

ψ• : H•
2
ξ•→ H•

1
ϕ•→ J •

4 .

Computation of the braid action on the orbit O ⊂ Ni(G,C)in,rd correspond-
ing to H1 gives a permutation representation γ = (γ0, γ1, γ∞) 7→ γ, where
〈γ〉 ≤ S|O| is the monodromy group of ϕ•; use the Riemann-Hurwitz formula
to compute the genus of H•

1. If this is zero, then the branch cycle design for γ
produces classical generators for π1(H◦

1, y0), where y0 ∈ kH◦
1 .

The design generators are written in terms of γ0, γ1, and γ∞, and y0 cor-
responds to a cover which is given by a Nielsen tuple g = Ni(G,C)in,rd. To
understand H2, we may apply these generators directly to the preimage of g
in Ni(H,C)in,rd via braiding, obtaining an action on the fiber over y0 which
produces the monodromy group of the cover H•

2 → H•
1.

4.1.2. Trivial Action. The branch cycle designs may produce complicated
generators. We would like to be able to rule out as many as we can, and then if
possible, simplify the remaining paths. By rule out, we mean deduce that they
have trivial action. When this is the case, no ramification occurs above the node
which corresponds to the generator with trivial action, and we can eliminate that
generator from the design tuple.

Trivial action here is of two types: trivial action on the next Nielsen class
under consideration, or trivial action for any cover by a reduced rank 4 Hurwitz
space. We consider the latter case first.

4.2. Final Ramification. Let H be a component of an reduced rank 4
inner Hurwitz space, with associated cover ϕ : H → J4. Let y ∈ ϕ−1(0, 1) be
a node of ϕ. Recall the mapping class cover V4

rd → J4, which is universal for
reduced rank 4 Hurwitz spaces. We say that y is finally ramified in H if y is not
a branch point of V4

rd → J4.
Any node in H1 over 0, 1 ∈ J4 which ramifies in H1 → J4 will have an

unramified fiber in H2. This is because ramification over these points is always
of prime order (order 3 and order 2 respectively). Such nodes are finally ramified.
If all nodes over γi for i = 0, 1 are finally ramified, we say that γi is finally ramified
in H1.

4.3. Full Ramification. Let y ∈ H1 be a node (that is, ϕ(y) ∈ {0, 1,∞}).
We say that y is fully ramified with respect to f : H → G if it is not a branch
point for the cover ξ• : H•

2 → H•
1.
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Suppose ϕ(y) = ∞; let δy be the γ∞ cycle corresponding to y. Let i be an
integer in the support of δy, corresponding to a point yi ∈ H1 in the fiber of
H1 → J over a basepoint in J , and let g = (g1, g2, g3, g4) ∈ Ni(G,C)in,rd be the
reduced Nielsen tuple corresponding to yi.

The order of δy is the length of the γ∞ orbit containing g. Since γ∞ acts
as Q2, this orbit length is tied to the middle product order mpo(g) = ord(g2g3).
Specifically, ord(δy) divides 2 ·mpo(g).

Let z ∈ H2 be in the fiber over y, with associated Nielsen tuple h =
(h1, h2, h3, h4), so that f(h) = g. If ord(δz) = ord(δy), then z is not rami-
fied over y. If ord(δy) = 2 ·mpo(g), then ord(δz) = 2 ·mpo(h), and z ramifies if
and only if mpo(h) = p ·mpo(g).

4.4. Arrangement Factorization.
4.4.1. Arrangement Covers. Let H(G,C)in be an inner Hurwitz space. The

Hurwitz monodromy group acts on the arrangements of the conjugacy classes
through a quotient of Sr, and the stabilizer of a given arrangement produces
covers A(G,C)in → Ur and A(G,C)in,rd → Jr, through which the corresponding
Hurwitz spaces factor. The map H(G,C)in → A(G,C)in is obtained by sending
a branch cycle description to the corresponding arrangement of its conjugacy
classes. One may equivalence by Abs(G) to obtain an absolute version of this.

Let r = 4. In this case, arrangement spaces can give information about
final ramification. Note that in this case, H4 acts on arrangements through S4,
and the reduction kernel K̂4 from H4 to M4 acts through the normal Klein four
subgroup of S4.

Consider the case where the conjugacy classes are distinct. Then A → U4

is a normal cover with group S4. The reduced cover Ard → J4 is normal with
group S3 = S4/K4, with S3 in its regular representation. In this case, both γ0

and γ1 are finally ramified in Ard, and so they are finally ramified in Hrd.
4.4.2. Bipolar Tuples. Let q be an odd prime and let G be a group whose

elements of order q lie in two conjugacy classes, labeled C+ and C−, which are
swapped by an outer automorphism. We call Cq2±

= (C+, C+, C−, C−) a bipolar
tuple of conjugacy classes. These arise in the following situation.

Consider G = PSL2(Fq), where q is an odd prime. Let g =
[
1 1
0 1

]
and

h =
[
a b
c d

]
, where a, b, c, d ∈ Fp and ad− bc = 1. One quickly computes that g

is an element of order q and that h−1gh = gx if and only if c = 0, ad = 1, and
d2 = x in Fq. So exactly half of the nontrivial elements of the cyclic subgroup
generated by g are conjugate to it. All other elements of order q are conjugate
to a power of g by Sylow’s theorem. Yet a change of basis given by conjugation
from GLn(Fq) will produce an outer automorphism which swaps the conjugacy
classes.

Let C = Cq2±
be a bipolar tuple from a groupG, and considerA(G,C)in,rd →

J4. There are three reduced arrangements of the conjugacy classes upon which
S3 acts in its standard representation; γ0 must act as a three cycle, so it is finally
ramified in A(G,C)in,rd (see chapter VII for more details).

Suppose we can find elements in SL2(Fq) in conjugacy classes above C+

and C− whose product has order 4. Conjugate this pair by an element of the
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centralizer of the product to obtain a generating 4 tuple with product of order 2.
Its image in PSL2(Fq) is a Nielsen tuple which does not lift to Ni(SL2(Fq),C)in.





CHAPTER VI

Automorphisms and Spin Covers

1. Universal Elementary 2-Frattini Covers of A4 and A5

1.1. Restricted and Induced Modules. Let G be a finite group with
H ≤ G. We will work exclusively over the field F2. Let 1 = F2, viewed as a one
dimensional module with trivial action.

Let M be a F2[G] module. The F2[H] module given by restriction, denoted
ResGH(M), is given by restricting the action of G on M to the action of H on M .

Let 1 = 1H be the trivial F2[H] module. The F2[G] module induced by
1H , denoted IndGH(1), is viewed to be the vector space over F2 of dimension
n = [G : H] which is freely generated by the left cosets of H in G; that is, points
in IndGH(1) are sums of cosets. The action of G on IndGH(1) is given by the action
of G on the cosets by left multiplication.

The augmentation map σ : IndGH(1) → {0, . . . , n} is given by
∑n
i=1 aigiH 7→∑n

i=1 ai, where g1, . . . , gn are coset representative for H in G, and a1, . . . , an ∈
{0, 1}. To compress notation, we typically enumerate the cosets, producing an
explicit isomorphism IndGH(1) → Fn2 , and write an element of IndGH(1) as a tuple
containing zeros and ones. The augmentation map counts these ones.

An induced module IndGH(1) always contains a submodule generated by the
sum of the cosets, upon which G acts trivially; denote it by TrvGH(1). Let σ̄
denote the quotient of the augmentation map by TrvGH(1); its range is {ā | a =
0, . . . , n} with ā = {a, n− a}.

1.2. Universal Elementary 2-Frattini Module of A5.

Theorem 33. Let ϕ : 1
2Ã5 → A5 be the universal elementary 2-Frattini

cover, and let D5 be the normalizer of a five cycle in A5. Then the universal
elementary 2-Frattini module of A5 is

M0(A5) = IndA5
D5

(1)/TrvA5
D5

(1).

Proof. [Fr95] Proposition 2.4. �

Since we are interested in comparing A4 and A5, it is convenient to slightly
modify the previous notation. Unless otherwise indicated, explicitly take A5 to
be in its standard representation, with A4 ≤ A5 given by A4 = StbA5(5), and
D5 = 〈(1 2 3 4 5), (2 5)(3 4)〉 ≤ A5.

Let U5 = 1
2Ã5 and let M = M0(A5) be the universal elementary 2-Frattini

module of A5. By Proposition 6, M = {a ∈ U5 | a2 = 1}. We now use this
characterization of M to describe the conjugacy classes of involutions in U5.

Proposition 34. The conjugacy classes of involutions in U5 are
(1) M ′

2 = {a ∈M | σ̄(a) = 2̄}, with |M ′
2| = 15;

89
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(2) M ′
3 = {a ∈M | σ̄(a) = 3̄}, with |M ′

3| = 10;
(3) M ′

5 = {a ∈M | σ̄(a) = 1̄}, with |M ′
5| = 6.

Let V = M2 ∪ {1}. Then V is a submodule of M , and V = [U5,M ].

Proof. Enumerate the cosets of D5 in A5 to obtain a permutation repre-
sentation ρ : A5 → S6, which induces a linear representation A5 → F6

2, thus
realizing IndA5

D5
(1) as an F2[A5] module. View A5 as acting on coordinate slots

via ρ. The universal Frattini module M is the result of modding out by the fixed
subspace TrvA5

D5
(1) = {(0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1)}; thus two hexatuples are

equivalent if and only if they are complementary.
If two tuples are in the same orbit, they must have the same number of

ones. There are
(
6
k

)
tuples with k ones. Since the one slot stabilizer D5 acts

transitively on the other slots, A5 acts doubly transitively on six slots. Thus A5

acts transitively on sets of tuples with 0, 1, 2, 4, 5, or 6 ones. Those with k ones
are equivalent to those with 6− k ones; modulo equivalence, this gives orbits of
sizes 1, 6, and 15; the latter two are M ′

5 and M ′
2.

The action of A5 on tuples with 3 ones in not transitive, because the two
point stabilizer of A5 on slots is an involution acting on four slots as a pair of
transpositions. This breaks the set of tuples with 3 ones into two orbits. However,
equivalent tuples lie in separate orbits because complementation commutes with
the action. Modulo equivalence, this gives one orbit M ′

3 containing 10 tuple
classes.

Since V is the union of conjugacy classes, it is a submodule if it is a subgroup.
One sees that this is so because we equivalence tuples with two cosets to their
complements. It is also clear that V is a minimal subgroup of U5, so we show
it contains the stated commutators. Let a ∈ M and g ∈ U5. Then [g, a] =
g−1aga = aga ∈ M . If a ∈ M r V , then so is ag, and since V has index two in
M , we have aag ∈ V . �

View the elements ofM as equivalence classes of hexatuples, with the equiva-
lence class of (z1, z2, z3, z4, z5, z6) denoted by [z1, z2, z3, z4, z5, z6], where zi ∈ F2.

Proposition 35. Let g ∈ A5 have order three and let a ∈ M ′
2. Then

aagag
−1

= 1. If h ∈ U5 is a lift of g of order three, then 〈h, a〉 ∼= A4.

Proof. The element a is an equivalence class of hexatuples, with two ones
and four zeros. Renumber the slots so the orbits of g are the first three slots and
the last three slots, and so that either a = [1, 1, 0, 0, 0, 0] or a = [1, 0, 0, 1, 0, 0].
In the first case,

aagag
−1

= [1, 1, 0, 0, 0, 0]+[0, 1, 1, 0, 0, 0]+[1, 0, 1, 0, 0, 0] = [2, 2, 2, 0, 0, 0] = [0, 0, 0, 0, 0, 0].

In the second case,

aagag
−1

= [1, 0, 0, 1, 0, 0]+[0, 1, 0, 0, 1, 0]+[0, 0, 1, 0, 0, 1] = [1, 1, 1, 1, 1, 1] = [0, 0, 0, 0, 0, 0].

Thus 〈a, ah〉 is a Klein four subgroup of V , and 〈a, h〉 is a semidirect product
isomorphic to A4. �

Proposition 36. If q ∈ {3, 5}, then the map a 7→ CA5(a) produces a bi-
jective correspondence between M ′

q and the normalizers of Sylow q-subgroups of
A5.
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If a ∈ M ′
2, then CA5(a) is a Sylow 2-subgroup of A5. Each element a ∈ M ′

2

is in a unique Klein four subgroup Ka ≤ V such that the map Ka 7→ CA5(Ka)
produces a bijective correspondence between {Ka | a ∈ M ′

2} and the Sylow 2-
subgroups of A5.

If a ∈M , then CU5(a) = ϕ−1(CA5(a)). Therefore
(a) a ∈M ′

2 ⇒ |CU5(a)| = 128;
(b) a ∈M ′

3 ⇒ |CU5(a)| = 192;
(c) a ∈M ′

5 ⇒ |CU5(a)| = 320.

Proof. The action of A5 on M ′
q is transitive on x = |M ′

q| points, so the one
point stabilizers are of index x in A5. If q = 5, then x = 6 and these are the D5

subgroups which normalize a Sylow 5-subgroup. If q = 3, then x = 10 and these
are the S3 subgroups which normalize a Sylow 3-subgroup.

If q = 2, then x = 15 and the one point stabilizers are the K4 subgroups
which are the Sylow 2-subgroups of A5. Thus let a ∈ M ′

2 and let K = CA5(a)
be the centralizing 2-Sylow. The other two points in M ′

2 centralized by K are in
the orbit of a three cycle in A5 which normalizes K.

The statement that CU5(a) = ϕ−1(CA5(a)) reiterates that the conjugation
action of U5 on M is given by lifting elements from A5. The final statement on
orders follows from these considerations. �

1.3. Universal Elementary 2-Frattini Module of A4.

Theorem 37. Let ϕ : 1
2Ã5 → A5 be the universal elementary 2-Frattini

cover, and let Z2 = A4 ∩D5. Then ϕ �ϕ−1(A4): ϕ
−1(A4) → A4 is the universal

elementary 2-Frattini cover of A4, and

M0(A4) = ResA5
A4

(M0(A5)) = IndA4
Z2

(1).

Proof. [Fr95] Proposition 2.9, or [BF02] Proposition 5.6. �

Henceforth, with ϕ as above, set U4 = ϕ−1(A4) ∼= 1
2Ã4.

Proposition 38. Let K4 denote the Sylow 2-subgroup of A4, and let C be a
conjugacy class of three cycles in A4. Then the conjugacy classes of involutions
in U4 are

(1) J1 = CM (K4) r {1} ⊂M ′
2, with |J1| = 3;

(2) J2 = M ′
2 r J1, with |J2| = 12;

(3) J3 = ∪g∈CCM (g) ⊂M ′
3, with |J3| = 4;

(4) J4 = M ′
3 r J3, with |J4| = 6;

(5) J5 = M ′
5, with |J5| = 6.

The proper nontrivial submodules of M0(A4) are V1 = J1 ∪ {1}, V3 = J3 ∪ V1,
and V . Again, V = [U4,M ].

Proof. The list of conjugacy classes, and the fact that V1 is a submodule,
follow from Proposition 36. The appearance of J1 and J3 are obtained by col-
lecting together the elements which are centralized by some Sylow 2-subgroup
of A4. If a1, a2 ∈ J3, compute directly from the cosets that a1a2 ∈ V1. Thus V3

is a subgroup, and so is a submodule. �

Proposition 39. Let a ∈M . Then
(a) a ∈ J1 ⇒ |CU4(a)| = 128;
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(b) a ∈ J2 ⇒ |CU4(a)| = 32;
(c) a ∈ J3 ⇒ |CU4(a)| = 96;
(d) a ∈ J4 ⇒ |CU4(a)| = 64;
(e) a ∈ J5 ⇒ |CU4(a)| = 64.

Proof. We have CU4(a) = CU5(a)∩U4. The elements of J1 are centralized
by the preimage of K4 ∈ A4. The elements of J2 are centralized by elements of
M ; if a ∈ J2, its full centralizer in U5 comes from a conjugate of K4 in A5. For
J3, an involution in A5 which normalizes a 3-Sylow is not in A4, and does not
lift. �

2. Automorphisms of U4

2.1. Automorphisms of Universal Frattini Covers. Let ϕ : H → G
be a group homomorphism with characteristic kernel. For α ∈ Aut(H), de-
fine α∗ ∈ Aut(G) by α∗(g) = ϕ(α(h)), where h ∈ ϕ−1(g). This produces a
well-defined homomorphism ϕ∗ : Aut(H) → Aut(G) given by α 7→ α∗. Let
Aut(H,ϕ) = ker(ϕ∗); this is the group of automorphisms of H which pre-
serve the cosets of ker(ϕ). Also set Inn(H,ϕ) = Aut(H,ϕ) ∩ Inn(H), and
Out(H,ϕ) = Aut(H,ϕ)/Inn(H,ϕ). Then Out(H,ϕ) is the image of Aut(H,ϕ)
in Out(H).

It is clear that ϕ∗(Inn(H)) ≤ Inn(G), and if ϕ is surjective, this is equality.
If ϕ is a Frattini cover, then every inner automorphism of G lifts to an inner
automorphism ofH. In this case, |Out(H)| = [ϕ∗(Aut(H)) : Inn(G)]|Out(H,ϕ)|.

Proposition 40. Let G be a finite group and let ϕ : 1
pG̃→ G be its universal

elementary p-Frattini cover, with M = ker(ϕ). Then
(a) M is characteristic in 1

pG̃;
(b) ϕ∗ : Aut(1pG̃) → Aut(G) is an epimorphism, with kernel Aut(1pG̃, ϕ);
(c) ϕ̄∗ : Out(1pG̃) → Out(G) is an epimorphism, with kernel Out(1pG̃, ϕ).

Proof. By Proposition 6, M = {a ∈ 1
pG̃ | ap = 1}, so it is characteristic.

Thus every automorphism of 1
pG̃ descends to an automorphism of G. If α ∈

Aut(G), then α ◦ ϕ is an elementary p-Frattini cover of G, and the universal
property produces α̃ ∈ Aut(1pG̃) which lifts α. �

Let ψ : pG̃→ G be the universal p-Frattini cover of G, and let α ∈ Aut(G).
Since α ◦ψ is a p-Frattini cover, there exists an homomorphism β : G̃→ G̃ such
that ψ = α ◦ ψ ◦ β. By the Frattini property, this is surjective, and since G̃ is
profinite, it is an automorphism. Now β−1 descends to an automorphism of G
which lifts α if and only if ker0 is stabilized by β. As noted in [BF02] Lemma
3.10, if ker0 is characteristic, then so is kerk for k ≥ 1. If all of the p-Sylows of G
intersect in {1}, for example if G is a simple group, then ker0 is characteristic.
However, whether or not ker0 is characteristic, we have the following.

Proposition 41. Let ψ : pG̃ → G be the universal p-Frattini cover of G,
and let α ∈ Aut(G). Then there exists α̃ ∈ Aut(pG̃) such that α̃(ker0) = ker0,
and ψ ◦ α̃ = α ◦ ψ.

Proof. The universal elementary p-Frattini cover of kpG̃ is k+1
p G̃. Iterate the

lifts of α given by Proposition 40; the projective limit will be an automorphism
of pG̃ as claimed. �
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2.2. Automorphisms of p-Groups. The Burnside Basis Theorem states
that the Frattini subgroup Φ(P ) of a p-group P is generated by pth powers and
commutators (see [Sc87] 7.3.10 or [Ro93] 5.3.2, or [FJ86] Lemma 20.36 for
the profinite case). As a consequence, P/Φ(P ) is a vector space over Fp, whose
automorphism group is GLt(Fp); here, t is the rank of P . Let ϕ : P → P/Φ(P )
be the canonical homomorphism and let Aut(P,ϕ) denote the subgroup of au-
tomorphisms which are trivial on P/Φ(P ). A theorem of P. Hall concludes
that |Aut(P,ϕ)| divides pst, where ps = |Φ(P )|, and that |Aut(P )| divides
pst

∏t−1
i=0(p

t − pi) (see [Sc87] 7.3.11 or [Ro93] 5.3.3).
We apply the method proof to the universal elementary p-Frattini cover

ϕ : P1 → P0 = Ftp. In this case, ker(ϕ) = Φ(P1). The universal p-Frattini cover
of P0 is pF̃t, the pro-free pro-p group on t generators. The kernel of pF̃t → P0

is the Frattini subgroup of pF̃t, so it is characteristic, and the profinite version
of the Nielsen-Scheier formula implies that the rank of Φ(pF̃t) (and of Φ(P1)) is
s = 1 + (t− 1)pt (see [FJ86] Proposition 15.27).

Proposition 42. Let P0 be an elementary p-group of rank t, and let ϕ :
P1 → P0 be its universal elementary p-Frattini cover, with kernel M . Let x =
(x1, . . . , xt) be generators of P1, and for a = (a1, . . . , at) ∈ M t, set x � a =
(x1a1, . . . , xtat). Let s = 1 + (t− 1)pt. Then

(a) for every a ∈ M t there exists a unique automorphism ξa of P1 such
that ξa(x) = x� a;

(b) Aut(P1, ϕ) = {ξa | a ∈M t};
(c) |Aut(P1)| = |Aut(P1, ϕ)| · |Aut(P0)| = pst ·

( ∏t−1
i=0(p

t − pi)
)
.

Proof. Let ϕ̃ : pP̃ → P0 be the universal Frattini cover of P0, with kernel
ker0. Then pP̃ is a pro-free pro-p group on t generators, given by lifting x to
x̃ = (x̃1, . . . , x̃t). Let ã = (ã1, . . . , ãt) be a lift in pP̃ of a. Since pP̃ is pro-
free, there exists an homomorphism ξ̃ã : pP̃ → pP̃ defined by x̃ 7→ x̃ � ã.
Since ϕ̃(x̃ � ã) generates P0, ξ̃ã is necessarily an epimorphism by the Frattini
property, and since pP̃ is profinite, it is an automorphism. Moreover, it is clear
that ξ̃ã preserves ker0, and since ker1 is characteristic in ker0, this descends to
an automorphism ξa : P1 → P1 with the prescribed effect. Every element of
Aut(G1, ϕ) is necessarily of this form. Since |M | = ps and Aut(P0) ∼= GLt(Fp),
the last formula follows. �

2.3. Automorphisms of Split Groups. We plan to combine Proposi-
tion 42 with the following lemma to obtain information about Aut(U4). Call a
semidirect product KoH faithful if it is given by an antihomomorphism ρ : H →
Aut(K) with trivial kernel. Let A = Aut(K) and set CA(H) = CA(ρ(H)) and
NA(H) = NA(ρ(H)). For α ∈ NA(H) and h ∈ H, set hα

−1
= ρ−1(α(ρ(h)◦α−1)).

Proposition 43. Let G = K o H be a faithful semidirect product. Let
A = Aut(K) and let α ∈ NA(H). Then α extends to α∗ ∈ Aut(G) given by
α∗ : kh→ α(k)hα

−1
.

Proof. Every element in g ∈ G may be written uniquely as g = kh, so the
indicated map is well-defined. For simplicity of notation, identify H with ρ(H).
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Compute

α∗(k1ρ1k2ρ2) = α∗(k1ρ1(k2)ρ1ρ2)

= α(k1)α(ρ1(k2))(ρ1ρ2)α
−1

= α(k1)ρα
−1

1 (α(k2))ρα
−1

1 ρα
−1

2

= α(k1)ρα
−1

1 α(k2)ρα
−1

2 .

�

2.4. Automorphisms of U4. Let ϕ : H → G be a Frattini cover, and let
h ∈ H. Let Aut(H,h) denote the group of automorphisms of H which fix h. If
the conjugacy class of h in H is characteristic, then every automorphism of H
differs from an element of Aut(H,h) by an inner automorphism. In this case, the
map Aut(H,h) → Out(H,ϕ) is surjective. This applies for H = U4 and G = A4,
and allows us to find Out(U4).

Proposition 44. Let h1 and h2 be conjugate order three generators of U4.
Let x1 = h1h1h2 and x2 = h1h2h1. Then ord(x1) = ord(x2) = 4. Let P1 be the
normal 2-Sylow of U4. Then P1 = 〈x1, x2〉. Let A = Aut(P1), a1, a2 ∈ M , and
ξ = ξa as in Proposition 42. Then ξ ∈ CA(h1) if and only if

a1 ∈ V and a2 = ah1
1 .

In this case, ξ extends to an automorphism of U4 such that ξ(h1) = h1 and
ξ(h2) = h2a1.

Proof. Let g1, g2 ∈ A4 be conjugate elements of order three which lift
to h1 and h2. Then g−1

1 g2 has order two, and its lift x1 has order four. Let
x3 = h2h1h1; since x2 = xh1

1 and x3 = xh1
2 , these elements also have order four.

Also x1 and x2 generate P1 since they lift generators from P0, where P0 is the
2-Sylow of A4. The kernel of P1 → P0 is M , so all automorphism of P1 which
are trivial on P0 are of the form ξa, with a1, a2 ∈M . Note that x3 = (x2x1)−1.
Compute

ξ(x3) = (x2a2x1a1)−1 = a1x
−1
1 a2x

−1
2 = x−1

1 x−1
2 ax3

1 a
x−1
2

2 = x3a
x3
1 a

x−1
2

2 .

Now ξ and ρ commute in A if and only if they commute on the generators x1

and x2. Compute

ρξ(x1) = ρ(x1a1) = x2a
h1
1 and ξρ(x1) = ξ(x2) = x2a2;

thus a2 = ah1
1 . Also

ρξ(x2) = ρ(x2a2) = x3a
h1
2 and ξρ(x2) = ξ(x3) = x3a

x3
1 a

x−1
2

2 .

Thus ah1
2 = ax3

1 a
x−1
2

2 ; replace a2 with ah1
1 to get ah

−1
1

1 = a
h2h

−1
1

1 a
h−1
2 h−1

1
1 . Conjugate

by h1 to arrive at a1 = ah2
1 a

h−1
2

1 . By Proposition 35, this condition is satisfied
by every a1 ∈ V . By Proposition 43, ξ extends to an automorphism of U4 which
fixes h1. Finally, ξ(h2) = h1ξ(x1) = h1x1a1 = h2a1. �

Proposition 45. Let h1 and h2 be conjugate order three generators for U4.
For each v ∈ V there exists a unique automorphism νv ∈ Aut(U4, ϕ) such that
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νv(h1) = h1 and νv(h2) = hv2. Let ci ∈ M be the nontrivial element of CM (hi).
Let W be a complement in V for 〈c1c2〉. Then the map

W → Out(U4, ϕ) given by w 7→ νw (mod Inn(U4, ϕ))

is an isomorphism.

Proof. The map ξa ∈ Aut(U4, ϕ) from Proposition 44 fixes h1 and sends h2

to h2a1; this defines it. For each a1 ∈ V there exists v ∈ V such that h2a1 = hv2,
and the map a1 7→ v is bijective. Thus νv is an automorphism, and all elements
of Aut(U4, h1) are of this form.

Now νc1c2 is the unique nontrivial inner automorphism in Aut(U4, h1). The
elements of W represent the outer automorphisms from Aut(U4, h1), so W →
Out(U4, ϕ) is well-defined and injective. It is surjective because any automor-
phism of U4 which is trivial on A4 differs from an element of Aut(U4, h1) by an
inner automorphism of U4. �

Proposition 46. Let h1, h2 ∈ U4 be conjugate generators of order three.
Then there exists a unique automorphism µ ∈ Aut(U4) such that µ(h1) = h−1

1

and µ(h2) = h−1
2 .

Proof. Let x1, x2, x3 ∈ U4 and P1 be as in Proposition 44. Now x1 and x3

generate P1; lift x1 and x3 to elements x̃1 and x̃3 in the universal p-Frattini cover
P̃1. Then (x1, x3) 7→ (x̃−1

3 , x̃−1
1 defines an automorphism of P̃1, which descends

to a unique automorphism ξ ∈ Aut(P1) such that ξ(x1) = x−1
3 and ξ(x3) = x−1

1 .
Since x2 = (x1x3)−1, we have

ξ(x2) = ξ(x1x3)−1 = (x−1
3 x−1

1 )−1 = x−1
2 .

This automorphism normalizes the action of h1, as follows. Let ρ ∈ Aut(P1)
denote conjugation by h1; we wish to show that ρξ = ρ−1. Compute

ρξ(x1) = ρ(x−1
3 ) = x−1

1 and ξρ−1(x1) = ξ(x3) = x−1
1 ;

also
ρξ(x3) = ρ(x−1

1 ) = x−1
2 and ξρ−1(x3) = ξ(x2) = x−1

2 .

By Proposition 43, ξ extends to an automorphism µ ∈ Aut(U4) such that µ(h1) =
h−1

1 . Finally, µ(h2) = µ(h1x1) = h−1
1 x−1

3 = h−1
2 . �

The automorphism µ is an order two lift of the nontrivial outer automor-
phism of A4. We put this together with our previous proposition to obtain the
following.

Proposition 47. Let h1 and h2 be conjugate order three generators for U4.
Let W and νw be as in Proposition 45 and µ as in Proposition 46. A complete
list of coset representatives for Out(U4) is {νw, νwµ | w ∈ W}. In particular,
|Out(U4)| = 16.

The next proposition follows as a corollary, and implies that there is only
one Harbater-Mumford component of H(U4,C32

±
)ab. In chapter VII we will see

that there are two Harbater-Mumford components of H(U4,C32
±
)in. Recall that

mpo denotes the middle product order.
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Proposition 48. Let h = (h1, h
−1
1 , h2, h

−1
2 ) ∈ Ni(U4,C34

±
)in be a Harbater-

Mumford tuple with mpo(h) = 4. Let c1 and c2 be the nontrivial elements of M
which centralize h1 and h2, respectively. Let W be a complement in V for the
subgroup generated by the c1c2, so that h[e|W ] is the set of eight duals if h. For
every h[e|w] ∈ h[e|W ] there exists a unique automorphism ν = ν[e|w] ∈ Aut(U4)
such that ν(h) = h[e|w].

3. Spin Covers

3.1. Spin Groups.
3.1.1. Lifting Involutions. Let θ : Ĝ→ G be a central extension with kernel

an elementary abelian 2-group. An element g ∈ An of odd order has a unique
lift ĝ ∈ Ân to an element of odd (the same) order; the other lifts have order
2 · ord(g). However, if the order of g is even, the order of the lift is independent
of the choice of the lift. In particular, we are interested in lifting elements of
order two through factors of the universal elementary 2-Frattini cover of G. One
method of computation lies in computing the spin covers of G.

3.1.2. Standard Spin Groups. The Lie group SOn(R) admits a degree two
universal cover, denoted by Spinn(R), which is also a topological group so that
the map θ̃ : Spinn(R) → SOn(R) is a nonsplit central cover whose kernel is of
order two.

Let σ : An → SOn(R) be the linear representation induced by the standard
permutation representation of An. The standard spin group of degree n is

Ân = θ̃−1(σ(An)).

The corresponding cover θ : Ân → An is a central Frattini cover with kernel of
order two, which we call the standard spin cover of An.

3.1.3. Clifford Algebras. The spin groups can be defined as certain subgroups
of Clifford algebras. A technique of J. P. Serre uses this Clifford algebra to
obtain information about the order of lifted elements. The following proposition
analyzes the orders involutions lifted from An to Ân, and was reported in [BF02]
Proposition 5.10; it offers an interesting change of pace, so we repeat it here.

Proposition 49. Assume n ≥ 4, and g ∈ An of order 2 is a product of 2s
disjoint 2-cycles. Any lift ĝ ∈ Ân of g has order 4 if s is odd and 2 if s is even.

Proof. We review the Clifford algebra setup used in [Se90]. Let Cn be the
Clifford algebra on Rn with generators x1, . . . , xn subject to relations

x2
i = 1, 1 ≤ i ≤ n, and xixj = −xjxi if i 6= j.

In the Clifford algebra, write [i j] = 1√
2
(xi − xj). Then, [i j]2 = 1 and [i j] =

−[j i]. The collection of [i j] under multiplication generate a subgroup Ŝn. Char-
acterization: It is the central nonsplit extension of Sn whose restriction to trans-
positions splits, and whose restriction to products of two disjoint transpositions
is nontrivial (see [Se92] page 97). The map Ŝn → Sn appears from [i j] 7→ (i j).

So, Ân = An × {±1} if n ≤ 3. That Ân → An is nontrivial if n ≥ 4 shows
from lifts of certain elements of order 2. Example: (1 2)(3 4) lifts to have order
4: ( 1√

2
(x1 − x2)

1√
2
(x3 − x4)

)2

= −[1 2]2[3 4]2 = −1.
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Of course the order of a lift is conjugacy class invariant. Similarly, with n ≥ 8,

([ 12][3 4] . . . [s−1 s])2 = (−1)2(s−2)([ 12][3 4])2([5 6] . . . [s−1 s])2.

By induction, the result is (−1)s: [1 2][3 4] . . . [s−1 s] has order 21+
1−(−1)s

2 . �

3.2. Spin Representations.
3.2.1. Spin Covers. Let G be a finite group, and let σ : G → Sn be a

faithful permutation representation. Suppose that σ(G) ≤ An; for example,
if G is generated by elements of odd order, this will always be the case. Set
Ĝ = θ−1(σ(G)), and let θσ : Ĝ→ G be given by restriction.

A spin representation of G is a faithful permutation representation σ : G→
An such that θσ : Ĝ→ G does not split. We call θσ a spin cover of G.

In this case, that θσ does not split is equivalent to it being a Frattini cover.
Thus, spin covers are quotients of the universal central elementary 2-Frattini
cover of G.

3.2.2. Computing Spin Representations. Proposition 49 offers a serious tool
for computation of the order of lifts of involutions from An to Ân. The next
proposition, which is a rewording of [BF02] Lemma 9.13, uses the coset repre-
sentation to produce a formula for applying this tool to a group embedded in
An.

Proposition 50. Let G be a finite group generated by elements of odd order,
and let T be a coreless subgroup of G. Let σ : G→ Ad be the coset representation
given by T , where d = [G : T ]. Let τ : Ĝ→ G be given by pullback to Âd. Let J
be a conjugacy class of involutions in G, and let a ∈ J . Let a1, . . . , am ∈ T ∩ J
represent the orbits of T on T ∩ J by conjugation. Then the number of cosets of
T in G fixed by right multiplication by a is

f(a) =
m∑
i=1

[CG(ai) : CT (ai)].

Thus d ≥ f(a). If |CT (a)| is constant on T ∩ J , let o(a) = m, so this formula
becomes

f(a) = o(a)[CG(a) : CT (a)].

If â ∈ τ−1(a), then ord(â) = 4 ⇔ (d− f) ≡ 4 (mod 8).

Proof. We have Tga = Tg ⇔ ag
−1 ∈ T , so the fixed cosets are exactly

those represented by elements of G whose inverses conjugate a into T . Suppose
ag

−1
= ai. If g1 ∈ Tg, then g1 = tg for some t ∈ T , and ag

−1
1 = at

−1

i , so
any two members of the same fixed coset conjugate a into the same T orbit. If
g2 ∈ G with ag2 = ai, then gg−1

2 ∈ CG(ai), so the cosets with representatives
conjugating a to ai are in bijective correspondence with CG(ai)/CT (ai). �

3.3. Spin Covers of U5 and U4.
3.3.1. Spin Covers of A5 and A4. Our example base groups have easily de-

termined spin covers.
The spin cover of A5

∼= PSL2(F5) is realized as θ : SL2(F5) → PSL2(F5).
The spin cover of A4

∼= PSL2(F3) is realized as θ : SL2(F3) → PSL2(F3).
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3.3.2. Spin Representations of U5. Let σ : U5 → An be a spin representation,
and let θ : Û5 → U5 be the corresponding spin cover. By [BF02] Proposition
9.12, if â ∈ θ−1(M), then ord(a) = 4 ⇔ θ(a) ∈M r V and ord(a) = 2 ⇔ θ(a) ∈
V . Thus θ is the antecedent universal elementary 2-Frattini cover of U5 (see
subsection III.1.4.3). By [BF02] Corollary 9.16, all spin representations of U5

are of degree 40, 60, or 120.
3.3.3. Spin Representations of U4. We aim to show that U4 has three distinct

spin covers, one of which does not come from a coset representation of U4.

Proposition 51. If σ : U5 → An is a spin representation, and let τ = σ �U4 .
Then τ : U4 → An is a non-transitive spin representation, and the corresponding
spin cover θ : Û4 → U4 is the antecedent central elementary 2-Frattini cover of
U4.

Proof. Since |U4| = 384, U4 cannot act transitively on 40, 60, or 120
elements.

However, if θ : Û4 → U4 is the pullback cover of U4 induced by τ , nevertheless
every involution in M r V ⊂ U4 lifts to an element of order four. So this cover
cannot split.

Since V is the only normal index two subgroup of M0(A4), it is clear that
U4/V → U4/M is the universal central elementary 2-Frattini cover of A4, giving
the last claim. �

Let σ : U5 → An be a spin representation. Let S = StbU5(1) and let
T = S ∩ U4. This induces a transitive representation τ : U4 → Am, where
m = [U4 : T ]; call this the transitive representation of U4 induced by σ. We wish
to show that τ is not a spin representation.

Proposition 52. Let τ : U4 → Am be a transitive faithful representation,
with T = StbU4(1). Then |T | ≤ 24, and consequently, m ≥ 16. Moreover,
[T : T ∩M ] divides 6.

Proof. It suffices to consider |T | = 32 and |T | = 48.
If |T | = 32, then it contains an element x of order four, and |T ∩ J2| = 6.

The elements of J2 do not commute with x. Select distinct element a, ax, b, bx ∈
T ∩ J2. Now aax, bbx ∈ J1 since each is centralized by x. If aax = bbx, then
ab = (ab)x ∈ J1 r{aax}; in any case, T contains at least two nontrivial elements
of V1, and so it contains V1, and T is not coreless.

If |T | = 48, then T cannot contain an element of order four, and again
|T ∩ J2| contains at least six elements. Apply the previous argument, with x an
element of order three.

The last statement comes from the fact that if 4 divides [T : T ∩M ], then
the image of T in A4 contains K4, and any lift of K4 contains the entire 2-Sylow
of U4; in this case, T is not coreless. �

Proposition 53. Let τ : U4 → Am be a transitive spin representation and
let θ : Û4 → U4 be the induced cover. Then θ is not the antecedent central
p-Frattini cover of U4, and τ is not induced by a spin representation of U5.

Proof. Assume that θ is the antecedent central p-Frattini cover of U4. Then
ord(â) = 4 if a ∈M r V , and ord(â) = 2 if a ∈ V . Let T = StbU4(1). Let Y be
the 2-Sylow subgroup of T . Since T is coreless, Y cannot contain V .
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Suppose T ∩ M ⊂ V . For a ∈ M r V , o(a) = 0 so the degree of the
representation is congruent to four modulo eight, which implies that |Y | ≥ 16.
Since the squares of elements of order four are in M r V , we have Y ⊂ V , so
|Y | ≤ 8, a contradiction. Thus |T ∩M | = 2|T ∩ V |.

Suppose that |Y | ≤ 8. Let d = [U4 : T ]. Then 24 divides d, and 23 divides
[CG(a) : CT (a)] = 64/|CT (a)| for a ∈ J4 or J5, whence 8 divides d − f , a
contradiction. Thus |Y | = 16, and from Proposition 52, |T | = 16. Moreover, T
contains at most one coset of elements of order four, so the size of T ∩M is either
8 or 16. Thus the size of T ∩V is either 4 or 8. The corresponding possible sizes
for T ∩ J2 are 2 or 6.

Suppose |T ∩J2| = 2. In this case, T contains an element of order four which
swaps these elements, so o(a) = 1, and f(a) = [CG(a) : CT (a)] = 32/8 = 4, so
d− f = 24− 4 = 20, and ord(â) = 4.

Suppose |T ∩ J2| = 6. Then T ⊂M , and since M is abelian, o(a) = 6. Thus
f(a) = 6(32/16) = 12, and d− f = 24− 12 = 12; in this case, ord(â) = 4.

Either case contradicts that a ∈ V ⇒ ord(â) = 2, and completes the proof.
�

The lifting pattern of a representation τ : U4 → An is

patτ = (x1, x2, x3, x4, x5),

where xi is the order of a lift of ai ∈ Ji to Ân.

Proposition 54. Let x ∈ U4 be an element of order four, and let a ∈
M r (V ∪ CM (x)). Let T = 〈x, a〉. Then T is coreless in U4, |T | = 16, and
|T ∩M | = 8. Let τ : U4 → Am be the associated transitive faithful representation.
Then τ is a spin representation, and

(a) if a ∈ J3, then patτ = (2, 4, 4, 2, 2);
(b) if a /∈ J3, then patτ = (2, 4, 2, 4, 4).

Proof. As in the proof of Proposition 53, |T ∩ V | = 4, |T ∩ J2| = 2, and if
a ∈ J2, then ord(â) = 4. Moreover |T ∩ J1| = 1, so if a ∈ J1, then CT (a) = T ,
o(a) = 1, f(a) = 128/16 = 8, and d− f = 24− 8 = 16, so ord(â) = 2.

Suppose a ∈ J3; then ax is also in J3. If T were to contain any more
elements from J3, it would not be coreless. Thus o(a) = 1, f(a) = 96/8 = 12,
and d−f = 24−12 = 12, so ord(â) = 4. There are two elements in T ∩ (J4∪J5),
one of which is x2, and the other, which we label b, is also is centralized by x.
Then CT (a) = T . Now b = x2axa = xax, so b is conjugate to x2 in U4. Thus
o(a) = 2, f(a) = 2(64/16) = 8, and d− f = 24− 8 = 16, so ord(â) = 2.

Suppose a ∈ J4 (the case of J5 is identical). Then ax ∈ J4, and {1, aax} ∈ V1.
If T contains an element of J3, then it must contain at least two; this cannot
be the case, since x2 ∈ T . So T ∩ J3 = ∅. Thus for b ∈ J3, we have o(b) = 0,
f(b) = 0, d− f = 24, and ord(b̂) = 2.

Let c1, c2 ∈M r V be the elements of T in J4 ∪ J5 which are centralized by
x; one of them is x2. If c1 ∈ J4, then c1aa

x ∈ J5. For b ∈ J4, we have o(b) = 2,
f(b) = (64/16) + (64/8) = 4 + 8 = 12, d− f = 24− 12 = 12, so ord(b̂) = 4. �

Each lifting pattern produces a distinct spin cover. Denote them by
(a) θ1 comes from pat = (2, 2, 4, 4, 4);
(b) θ2 comes from pat = (2, 4, 2, 4, 4);
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(c) θ3 comes from pat = (2, 4, 4, 2, 2).
Computations aided by [GAP] indicate that each of these obstructs a different
set of Nielsen tuples (see chapter IX).



CHAPTER VII

Ascent of MT2(A4, C32
±
)

1. The Nielsen Class Ni(A3,C32
±
)

1.1. Definition of Ni(A3,C32
±
). Let A3 denote the subgroup of S3 gener-

ated by g = (1 2 3), that is, cyclic of order three. Let C+ = C+(A3) be the
conjugacy class of g (containing only g) and C− = C−(A3) denote the conjugacy
class of g2 = g−1.

Let C32
±

= (C+, C−, C+, C−). Our interest in the Nielsen class (A3,C32
±
) lies

in the fact that it codifies information about braiding arrangements of conjugacy
classes.

1.2. Elements of Ni(A3,C32
±
). The total Nielsen class Ni(A3,C32

±
)to con-

tains exactly
(
4
2

)
= 6 elements corresponding to the six possible arrangements of

the conjugacy classes. Since A3 is abelian, the inner classes are the same. Now
A3 has an outer automorphism of order two which sends an arrangement to its
complement. We enumerate these arrangements and their complements:

List 55 (Elements of Ni(A3,C32
±
)in).

[1] +-+- [4] -+-+

[2] ++-- [5] --++

[3] +--+ [6] -++-

1.3. Braid Action on Ni(A3,C32
±
). The Hurwitz monodromy group H4

acts on Ni(A3,C32
±
)in. Using the enumeration of the arrangements above, we

compute that

Q1 7→ (1 6)(3 4); Q2 7→ (1 2)(4 5); Q3 7→ (1 3)(4 6).

The reduction kernel has this effect:

Q1Q
−1
3 7→ (1 4)(3 6); (Q1Q2Q3)2 7→ (2 5)(3 6).

Thus the reduced classes equal the absolute classes, and are represented by [1],
[2], and [3]. On the reduced classes we have

Q1 7→ (1 3); Q2 7→ (1 2); Q3 7→ (1 3),

so the monodromy group of the cover H(A3,C32
±
)in,rd → J4 is S3. The branch

cycle description of this cover is

γ = (γ0, γ1, γ∞) 7→ ((1 3 2), (2 3), (1 2)).

Apply the Riemann-Hurwitz formula to see that the genus of H(A3,C32
±
)in,rd

equals zero.

101
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1.4. Branch Cycle Design for H(A3,C32
±
)in,rd → J4. Recall that the

hubs of a branch cycle design are the integers of the branch cycle description,
and that the nodes are the disjoint cycles, including those of length 1. In our
current situation, label the hubs by [1], [2], and [3], and nodes as follows:

• Over 0, let A1 = (1 3 2);
• Over 1, let B1 = (1) and B2 = (2 3);
• Over ∞, let C1 = (1 2) and C3 = (3).

The branch cycle design for this cover is given by the following labeled planar
graph. We take care that the twist sequence is accurately represented at each
vertex.
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Branch Cycle Design for H(A3,C32
±
)in,rd → J4

Produce maximal trees initiated at specified basepoints and terminating in
nodes according to the algorithm presented in chapter V. There are two pa-
rameters to this algorithm; the initial vertex and the initial edge. Select a
Harbater-Mumford tuple as a basepoint. In Ni(A3,C32

±
)in,rd, one such tuple is

described by +-+-; that is, it is labeled [1]. Draw trees such that the height of
a node indicates the complexity of the design generator it produces.
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Recall that nodes over 0, 1 ∈ J4 are finally ramified if they ramify to order
three or two, respectively, and no further ramification can occur over them. The
branches terminating in hubs or finally ramified nodes may be ignored.

If H is a reduced rank four Hurwitz space, let H∗ denote H with the nodes
over 0 and 1 which are not finally ramified removed. Let J ∗

4 = J4 r {0, 1}, so
that the design generators are images in J ∗ of loops in H∗. In the present case,
all three trees will give the same generators for π1(H∗(A3,C32

±
)in,rd, [1]) inside
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π1(J ∗
4 , j0), up to order. Choose the first tree, ignore the vertices B2 and [2] and

their adjacent edges, and obtain these walks and generators:

W1 : [1]→ A1→ [3]→ C3 β1 = γ0γ∞γ
−1
0

W2 : [1]→ B1 β2 = γ1

W3 : [1]→ C1 β3 = γ2
∞

Let β = (β1, β2, β3). Any Hurwitz cover of J4 which factors throughH(A3,C32
±
)in,rd

has branch cycles over H(A3,C32
±
)in,rd given by acting on the fiber over the ar-

rangement +-+- by β.

2. The Nielsen Class Ni(A4,C32
±
)

2.1. Definition of Ni(A4,C32
±
). Let A4 be the alternating group on 4 let-

ters in its standard representation. It is generated as a subgroup of S4 by (1 2 3)

and (1 3 4). The Sylow 2-subgroup of A4 is a normal Klein four subgroup which
we denote by K. We have A4/K ∼= A3, and A4 = K oA3.

There are two conjugacy classes of three cycles in A4, each containing 4
elements. For an element of order three, its inverse is in the opposite conjugacy
class. An outer automorphism (conjugation by (1 2)) swaps these conjugacy
classes.

Let C+ = C+(A4) be the conjugacy class of (1 2 3) and C− = C−(A4) be
the conjugacy class of (1 3 2). Let C32

±
= (C+, C−, C+, C−). We analyze the

Nielsen class Ni(A4,C32
±
).

2.2. Size of Ni(A4,C32
±
)in. To compute the size of the inner Nielsen class

of (A4,C32
±
), note that six arrangements of these conjugacy classes appear in the

Nielsen class, so we may count the total number of Nielsen tuples in the ordered
arrangement C32

±
and multiply by six, then divide by the order of A4 to obtain

the number of inner Nielsen tuples.
We begin by showing that if g1 ∈ C+ and g2 ∈ C−, then g2 = g−1

1 or
ord(g1g2) = 2. Conjugate so that g1 = (1 2 3), and consider the action of g1
on C−. There is one orbit of length 1 consisting of g−1

1 and one orbit of length
3. Suppose that g2 is in the length 3 orbit; we show that ord(g1g2) = 2. Since
g1g

g1
2 = g2g1 and ord(g1g2) = ord(g2g1), it suffices to test a representative from

the orbit. Such a representative is g2 = (1 2 4), and g1g2 = (1 4)(2 3), which
has order 2.

Moreover, if g1 and g2 are in the same conjugacy class and generate A4,
there product has order 3. To see this, again let g1 = (1 2 3) and select any
nonidentical element in the same conjugacy class, say g2 = (1 3 4). Then g1g2 =
(1 2 4), which has order 3.

Consider the map C+×C− → A4 given by (g1, g2) 7→ g1g2. The order of the
product is either 1 or 2. If the order of the product is 1, then g2 = g−1

1 . There
are 4 such pairs, so there are 16− 4 = 12 pairs with product of order 2.

In a Nielsen tuple (g1, g2, g3, g4) of rank 4, the product of the second pair
must equal the inverse of the product of the first. Call the first pair the initial
pair and the second pair the terminal pair. Then if the initial pair satisfies
g2 = g−1

1 , the terminal pair satisfies g4 = g−1
3 , and {g1, g3} generates the group.
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The latter condition holds in our case when g1 6= g3 (since g1, g3 ∈ C+), so there
are 4 · 3 = 12 tuples with trivial initial product.

Now suppose that ord(g1g2) = 2. Then {g1, g2} automatically generates A4.
Let C2 denote the conjugacy class of involutions. The 12 elements of C+ × C−
with product of order 2 map surjectively onto C2. Conjugation permutes the
fibers over elements in C2, so all are of the same size. If (g1, g2) maps to h,
then (g1, g2)g maps to h if and only if g ∈ CA4(h). Elements of order two
are centralized by the normal Klein four subgroup of A4, so the fiber over an
element in C2 contains four elements. Thus there are 12 · 4 = 48 tuples with
initial product in C2.

Conclude that |Ni(A4,C32
±
)in| = (12+48)·6

12 = 30.

2.3. Labeling elements of A4. The elements of A4 can be described in
terms of an arbitrary pair of order three generators. Although we understand
A4 so well that this is unnecessary, the technique is presented here in this simple
case to make later extensions more transparent. Notation set here will be used
throughout the rest of this section.

Lemma 56. Let G be a group and let g1, g2 ∈ G be elements of order n.
Set ai = gn−i1 g2g

i−1
1 for i = 1, . . . , n. Then

(a) ag1i = ai+1 for i = 1, . . . , n− 1;
(b) ag1n = a1;
(c) ag2i = ag1i for i = 1, . . . , n, if ord(g1g2) = n = 3.

Proof. Part (a) is a direct computation; part (b) follows because g1 has
order n action.

If ord(g1g2) = n = 3, then a−1
2 = g2g1g2. Compute the orbit of the action

of g2 on this. �

Lemma 57. Let g1, g2 ∈ C+(A4) be distinct.
Then ord(g1g2) = 3 and ord(g−1

1 g2) = 2. Label the following elements of A4:

(1) e is the identity;
(2) a1 = g1g1g2 = g−1

1 g2;
(3) a2 = g1g2g1 = g2g1g2;
(4) a3 = g2g1g1 = g2g

−1
1 ;

Then

(a) K = {e, a1, a2, a3};
(b) ag11 = ag21 = a2, a

g1
2 = ag22 = a3, and ag13 = ag23 = a1;

(c) g1 = ga2
2 and g2 = ga2

1 .

Proof. We have seen that ord(g1g2) = 3 and ord(g−1
1 g2) = 2. Combine

this with Lemma 56 to obtain (a) and (b). Since ord(g1g2) = 3, we have
g2g1g2 = a−1

2 , and since a2 has order two, we have g2g1g2 = a2. Now ga2
2 =

(g1g2g1)g2(g1g2g1) = (g1g2)3g1 = g1. This gives (c). �

Fix g1 = (1 2 3) and g2 = (1 3 4), and let e = (), a1 = (1 4)(2 3),
a2 = (1 2)(3 4), and a3 = (1 3)(2 4), as in the lemma. The tuple g =
(g1, g−1

1 , g2, g
−1
2 ) will be the base camp upon which we mount our ascent to

level one. The elements ai will come into play in the next stage.
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2.4. Elements of Ni(A4,C32
±
)in. To list the elements of this Nielsen class,

it suffices to list five with conjugacy class arrangement (C+, C−, C+, C−), and to
braid each with six braids permuting the arrangements. Up to inner equivalence,
there is only one Nielsen tuple with trivial initial product in this arrangement;
conjugate so that g1 = (1 2 3) and g3 = (1 3 4) to give the first entry in the
list below.

Now suppose g2 = (1 2 4). Then g1g2 = (1 4)(2 3) has order two, and
the above argument shows that the other four inner tuples with initial product
in C2 are given by finding the second pair of entries, that is, four pairs from
C+ × C− with product (1 4)(2 3). These are given by conjugating (g1, g2) by
the centralizer of (1 4)(2 3) in A4. This yields the last four entries in this list:

List 58 (Fiber over +-+- in Ni(A4,C32
±
)rd,in → Ni(A3,C32

±
)rd,in).

[1] ((1 2 3), (1 3 2), (1 3 4), (1 4 3))
[2] ((1 2 3), (1 2 4), (1 3 4), (2 3 4))
[3] ((1 2 3), (1 2 4), (1 4 2), (1 3 2))
[4] ((1 2 3), (1 2 4), (1 2 3), (1 2 4))
[5] ((1 2 3), (1 2 4), (2 4 3), (1 2 3))

2.5. Reduction of Ni(A4,C32
±
)in. The amount of reduction is a braid in-

variant, because we reduce by a subgroup which is normalized by braiding. Thus
to compute the amount of reduction of this Nielsen class, it suffices to consider
only the fiber listed above, as it will pass through every braid orbit.

Direct computation on Nielsen tuples [1] and [4] show that (q1q2q3)2 acts
trivially, and (q1q−1

3 ) maps each to a tuple to which it is absolutely equiva-
lent. We will see that these represent all braid orbits, which shows that the
amount of reduction in each braid orbit is two. Thus the discrete information
which produces the reduced space (braid action on the Nielsen class) equals that
which produces the absolute space (however, the reduced absolute Nielsen class
is smaller).

Since the amount of reduction in Ni(A3,C32
±
)in is also two, the degrees of

the maps induced by A4 → A3 are the same on the inner Nielsen and reduced
inner Nielsen classes. Thus the list above represents the fiber over +-+- for the
reduced inner Nielsen class as well as the inner Nielsen class.

2.6. Braid Action on Ni(A4,C32
±
)in,rd via Branch Cycle Designs. Let

H∗(A3,C32
±
)in,rd denote the reduced inner space, with points to fill in the fi-

nally ramified places over 0 and 1, and with the unramified node over 1 re-
moved. Using branch cycle designs, we have computed that classical generators
for H∗(A3,C32

±
)in,rd have these images in J ∗:

β = (β1, β2, β2) = (γ0γ∞γ
−1
0 , γ1, γ

2
∞).

Use this to compute the reduced braid action on the Nielsen class. Compute the
orbits of Nielsen tuple [1]:

((1 2 3), (1 3), (1 2)).

Compute the orbits of Nielsen tuple [4]:

((4 5), (1), (4 5)).

Therefore
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(a) H4 has two orbits on Ni(A4,C32
±
)in, one of size 6 ·3 = 18 and the other

of size 6 · 2 = 12;
(b) H(A4,C32

±
)in,rd has two components, each of genus zero.

2.7. Branch Cycle Design for H(A4,C32
±
)in,rd,HM → H(A3,C32

±
)in,rd. If

H is a Hurwitz space, letHHM denote the disjoint union of its Harbater-Mumford
components; in the present case, there is only one such component. The branch
cycles forH(A4,C32

±
)in,rd,HM → H(A3,C32

±
)in,rd are ((1 2 3), (1 3), (1 2)). La-

bel the branch points on H(A3,C32
±
)in,rd by A, B, and C, and the nodes as follows:

• Over A, let A1 = (1 2 3);
• Over B, let B1 = (1 3) and B2 = (2);
• Over C, let C1 = (1 2) and C3 = (3).

We obtain the following branch cycle design.

u

u u

e e

e
e e

[1]

[2] [3]

C1 B1

A1

B2 C3

@
@

@
@

�
�

�
�

Branch Cycle Design for H(A4,C32
±
)in,rd,HM → H(A3,C32

±
)in,rd

Our basepoint for covers of H∗(A4,C32
±
)in,rd will be g = (g1, g−1

1 , g2, g
−1
2 ),

where g1 = (1 2 3) and g2 = (1 3 4); this is the Harbater-Mumford tuple
whose middle product has order two, and is enumerated [1] above. Draw the
three possibilities for trees based at [1].

t

t t
d d d

d d

@
@

@
@

�
�

�
�

�
�

�
�

[1]

A1 B1 C1

[2] [3]

B2 C3

t

t t
d d d

d d

@
@

@
@

�
�

�
�

[1]

B1 C1 A1

[3] [2]

C3 B2

t

t t
d d d

d d

@
@

@
@

�
�

�
�

[1]

C1 A1 B1

[2] [3]

B2 C3

Select the middle tree, and compute the maximal trails beginning at the hub
[1] and ending at nodes within this maximal tree. Since B lies over 1 ∈ J4, the
node labeled B1 is finally ramified, and may be omitted. We obtain these walks
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and generators:

W1 : [1]→ B1→ [3]→ C3 α1 = β2β3β
−1
2 = γ1γ

2
∞γ

−1
1

W2 : [1]→ C1→ [2]→ B2 α2 = β3β2β
−1
3 = γ2

∞γ1γ
−2
∞

W3 : [1]→ C1 α3 = β2
3 = γ4

∞

W4 : [1]→ A1 α4 = β3
1 = γ0γ

3
∞γ

−1
0

Let α = (α1, α2, α3, α4). Any Hurwitz cover of J by a reduced rank four
Hurwitz space which factors through H(A4,C32

±
)in,rd,HM has branch cycles over

H(A4,C32
±
)in,rd,HM given by acting on the fiber over the g by α.

3. The Nielsen Class Ni(Â4,C32
±
)

3.1. Definition of Ni(Â4,C32
±
). Let Q8 denote the quaternion group of

order 8, generated elements i and j of order 4 with ij = k, and we write Q8 =
{1,−1, i,−i, j,−j, k,−k}. This group has an automorphism σ ∈ Aut(Q8) given
by i 7→ j and j 7→ −k so that k 7→ −i. This automorphism must fix the unique
element of order two in Q8. Identify σ with (1 2 3) and the cyclic subgroup of
Aut(Q8) generated by σ with A3, and form the semidirect product Â4 = Q8oA3.

The center of Â4 is generated by the single involution fromQ8, and Â4/Z(Â4) =
(Q8/Z(Q8)) o A3 = A4. Thus Â4 is a central extension of A4 by a single in-
volution denoted by −1. The map Â4 → A4 is the spin cover of A4; it can be
identified with the cover SL2(F3) → PSL2(F3). Any generators for A4 lift to
generators for Â4; it is a Frattini extension. The outer automorphism of A4 lifts
to an outer automorphism of Â4.

Elements of order 2 in A4 lift to elements of order 4 in Â4, and elements
of order 3 in A4 have a unique element of order 3 in Â4 above them (the other
element above a three cycle has order six).

The conjugacy classes of three cycles in A4 lift uniquely to conjugacy classes
in Â4, which we denote by C+(Â4) and C−(Â4). Let C32

±
denote (C+, C−, C+, C−)

in either case.
The product of elements of order 3 from opposite conjugacy classes in Â4

has order 1 or 4. To see this, suppose the elements are not inverses. Then the
product has order 2 is A4, and the product of the lifts is a lift of the product.
Lifts of elements of order 2 have order 4.

The product of distinct elements of order 3 from the same conjugacy class
in Â4 has order 6. To see this, apply an automorphism to select the first element
to be ĝ1 = (1, g) with g = (1 2 3) in the semidirect product formulation; the
conjugate element will be ĝ2 = (x, g) with x ∈ {i, j, k}. Then ĝ1ĝ2 = (xσ, g2),
whose cube is (xσxxσ

−1
, 1) = (−1, 1).

3.2. Size of Ni(Â4,C32
±
)in. With unique lifts to tuples of elements of order

three, we obtain an injective map Ni(Â4,C32
±
) → Ni(A4,C32

±
) which commutes

with the braid action. This map is not surjective. An element in Ni(A4,C32
±
)

which does not lift to an element of Ni(Â4,C32
±
) is obstructed with respect to

Â4 → A4.
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Let g = (g1, g2, g3, g4) ∈ Ni(A4,C32
±
) and ĝ = (ĝ1, ĝ2, ĝ3, ĝ4) ∈ Â4

4, where
ĝi is the unique element of order 3 over gi. Then g is obstructed if and only if
Πĝ = −1. This product is a braid invariant; thus we may refer to entire orbits
of the braid action as either obstructed or not.

We have seen that there are two braid orbits on Ni(A4,C32
±
); these may be

differentiated by this invariant. One easily sees that Harbater-Mumford tuples
always lift, so their orbits are unobstructed. Now consider the tuple labeled [4]

in List 58. It is of the form (g1, g2, g1, g2) with g1 and g2 in different conjugacy
classes, so ord(g1g2) = 2. Therefore ord(ĝ1ĝ2) = 4, so (ĝ1ĝ2)2 = −1, and this
tuple is obstructed. Therefore the size of Ni(Â4,C32

±
)in is the size of the braid

orbit in Ni(A4,C32
±
)in which contains the Harbater-Mumford tuples.

Conclude that |Ni(Â4,C32
±
)in| = 18.

4. The Nielsen Class Ni(O4,C32
±
)

4.1. Definition of Ni(O4,C32
±
). Let Z4 denote a cyclic group of order 4

generated by z with identity e. Let Z2
4 = Z4 × Z4; it is generated by (z, e) and

(e, z). Then Aut(Z2
4 ) contains an element σ of order 3 defined by (z, e)σ = (e, z)

and (e, z)σ = (z, z3). Identify (1 2 3) with σ and 〈σ〉 with A3. Set O4 = Z2
4 oA3.

The Sylow 2-subgroup of O4 is normal and abelian. The elements of order two in
O4 generate a normal Klein four subgroup; denote it by L. This is the Frattini
subgroup of O4. We have O4/L ∼= A4.

Let ϕ : O4 → A4 be the canonical homomorphism. This is a Frattini cover,
so any lift of a set of generators of A4 produces a set of generators for O4.
Elements of order 2 in A4 lift to elements of order 4 in O4. By Proposition 9,
the conjugacy classes C32

±
in A4 lift uniquely to conjugacy classes in O4. We

may consider L as an A4 module; clearly three-cycles in A4 act transitively on
the involutions in L, and involutions in A4 act trivially. In particular, O4 is
centerless, and the centralizer in L of an element h of order three in O4 is trivial,
so the coset of h is hL = {hl | l ∈ L} = {hl | l ∈ L}.

The conjugacy classes of three cycles may be differentiated by their action
on L; that is, if we enumerate the three nontrivial elements of L, an element of
order 3 in O4 acts on them as a three cycle. Those in one conjugacy class act as
(1 2 3) and those in the other act as (1 3 2). For l ∈ L, let l+ = lh for h ∈ C+

and l− = lh for h ∈ C−.

4.2. Size of Ni(O4,C32
±
)in. We have seen that |Ni(A4,C32

±
)in| = 30.

Elements of order three in O4 have trivial centralizers, and the map O4 → A4

is a Frattini cover. Additionally, both groups are centerless. Thus by Proposition
12, every element of Ni(A4,C32

±
)in,rd lifts to Ni(O4,C32

±
)in, and

|Ni(O4,C32
±
)in| = |L|2|Ni(A4,C32

±
)in| = 42 · 30 = 480,

with 288 of these over the Harbater-Mumford orbit of Ni(A4,C32
±
)in and 192 over

the other orbit. In particular, the fiber over a point in Ni(A4,C32
±
)in contains

sixteen points.
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This method will not work for computing the size of Ni(A4,C32
±
)in from

the size of Ni(A3,C32
±
)in because A4 → A3 is not a Frattini cover; the Frattini

subgroup of A4 is trivial.

4.3. Duals and Perturbations in Ni(O4,C32
±
)in. Let h = (h1, h

−1
1 , h2, h

−1
2 )

be a Harbater-Mumford tuple. Since CL(h) is trivial for h of order 3, the four
duals and four perturbations are distinct up to inner equivalence. The fiber over
g consists of the duals of h and their perturbations, for a total of 16 elements.

There are two types of Harbater-Mumford tuples in Ni(O4,C32
±
); those with

middle product 4 have arrangement +-+- or -+-+ and those of middle product 3
have arrangement +--+ or -++-. Reduction preserves these distinctions.

Suppose that mpo(h) = 4. Then the middle product of h commutes with
elements of L, so the perturbations are homogeneous:

h[l|e] = (h1, (h−1
1 )l, hl2, h

−1
2 ).

4.4. Reduction of H(O4,C32
±
)in. The action of reduction is faithful, so

reduction is 4 to 1. Downstairs over A4, reduction is 2 to 1. Thus reduction
glues together pairs of fibers (via Q1Q

−1
3 ) and has a 2 to 1 action within a fiber

(via (Q1Q2Q3)2).
In particular, in the unreduced inner Nielsen classes, there are 16 Harbater-

Mumford tuples lying over 4 such tuples in A4, and in the reduced classes there
are 4 Harbater-Mumford tuples lying over 2. Given h = (h1, h

−1
1 , h2, h

−1
2 ), there

is a unique nontrivial l ∈ L such that (h1, h
−1
1 , hl2, (h

−1
2 )l) is reduction equivalent

to h (via (Q1Q2Q3)2; Q1Q
−1
3 actually changes the arrangement of the conjugacy

classes).
Let h+ = (h1, h

−1
1 , hl

+

2 , (h
−1
2 )l

+
) and h− = (h1, h

−1
1 , hl

−

2 , (h−1
2 )l

−
); these

are equivalent modulo reduction, and represent the reduced dual of h. The
perturbations remain distinct upon reduction.

4.5. Labeling Elements of O4. Let g1, g2 ∈ A4 be given by g1 = (1 2 3)

and g2 = (1 3 4). Compute that
• ord(g2g1) = 3;
• ord(g1g2g1) = 2;
• gg1g2g11 = g2;
• gg1g2g12 = g1.

Let h1, h2 ∈ O4 such that h1 7→ g1 and h2 7→ g2. Then ord(h1h2) = 3 and
ord(h1h

−1
2 ) = 4. Moreover, the nontrivial elements of Klein four kernel of

A4 → A3 are g1g1g2, g1g2g1, and g2g1g1. This motivated the investigation
which produced the following definitions and lemmas.

Lemma 59. Let h1, h2 ∈ C+(O4) be distinct.
Then ord(h1h2) = 3 and ord(h1h

−1
2 ) = 4. Label the following elements of O4:

(1) e is the identity;
(2) a1 = h1h1h2 = h−1

1 h2 = (h−1
2 h1)−1;

(3) a2 = h1h2h1 = (h2h1h2)−1;
(4) a3 = h2h1h1 = h2h

−1
1 = (h1h

−1
2 )−1;

(5) o1 = a2
1;

(6) o2 = a2
2;
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(7) o3 = a2
3.

Then
(a) L = {e, o1, o2, o3};
(b) ah1

1 = a2 and ah1
2 = a3, and these elements have order 4;

(c) oh1
1 = o2 and oh1

2 = o3, and these elements have order 2;
(d) o+1 = o2 and o+2 = o3;
(e) h1 = ha2o1

2 ;
(f) h2 = ha2o3

1 .

Proof. The conjugations in (b) are immediate computations, and a1 =
h−1

1 h2 has order four since h−1
1 and h2 are neither conjugates nor inverses. Part

(c) follows by squaring, since conjugation is a homomorphism.
Now

o2 = h1h2h1h1h2h1

= (h1h
−1
2 )(h−1

2 h1)(h1h
−1
2 )(h−1

2 h1) [ord(h2) = 3 ⇒ h2 = h−2
2 ]

= o1o3 [h1h
−1
2 and h−1

2 h1 commute].

Since o1 and o3 commute, {e, o1, o2, o3} form a Klein four group. This proves
(a).

Part (d) follows from (c), recalling that all elements in C+ act the same on
the nontrivial elements of L, and all elements of C− act in the reverse.

As for (e), first note that ho11 = o1h1o1h
−1
1 h1 = o1o

−
1 h1 = o2h1; conjugate

by o1 and use this to see that it suffices to show that hh1h2h1
2 = o2h1. Note that

since o3 is an involution, o3 = o−1
3 = (h1h

−1
2 )2, so

hh1h2h1
2 = h−1

1 h−1
2 h−1

1 h2h1h2h1

= h1(h1h
−1
2 )(h−1

1 h2)(h1h
−1
2 )h−1

2 h1 [ord(h1) = ord(h2) = 3]

= h1o3(h−1
1 h2)h−1

2 h1 [h−1
1 h2 and h1h

−1
2 commute]

= o
h−1
1

3 h1

= o2h1.

The proof of part (f) is analogous, and has the following consequence. Since
h2 = hh1h2h1o1o2

1 , we have hh1h2h1o1
1 = ho22 . �

4.6. A Fiber of Ni(O4,C32
±
)in,rd → Ni(A4,C32

±
)in,rd. Continue notation

from the previous subsection. For the rest of this section, we sometimes shorten
notation as follows:

(1) a = o1;
(2) b = o2;
(3) c = o3;
Consider the map Ni(O4,C32

±
)in,rd → Ni(A4,C32

±
)in,rd. The fiber over g

consists of perturbations of duals of h. For x, y ∈ O4, set

h[x|y] = (h1, (h−1
1 )x, hyx2 , (h−1

2 )y).

Typically x, y ∈ L, but we reserve some leeway in this regard.

Lemma 60. h[x|y] = h[x|yb] modulo inner reduction, via (Q1Q2Q3)2.
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Proof. Conjugate h(Q1Q2Q3)2 by h1h2 to see that this tuple is equivalent
to (h2, h

−1
2 , h1, h

−1
1 ). Now conjugate by a2o1 and apply that ha2o1

1 = ho22 . �

A complete set of representative tuples upon which design generators act
can now be given.

List 61 (Fiber over g in Ni(O4,C32
±
)in,rd → Ni(A4,C32

±
)in,rd).

[1] h[e|e]
[5] h[b|e]

[2] h[e|a]
[6] h[b|a]

[3] h[a|e]
[7] h[c|e]

[4] h[a|a]
[8] h[c|a]

We use this characterization of the fiber over an Harbater-Mumford tuple in
Ni(A4,C32

±
) to further investigate the Nielsen class Ni(O4,C32

±
).

4.7. Braid Action on Ni(O4,C32
±
)in,rd via Branch Cycle Designs. De-

note the components of H(O4,C32
±
)in,rd which lie over H(A4,C32

±
)in,rd,HM by

H(O4,C32
±
)in,rd,Re. Using branch cycle designs, we have computed that classical

generators with nontrivial action for π1(H∗(A4,C32
±
)in,rd,HM) inside π1(J4) are

α = (α1, α2, α3, α4) = (γ1γ
2
∞γ

−1
1 , γ2

∞γ1γ
−2
∞ , γ4

∞, γ0γ
3
∞γ

−1
0 ).

View g = ((1 2 3), (1 3 2), (1 3 4), (1 4 3)) as a point in H(A4,C32
±
)in,rd,HM,

and the fiber over it (as enumerated above) as points in H(O4,C32
±
)in,rd,Re. The

action of path lifting corresponds to the braid action.

Lemma 62. Let α be a braid which acts on perturbed duals of an arbi-
trary lifted h over an Harbater-Mumford tuple g induced by abelian kernel K.
If h[x|e]α = h[f1(x)|f2(x)] for some functions f1, f2 : K → K, then h[x|y]α =
h[f1(x)|yf2(x)] = (h[x|e]α)[e|y].

Proof. Since h is an arbitrary lift, then h[e|y] is also an arbitrary lift.
Replace h2 with hy2 throughout the computation to obtain the first equal sign.
The second is explained by the fact that K is abelian. �

We now compute the action of α on the fiber over g as enumerated above. All
equal signs mean “modulo inner reduction”. In each case, for arbitrary x, y ∈ L,
compute the action on h[x|e] and then insert y via the previous lemma. We com-
pute h[x|y]αi, then apply this to the enumeration of the fiber over g as given by
List 61 to obtain the image of αi in under the map π1(H∗(A4,C32

±
)in,rd,HM → S8,

which is the monodromy representation of the coverH(O4)in,rd,Re → H(A4,C32
±
)in,rd,HM.

The most difficult to compute is α4, so we compute the first three and know that
α4 is the inverse of the product of the first three.
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4.7.1. Action of α1. Since hx2h
−1
2 = xxh

−1
2 = xx− = x+, modulo inner

reduction we have

h[x|e]α1 =
(
h1, (h−1

1 )x, hx2 , (h
−1
2 )

)
γ1γ

2
∞γ1

=
(
(h−1

1 )x, hx2 , (h
−1
2 ), h1

)
γ2
∞γ1

=
(
(h−1

1 )x, hxx
+

2 , hx
+

2 , h1

)
γ1

=
(
h1, (h−1

1 )x, hxx
+

2 , (h−1
2 )x

+)
= h[x|x+].

Therefore

α1 : h[x|y] 7→ h[x|yx+] ⇒ α1 7→ (1)(2)(3)(4)(5 6)(7 8);

in particular, α1 has trivial action on the first four tuples.
4.7.2. Action of α2. The following computation will be used again in a more

complex group; we do not use the fact that the Sylow 2-subgroup is abelian, but
only that the element of the kernel (in this case L) commute with elements of
this Sylow. We will use these comments:

(1) xh = hh−1xh = hx− for h ∈ C−;
(2) (h1h

−1
2 )−1 = a3;

(3) x1 = (h−1
1 )x

−
ha3

1 = x+h−1
1 a−1

3 h1a3 = x+a−1
1 a3;

(4) x2 = x−a2a
2
1 so that (hx

−

2 )x2 = h1;
(5) a3a2 = a−1

1 ;
(6) a3x2 = a3x

−a2a
2
1 = x−a1;

(7) x1x2 = x+a−1
1 a3x

−a2a
2
1 = x;

(8) ha3h
−1
1

1 = ha2
1 = h

a2
3

2 ;

(9) ha1h
−1
1

2 = h
a2
3

2 .

h[x|e]α2 =
(
h1, (h−1

1 )x, hx2 , h
−1
2

)
γ2
∞γ1γ

−2
∞

=
(
(h−1

1 )xh
−1
1 , h1, h

−1
2 , h

xh−1
2

2

)
γ2
∞γ1γ

−2
∞ [via (Q1Q

−1
3 )]

=
(
(h−1

1 )x
−
, h1, h

−1
2 , hx

−

2

)
γ2
∞γ1γ

−2
∞ [comment (1)]

=
(
(h−1

1 )x
−
, ha3

1 , (h
−1
2 )a3 , hx

−

2

)
γ1γ

−2
∞ [comment (2)]

=
(
hx

−

2 , (h−1
1 )x

−
, ha3

1 , (h
−1
2 )a3

)
γ−2
∞

=
(
hx

−

2 , (h−1
1 )x

−x1 , ha3x1
1 , (h−1

2 )a3
)

[comment (3)]

=
(
h1, (h−1

1 )x
−x1x2 , ha3x1x2

1 , (h−1
2 )a3x2

)
[conj by x2]

=
(
h1, (h−1

1 )x
+
, ha3x

1 , (h−1
2 )x

−a1
)

[comments (6) and (7)]

=
(
h1, (h−1

1 )x, ha
2
3x
−

2 , (h−1
2 )a

2
3x

+)
[conj by h−1

1 ]

= h[x|x+c].

Therefore

α2 : h[x|y] 7→ h[x|yx+c] ⇒ α2 7→ (1 2)(3 4)(5)(6)(7)(8);

in particular, α2 has trivial action on the last four tuples.
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4.7.3. Action of α3. The order of the middle product of a perturbation is
equal to order of the middle product of the original tuple; both equal the order
of h4h1. Now ((h−1

1 )xhx2) = ((h−1
1 )h2)x = a1. Thus ((h−1

1 )xhx2)−2 = a−2
1 = a,

and

h[x|e]α3 = (h1, (h−1
1 )x, hx2 , h

−1
2 )γ4

∞

= (h1, (h−1
1 )xa, hxa2 , h−1

2 )

= h[xa|e].

Therefore

α3 : h[x|y] 7→ h[xa|y] ⇒ α3 7→ (1 3)(2 4)(5 7)(6 8).

4.7.4. Action of α4. Finally, use that fact that Πα = 1 to compute

α4 = (α1α2α3)−1

7→ ((5 6)(7 8)(1 2)(3 4)(1 3)(2 4)(5 7)(6 8))−1

= (1 4)(2 3)(5 8)(6 7).

4.7.5. Conclusions regarding H(O4,C32
±
)in,rd. There are two components of

H(O4,C32
±
)in,rd which lie over H(A4,C32

±
)in,rd,HM; each is a Klein four nor-

mal cover ramified over three points. Only one of these components contains
Harbater-Mumford points.

4.8. Branch Cycle Design for H(O4,C32
±
)in,rd,HM → H(A4,C32

±
)in,rd,HM.

Let Y and X denote the closures of the components of H(O4,C32
±
)in,rd and

H(A4,C32
±
)in,rd which contain Harbater-Mumford tuples. Let ϕ : Y → X de-

note the canonical ramified cover. This is a three branch point normal cover
whose group is Klein four. The branch cycle description for ϕ is given by
((1), (1 2)(3 4), (1 4)(2 3), (1 3)(2 4). We include the initial unramified point,
as it may become a nontrivial branch point at a later stage. Denote the branch
points by A, B, C, and D, with corresponding generators α1, α2, α3, and α4. Denote
the nodes over these branch points as follows:

A: A1 = (1), A2 = (2), A3 = (3), and A4 = (4);
B: B1 = (1 2) and B3 = (3 4);
C: C1 = (1 4) and C2 = (2 3);
D: D1 = (1 3) and D2 = (2 4).

The branch cycle design for this cover is drawn below. Since B lies over
1 ∈ J4 and is now completely ramified, we may ignore the trails terminating
at B1 and B3. The other trails in the maximal tree with respect to ([1], A1) are
indicated with bold lines.
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Branch Cycle Design for H(O4,C32
±
)in,rd,HM → H(A4,C32

±
)in,rd,HM

The pertinent walks in this tree and the generators they produce are

W1 : [1]→ A1 ω1 = α1 = γ1γ
2
∞γ

−1
1

W2 : [1]→ B1→ [2]→ C2 ω2 = α2α
2
3α

−1
2 = γ2

∞γ1γ
8
∞γ

−1
1 γ−2

∞

W3 : [1]→ C1→ [4]→ D2 ω3 = α2α
2
4α

−1
2 = γ2

∞γ1γ
−2
∞ γ0γ

6
∞γ

−1
0 γ2

∞γ
−1
1 γ−2

∞

W4 : [1]→ B1→ [2]→ A2 ω4 = α2α1α
−1
2 = γ2

∞γ1γ
−2
∞ γ1γ

2
∞γ

−1
1 γ2

∞γ
−1
1 γ−2

∞

W5 : [1]→ C1→ [4]→ A4 ω5 = α3α1α
−1
3 = γ4

∞γ1γ
2
∞γ

−1
1 γ−4

∞

W6 : [1]→ C1 ω6 = α2
3 = γ8

∞

W7 : [1]→ D1→ [3]→ A3 ω7 = α4α1α
−1
4 = γ0γ

3
∞γ

−1
0 γ1γ

2
∞γ

−1
1 γ0γ

−3
∞ γ−1

0

W8 : [1]→ D1 ω8 = α2
4 = γ0γ

6
∞γ

−1
0

5. The Nielsen Class Ni(Ô4,C32
±
)

5.1. Definition of Ni(Ô4,C32
±
). Let Ô4 be the fiber product of Â4 and O4

over A4, as indicated by this commutative diagram:

Ô4 −−−−→ Â4y f1

y
O4

f2−−−−→ A4

Therefore Ô4 = {(ĝ, h) ∈ Â4 × O4 | f1(ĝ) = f2(h)}. In both Â4 and O4, all
elements of order two map to the identity in A4, and centralize the normal two
Sylow. Thus this remains true in Ô4, and the involutions are the nontrivial
elements of the subgroup {±1} × L.
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The kernel of the map Ô4 → O4 contains a single nontrivial element, which
is an involution. This is a central Frattini cover. Every element of order 2 in O4

lifts to two elements of order 2 in Ô4, so this is not a spin cover. Every element
of order 3 in O4 lifts to a unique element of order 3 in Ô4, and the conjugacy
classes lift uniquely. Let C32

±
denote the conjugacy classes in Ô4 as well as in

O4.

5.2. Size of Ni(Ô4,C32
±
)in. The map Ni(Ô4,C32

±
)in → Ni(O4,C32

±
)in is

injective. Since Harbater-Mumford tuples always admit lifts, so do their braid
equivalents, so the map is surjective onto the Harbater-Mumford orbit. Also,
those tuples which are obstructed with respect to Â4 → A4 are necessarily
obstructed with respect to Ô4 → A4, and there lifts to O4 are obstructed with
respect to Ô4 → O4. There remains one braid orbit in Ni(O4,C32

±
) to check; it

suffices to show that perturbations of Harbater-Mumford tuples always lift.
Consider h[b|e]; this is in the non-Harbater-Mumford orbit which is not ob-

structed via Â4. Recall c = (h2h
−1
1 )2. Let ĥi be the unique elements of order

three over hi for i = 1, 2. Let ĉ = (ĥ2ĥ
−1
1 )2; this lifts c, has order two, and com-

mutes with ĥ1ĥ
−1
2 . Then ĥ

[ĉ|e]
lies over h[c|e], and Πĥ

[ĉ|e]
= ĥ1(ĥ−1

1 ĥ2)ĉĥ−1
2 = 1.

This shows that this braid orbit is unobstructed with respect to the map Ô4 →
O4.

5.3. Branch Cycle Design for Ni(Ô4,C32
±
)in,rd,HM → Ni(A4,C32

±
)in,rd,HM.

The components of H(Ô4,C32
±
) map isomorphically onto the unobstructed com-

ponents of H(O4,C32
±
).

Let X denote the Harbater-Mumford component of H(A4,C32
±
)in,rd, Y the

Harbater-Mumford component ofH(O4,C32
±
)in,rd, and Ŷ the Harbater-Mumford

component of H(Ô4,C32
±
)in,rd. Then the covers Ŷ → X and Y → X are iso-

morphic as ramified covers, and Ŷ → X produces the same branch cycle design
as Y → X. Thus we are set up for the last step in our ascent to the Harbater-
Mumford components of H(12Ã4,C32

±
)in,rd.

6. The Nielsen Class Ni(U4,C32
±
)

6.1. Definition of Ni(U4,C32
±
). Let U4 = 1

2Ã4 be the universal exponent
2 Frattini cover of A4. Let M be the kernel of U4 → A4. We understand M as
an A4 module.

The map U4 → A4 factors through the spin cover Â4 of A4; denote the kernel
of U4 → Â4 by V .

The map U4 → A4 factors through O4; let N be the kernel of U4 → O4. The
index of N in M is 4, so the size of N is 8.

The map U4 → A4 factors through the map Ô4 → O4; denote the kernel of
U4 → Ô4 by W . Then W = N ∩ V , and W has index 2 in N . Fit these groups
into a diagram:
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U4 −−−−→ Ô4 −−−−→ Â4y y
O4 −−−−→ A4 −−−−→ A3

The conjugacy classes of three cycles in Ô4 lift uniquely to conjugacy classes
in U4. Again we denote these conjugacy classes by C+ = C+(U4) and C− =
C−(U4), where C− = {h−1 | h ∈ C+}, and denote (C+, C−, C+, C−) by C32

±
.

Our ultimate goal is to understand H(U4,C32
±
)in,rd.

As is the case in O4, conjugate three cycles have the same action on W ; for
h ∈ C+ and w ∈W , let w+ = wh and w− = wh

−1
.

If Y is the normal 2 Sylow of U4, then W = Z(Y ).

6.2. Size of Ni(U4,C32
±
)in. We have seen that |Ni(Ô4,C32

±
)in| = 288.

Let f : U4 → Ô4 be the canonical homomorphism with kernel W . For g ∈ Ô4

of order three, the action of g on W has no nontrivial fixed points. Thus if h ∈ U4

is over g, we have CW (h) is trivial. By Proposition 12,

|Ni(U4,C32
±
)in| =

|W |2|Ni(Ô4,C32
±
)in|

[Z(Ô4) : f(Z(U4))]
=

42 · 288
2

= 2304.

In particular, the fiber over a point in Ni(Ô4,C32
±
)in contains eight points.

6.3. Labeling Elements in U4. We label elements of U4 in a manner
analogous to our labeling in O4, using the same names where appropriate. Here,
however, the ai’s are relative to elements h1, h2 ∈ U4 of order three as opposed
to in O4; they live over the identically named elements in the O4 case.
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Lemma 63. Let h1, h2 ∈ C+(U4) be distinct.
Then ord(h1h2) = 6 and ord(h1h

−1
2 ) = 4. Label the following elements of U4:

(1) e is the identity;
(2) a1 = h1h1h2;
(3) a2 = h1h2h1;
(4) a3 = h2h1h1;
(5) o1 = a2

1;
(6) o2 = a2

2;
(7) o3 = a2

3;
(8) h3 = (h1h2)2 ∈ C+;
(9) h4 = (h2h1)2 ∈ C+;

(10) e1 = (h2h3)3 = [a1, a
−1
3 ] = [a2, a

−1
1 ] = [a3, a

−1
2 ];

(11) e2 = (h3h1)3 = [a2, a3] = [a2, a
−1
1 ] = [a3, a

−1
1 ];

(12) e3 = (h1h2)3 = [a1, a3] = [a1, a
−1
2 ] = [a−1

2 , a−1
3 ];

(13) e4 = (h2h1)3 = [a1, a2] = [a2, a
−1
3 ] = [a−1

1 , a−1
3 ];

(14) u1 = e2e3 = [a2, o1];
(15) u2 = e1e2 = [a3, o2];
(16) u3 = e3e1 = [a1, o3].

Then

(a) W = {e, u1, u2, u3} and N = W ∪ {e1, e2, e3, e4};
(b) ah1

1 = a2 and ah1
2 = a3, and these elements have order 4;

(c) oh1
1 = o2 and oh1

2 = o3, and these elements have order 2;
(d) uh1

1 = u2 and uh1
2 = u3, and these elements have order 2;

(e) u+
1 = u2 and u+

2 = u3;
(f) ei generates CN (hi);
(g) h1 = ha2o1u2

2 ;
(h) h2 = ha2o3u1

1 .

Proof. We have ord(h1h2) = 6, because its image in Â4 has order 6. Thus
h3 has order 3. Since h3 is the square of a product of elements of C+, it is also
in C+. Clearly h3 centralizes e3.

Let f : U4 → O4 be the canonical homomorphism. Let x = h2h3 =
h2h1h2h1h2; since ord(f(h1h2)) = 3 in O4, f(x) = f(h−1

1 ). Now the action
of f(x) on x3 by lifted conjugation in independent of the lift, so x and h−1

1 act
identically; in this case, trivially. Thus h1 centralizes e1. Similarly, h2 centralizes
e2.

The images of the ei’s in Ô4 are nontrivial, but are trivial in O4, so they
are in N r W . Since [N : CN (hi)] = 3, ei must generate the centralizer. In
particular, the ei’s are distinct and then so are the ui’s. Moreover the ui’s must
be in W , so they are the nontrivial elements of W . This proves (a) and (f).

The conjugations in parts (b) and (c) are the same as the analogous parts
in O4. The ai’s have order 4 in U4 because their images in Â4 have order 4 and
in A4 have order 2.

Part (e) will follow from (d), and for this part it suffices to show that
uh1

1 = u2, which amounts to showing eh1
3 = e1e2e3. But e1e2e3 ∈ N rW and is

distinct from e1, e2, and e3, so it must equal e4, and one easily computes that
eh1
3 = e4.
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The first equal sign in (10) through (16) denotes definition; the others are
identities. We prove only what we will use. Note that the commutators have
order two, so [ai, aj ] = [aj , ai].

Next we show that e1 = [a3, a
−1
2 ]. Expanding the commutator gives [a3, a

−1
2 ] =

ea3
3 . Since h1h2 and a2

3 commute with e3, we have

ea3
3 = e

a−1
3

3 = e
h1h

−1
2

3 = eh2
3 = e

h2h
−1
1 h1

3 = ea3h1
3 .

This shows that h1 commutes with ea3
3 , so ea3

3 = e1. The other identities of (10)
follow by conjugating with h1. The identities of (12) are obtained from these
by conjugating with a3.

To show that identity in (16), compute u3 = e3e1 = [a3, a1][a1, a
−1
3 ] =

a−1
3 a−1

1 o3a1a
−1
3 . This element in necessarily in W , and so commutes with the

element a−1
3 of order four. Conjugate by it to find u3 = [a1, o3].

Now use this identity to prove (g); (h) is similar. Compute

ha2o1u2
2 = u2o1a

−1
2 h2a2o1u2

= u2a
−1
1 a3h2a2o1u2 [a−1

2 = a1a3 and o1a1 = a−1
1 ]

= u2a
−1
1 o3h1a2o1u2h

−1
1 h1 [h2 = a3h1]

= u2a
−1
1 o3a1o3u1h1 [conjugate a2o1u2 by h−1

1 ]

= u3[a1, o3]h1 [W centralizes the 2 Sylow]

= h1 [(16) identity]

This completes the demonstration relating generators of U4 to elements ofM . �

6.4. A Fiber of Ni(U4,C32
±
)in,rd → Ni(Ô4,C32

±
)in,rd. Continue notation

from the previous subsection. For the rest of this section, we sometimes shorten
notation as follows:

(1) a = u1;
(2) b = u2;
(3) c = u3;

Consider the map Ni(U4,C32
±
)in,rd → Ni(Ô4,C32

±
)in,rd. Let g̃ denote a

Harbater-Mumford tuple in Ni(Ô4,C32
±
) which lies over g ∈ Ni(A4,C32

±
). The

fiber over g̃ consists of perturbations of duals of h. For x, y ∈ U4, set

h[x|y] = (h1, (h−1
1 )x, hyx2 , (h−1

2 )y).

Typically x, y ∈W , but we reserve some leeway in this regard.

Lemma 64. h[x|y] = h[x|yb] modulo inner equivalence.

Proof. By Lemma 63, b is the product of the generators for the centralizers
in M of h1 and h2. Thus the claim is a particular case of Proposition 29. �

A complete set of representative tuples for the fiber of g̃ can now be given.
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List 65 (Fiber over g̃ in Ni(U4,C32
±
)in,rd → Ni(Ô4,C32

±
)in,rd).

[1] h[e|e]
[5] h[b|e]

[2] h[e|a]
[6] h[b|a]

[3] h[a|e]
[7] h[c|e]

[4] h[a|a]
[8] h[c|a]

We use this characterization of the fiber over a Harbater-Mumford tuple in
Ni(Ô4,C32

±
) to further investigate the Nielsen class Ni(U4,C32

±
).

6.5. Braid Action on Ni(U4,C32
±
)in,rd via Branch Cycle Designs. We

now determine the action of the ω’s. For x, y ∈ W , let h[x|y] be as before. We
still have conjugacy classes consistency of the action of conjugation on elements
of W ; let x+ and x− be as before.

6.5.1. Action of ω6. The node corresponding to ω6 is fully ramified, so no
further ramification can occur. Thus the action of ω6 is trivial on the entire
fiber, so

ω6 7→ (1)(2)(3)(4)(5)(6)(7)(8).

6.5.2. Action of ω1. The terminal product of h is one, so the shift has middle
product one, and γ∞ acts trivially on such a tuple. Thus ω1 is trivial on a
Harbater-Mumford tuple.

We have computed that h[x|y]α1 = h[x|yx+] for h ∈ Ni(O4,C32
±
)in,rd; this

computation is equally effective for h ∈ Ni(U4,C32
±
)in,rd. Now plug in to find

that we have

ω1 7→ (1)(2)(3)(4)(5 6)(7 8).

6.5.3. Action of ω8. Consider (h1h
x
2)3, which has order 2. Then the value

of this element is independent of x, that is, (h1h
x
2)2 = (h1h2)3 = e3, which

can be seen by pulling the x’s past all the hi’s and accumulating the effects of
conjugation. Use these comments:

(1) he31 = hc1, because e1 centralizes h1 and c = e3e1;
(2) he32 = ha2 , similarly;

(3) eh
−1
2

3 = e2(e2e3)h
−1
2 = e2a

− = e1e2e3;

(4) he
h
−1
2

3
1 = ha1 ;

(5) γ0 = γ−1
∞ γ−1

1 .



120 VII. ASCENT OF MT2(A4,C32±
)

Therefore

h[x|e]ω8 = (h1, (h−1
1 )x, hx2 , h

−1
2 )γ−1

∞ γ−1
1 γ6

∞γ1γ∞

= (h1, h
x
2 , (h

−1
1 )xh

x
2 , h−1

2 )γ−1
1 γ6

∞γ1γ∞

= (h−1
2 , h1, h

x
2 , (h

−1
1 )xh

x
2 )γ6

∞γ1γ∞

= (h−1
2 , he31 , h

xe3
2 , (h−1

1 )xh
x
2 )γ1γ∞

= (he31 , h
xe3
2 , (h−1

1 )xh
x
2 , h−1

2 )γ∞

= (he31 , (h
−1
1 )xh

x
2 (h−1

2 )xe3
, hxu2 , h−1

2 )

= (h1, (h−1
1 )xe

h
−1
2

3 , hx2 , (h
−1
2 )e3)

= (h1, (h−1
1 )xa, hxaa2 , (h−1

2 )a)

= h[xa|a].

Deduce that

h[x|y]ω8 = h[xa|ya] ⇒ ω8 7→ (1 4)(2 3)(5 8)(6 7).

6.5.4. Action of ω5. Consider (hx1h
yx
2 )2 with x, y ∈ W ; the value of this is

independent of x and y, and equals o1. Similar comments apply to o2. Define
these variables and derive these comments:

(1) x1 = (h1(h−1
1 )xo1);

(2) x2 = ((h−1
1 )xx1hx2)2;

(3) x1 = x+o
h−1
1

1 o1 = x+o3o1, so ord(x1) = 2;
(4) o1x2 = a.

Therefore

h[x|e]ω5 = (h1, (h−1
1 )x, hx2 , h

−1
2 )γ4

∞γ1γ
2
∞γ

−1
1 γ−4

∞

= (h1, (h−1
1 )xo1 , hxo12 , h−1

2 )γ1γ
2
∞γ

−1
1 γ−4

∞

= (h−1
2 , h1, (h−1

1 )xo1 , hxo12 )γ2
∞γ

−1
1 γ−4

∞

= (h−1
2 , hx1

1 , (h−1
1 )xo1x1 , hxo12 )γ−1

1 γ−4
∞

= (hxo12 , h−1
2 , hx1

1 , (h−1
1 )xo1x1)γ−4

∞

= (hxo12 , (h−1
2 )x2 , hx1x2

1 , (h−1
1 )xo1x1)

= (h1, (h−1
1 )xo1x2 , hxo1x1x2o3o1c

2 , (h−1
2 )x1o3o1c) [conj by xo1a2o1b]

= (h1, (h−1
1 )xa, hxax

+c
2 , (h−1

2 )x
+c)

= h[xa|x+c]

Deduce that

h[x|y]ω5 = h[xa|yx+c] ⇒ ω5 7→ (1 4)(2 3)(5 7)(6 8).

6.5.5. Conjugation by α2. Recall that α2 interchanges the Harbater-Mumford
tuples over g, so conjugation by α2 moves the action to the fiber over the dual.
We adjust the computation for the action of α2 slightly for the U4 case. Thus h
is in Ni(U4,C32

±
), the ai’s are relative to h. Make these adjustments:

(1) x1 = (h−1
1 )x

−
ha3

1 = x+h−1
1 a−1

3 h1a3 = x+a−1
1 a3;
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(2) x2 = x−a2a
2
1u2 so that (hx

−

2 )x2 = h1;
(3) a3a2 = a−1

1 ;
(4) a3x2 = a3x

−a2a
2
1u2 = x−a1u2;

(5) x1x2 = x+a−1
1 a3x

−a2a
2
1u2 = xu2;

(6) ha3h
−1
1

1 = ha2
1 = h

a2
3

2 ;

(7) ha1h
−1
1

2 = h
a2
3u1

2 .

h[x|e]α2 =
(
hx

−

2 , (h−1
1 )x

−x1 , ha3x1
1 , (h−1

2 )a3
)

=
(
h1, (h−1

1 )x
−x1x2 , ha3x1x2

1 , (h−1
2 )a3x2

)
[conj by x2]

=
(
h1, (h−1

1 )x
+u2 , ha3xu2

1 , (h−1
2 )x

−a1u2
)

[comments (6) and (7)]

=
(
h1, (h−1

1 )xu1 , h
a2
3u1x

−u1
2 , (h−1

2 )a
2
3x

+u1
)

[conj by h−1
1 ]

= h[xu1|a2
3x

+u1].

So

α2 : h[x|y] 7→ h[xu1|ya2
3x

+u1].

It is the appearance of a2
3 which changes the fiber.

We note that if the first position h1 is the same in two Harbater-Mumford
tuples, the ui’s written in terms of these tuples are the same. This follows from
the fact that u1 is the product of the two involutions of N r W which do not
commute with h1; then u2 and u3 are determined by the effect of conjugation by
h1 on u1. Thus we can use the formula above equally as well on perturbations
of duals of h[e|a2

3].
To compute the actions of the remaining generators, we conjugate by α2.

As before, it suffices to compute with y = e.
6.5.6. Action of ω2. Since ω6 has trivial action on the set of perturbed duals

of h[e|a2
3], conjugation of it by α−1

2 has trivial action on the set of perturbed
duals of h. Therefore

ω2 ∼ ωα2
6 ∼ ω6 7→ (1)(2)(3)(4)(5)(6)(7)(8).

6.5.7. Action of ω4. Since h[x|y]ω1 = h[x|yx+]:

h[x|e]α2ω1α
−1
2 = h[xu1|a2

3x
+u1]ω1α2

= h[xu1|a2
3x

+u1(xu1)
+]α2

= h[xu1u1|a2
3u3xa

2
3u1(xu1)

+]

= h[x|x+].

Therefore

ω4 ∼ ωα2
1 ∼ ω1 7→ (1)(2)(3)(4)(5 6)(7 8).
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6.5.8. Action of ω3. Since h[x|y]ω8 = h[xu1|yu1]:

h[x|e]α2ω8α
−1
2 = h[xu1|a2

3x
+u1]ω8α2

= h[xu1u1|a2
3x

+u1u1]α2

= h[xu1u1u1|a2
3x

+u2a
2
3x

+u1]

= h[xu1|u3]

= h[xu1|u1].

Therefore
ω3 ∼ ωα2

8 ∼ ω8 7→ (1 4)(2 3)(5 8)(6 7).

6.5.9. Action of ω7. The product one condition now forces

ω7 ∼ ω5 7→ (1 4)(2 3)(5 7)(6 8).

6.5.10. Conclusions. The tuples of List 65 lie in three braid orbits, which are
{[1], [4]}, {[2], [3]}, and {[5], [6], [7], [8]}. The first two orbits each contains
one Harbater-Mumford tuple, and the third contains none.

There are three components in H(U4,C32
±
)in,rd which lie over the Harbater-

Mumford component of H(O4,C32
±
)in,rd; two contain Harbater-Mumford points

and the third does not. The Harbater-Mumford components of H(U4,C32
±
)in,rd

are degree two covers of the genus zero curve H(O4,C32
±
)in,rd,HM ramified over

four points; that is, they are elliptic curves presented in a standard way. The
other component is a normal Klein four cover of H(O4,C32

±
)in,rd,HM ramified

over six points; by the Riemann Hurwitz formula, it has genus three.



CHAPTER VIII

Analysis of MT2(A4, C32
±
)

1. Fields of Definition in H(U4,C32
±
)in,rd,HM

1.1. Rationality of H(U4,C32
±
)in,rd,HM. The tuple C32

±
of conjugacy classes

of U4 is a rational tuple. Thus the reduced Hurwitz space H(U4,C32
±
)in,rd is de-

fined over Q, and the absolute Galois group Gal(Q̄/Q) acts on the components.
This action fixes the space H(U4,C32

±
)in,rd,HM, so the two components of this

space are either defined over Q, or are conjugates over Q. Since they contain
real points, their field of definition is either Q, or it is the same real degree two
extension of Q.

We begin to explore what can be said about the common field of definition
of the Harbater-Mumford components by collecting the ramification information
which we have computed.

Loop Action Over Cycle
γ0 (1 3 2)

γ1 (1)(2 3)

γ∞ (1 2)(3)

β1 (1 2 3) (4 5) γ∞ (3)

β2 (1 3)(2) (4)(5) γ1 (1)

β3 (1 2)(3) (4 5) γ∞ (1 2)

α1 (1)(2)(3)(4) (5 6)(7 8) β3 (3)

α2 (1 2)(3 4) (5)(6)(7)(8) β2 (2)

α3 (1 3)(2 4) (5 7)(6 8) β3 (1 2)

α4 (1 4)(2 3) (5 8)(6 7) β1 (1 2 3)

ω1 (1)(2)(3)(4) (5 6)(7 8) α1 (1)

ω2 (1)(2)(3)(4) (5)(6)(7)(8) α3 (2 4)

ω3 (1 4)(2 3) (5 8)(6 7) α4 (2 3)

ω4 (1)(2)(3)(4) (5 6)(7 8) α1 (2)

ω5 (1 4)(2 3) (5 7)(6 8) α1 (4)

ω6 (1)(2)(3)(4) (5)(6)(7)(8) α3 (1 3)

ω7 (1 4)(2 3) (5 7)(6 8) α1 (3)

ω8 (1 4)(2 3) (5 8)(6 7) α4 (1 4)

Summary of Design Generators

This shows that the two Harbater-Mumford components are ramified over
the same four points in H(O4,C32

±
)in,rd,HM. Thus, they have the same j-

invariant; if this j-invariant is irrational, the elliptic curves cannot be defined
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over Q. We intend to compute the j-invariant by finding an appropriate coordi-
nate system for H(O4,C32

±
)in,rd,HM. To do this, we lift coordinates through the

sublevels of the Modular Tower which we have explored. This requires precise
usage of the ramification at each level, as supplied by the design generators.

1.2. The j-invariant of E. Let E be the closure of one of the Harbater-
Mumford components of H(U4,C32

±
)in,rd; then E is an algebraic curve of genus

one, that is, E is an elliptic curve. We intend to find its j-invariant. Let H3,
H2, H1, and J denote the closure of the image of E in the Hurwitz spaces
H(O4,C32

±
)in,rd, H(A4,C32

±
)in,rd, H(A3,C32

±
)in,rd, and J4, respectively. We

have a sequence of covering maps

E ϕ3→ H3
ϕ2→ H2

ϕ1→ H1
ϕ0→ J ,

where H3, H2, H1, and J have genus 0.
The map ϕ3 is of degree two and ramified over four points. If we can put

coordinates on H3 and identify these four points, then we can compute the j-
invariant of E .

Each of the maps ϕ2, ϕ1, and ϕ0 is a rational function. We have the branch
cycle descriptions of each of these maps. Indeed, each of these is a three branch
point cover which belongs to a pure Nielsen class containing a single element.

Both ϕ0 and ϕ1 are S3 covers with ramification of shape ((3),(2),(2)). Any
cubic polynomial with distinct roots gives this shape; set

f(z) = z3 − 3z.

Then f ′(z) = 3z2 − 3 = 3(z2 − 1); the finite ramified points are {±1}, so the
branch points are f(1) = −2, f(−1) = 2, and ∞. We also have f(−2) = −2 and
f(2) = 2. We can compose on the left or the right with a linear fractional trans-
formation with rational coefficients, without changing the Q weak equivalence
class of the cover.

The map ϕ2 is a K4 cover of shape ((2)(2),(2)(2),(2)(2)). Let

g(z) =
(
z2 − 1
z2 + 1

)2

.

This is a composition of z 7→ z2, then a linear fractional transformation z 7→ z−1
z+1

which moves the branch points, followed by another z 7→ z2. Its branch points
are 0, 1, and ∞, and its ramification points are (±1 7→ 0), (0,∞ 7→ 1), and
(±i 7→ ∞).

Compose f on the left by a linear fractional transformation h0 of J so that
the branch points of h0 ◦ f are 0, 1, and ∞; specifically, select

h0 : (∞, 2,−2) 7→ (0, 1,∞) given by h0(z) =
4

z + 2
.

Compose this on the right by a linear fractional transformation h1 of H1

which positions the branch points for the next step. The cover H2 → H1 has
shape (2)(1) at the unramified point over 1 ∈ J , shape (2)(1) at the ramified
point over ∞ ∈ J , and shape (3) at the unramified point over infinity. Thus
select

h1 : (−2, 2,∞) 7→ (2, 1,−2) given by h1(z) =
−2z + 20
z + 14

.
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Apply f on the right; the points on the domain over which H3 is ramified
are now labeled −2, −1, and ∞. The other point over ∞ ∈ J is 2. Compose
with

h2 : (0, 1,∞) 7→ (−1,∞,−2) given by h2(z) =
−2z + 1
z − 1

.

Now the points on H2 over which H3 is ramified are 0, 1, and ∞, and we are
in a position to compose with g. We need to label the other point over ∞ ∈ J ,
because ramification of E → H3 occurs over it. Pull back 2 through h2 and find
that this point is h−1

2 (2) = 3
4 .

Let H3 have the coordinates so induced by

h : H3 → J given by h = h0 ◦ f ◦ h1 ◦ f ◦ h2 ◦ g.

Now E → H3 has two ramification points over 1 ∈ H2 and two over 3
4 ∈ H2.

Since g−1(1) = {0,∞}, these are two of the ramification points of E → H3.
Setting g(z) = 3

4 shows that the fiber g−1( 3
4 ) consists of the roots of

z4 − 14z + 1 = (z2 + 4z + 1)(z2 − 4z + 1).

Since both of the genus one components of H(U4,C32
±
)in,rd are ramified over the

same points, this set of points must be an algebraic set over Q; thus the other
two ramification points of E → H3 are either {2 ±

√
3} or {−2 ±

√
3}. Either

choice produces the same j-invariant. Let u = 2 +
√

3 and u∗ = 2 −
√

3, and
assume {u, u∗} are the ramification points. Note that u−1 = u∗.
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J4

H(A3)

H(A4)

H(O4)

H(U4)

4
z+2

z3 − 3z

−2z+20
z+14

z3 − 3z

−2z+1
z−1

(
z2−1
z2+1

)2

�� ��∞ 7→ 0

�� ��2 7→ 1

�� ��−2 7→ ∞

γ0 γ1 γ∞

�� ��−14 7→ ∞
�� ��−2 7→ 2

�� ��34 7→ −1

�� ��2 7→ 1

�� ��∞ 7→ −2

β• β2 β• β3 β1

(3) (1) (2) (2) (1)

�� ��2
3
7→ 1

�� ��∞ 7→ −2

�� ��0 7→ −1

�� ��3
4
7→ 2

�� ��1 7→ ∞

α• α2 α3 α1 α4

(2) (1) (2) (1) (3)

����
+i ����

−i ����
+1 ����

−1 ����
−u ����

−u∗ ����
u ����

u∗ ����
0 ����

∞

ω• ω• ω2 ω6 ω1 ω4 ω5 ω7 ω3 ω8

(2) (2) (2) (2) (1) (1) (1) (1) (2) (2)

����������������

Node Mapping Tree for MT2(A4,C32
±
)in,rd

Recall the formula for the j invariant when z4 = ∞:

j(z) =
4
27

[(z1 + z2 + z3)2 − 3(z1z2 + z2z3 + z3z1)]3

(z1 − z2)2(z2 − z3)2(z3 − z1)2
.

When z1 = u, z2 = u∗, and z3 = 0, we have

j(E) =
4
27

[(u+ u∗)2 − 3(uu∗)]3

u2u2
∗(u− u∗)2

=
4
27

(42 − 3)3

(2
√

3)2
=

133

34
.

This j-invariant nails down the holomorphism class of E . It also tells us that
there is some elliptic curve, defined over Q, which is isomorphic to E over C. But
what does it tell us about the field of definition of E itself?

1.3. Equations for E. This method fails to describe the rational points
on E , or even its field of definition. For example, consider the elliptic curve
given by the equation y2 = f(x), where f(x) is a cubic polynomial over Q. Let
a ∈ C. Then the equation y2 = af(x) gives an elliptic curve with the same
branch points, not defined over Q unless a ∈ Q.

Even if we knew E were defined over Q, this method would not decide upon
the existence of rational points of E , as we now describe.
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Our choice of {0, 1, u, u∗}, as opposed to {0, 1,−u,−u∗} as ramification
points was arbitrary in the following sense: there exists a linear fractional trans-
formation (defined over Q) which switches these sets; it is z 7→ −z. Each choice
produces a different potential equation for E . Let E1 and E2 be two possible
elliptic curves with these branch point sets, given by equations

(1) E1 : y2 = x3 + 4x+ x;
(2) E2 : y2 = x3 − 4x+ x.

Using Cremona’s computer programs MWRANK and TORSION, we find
that the only rational points of E1 are those over 0 and ∞, whereas E2 has
infinitely many.

1.4. A Moduli Problem. We now rephrase our question regarding the
fields of definition of the Harbater-Mumford components.

Recall Proposition VI.48, which states that for any two inner Harbater-
Mumford tuple in Ni(U4,C32

±
)in which lie over the same element of Ni(A4,C32

±
)in,

there is a unique outer automorphism of U4 which sends one to the other. There
are eight such automorphisms acting on the Nielsen class. Modulo reduction,
half of them are trivial and half switch the two orbits. Let α ∈ Aut(U4) be an
automorphism which switches the orbits.

Let E1 and E2 denote the two components of H(U4,C32
±
)in,rd,HM. Define a

function
Φ : E1 → E2 by [ϕ, τ ] 7→ [ϕ, τ ◦ α];

here, [ϕ, τ ] denotes the reduced equivalence class of (ϕ, τ), where ϕ is a ramified
cover and τ : G → Aut(ϕ) is an isomorphism. This map is holomorphic. The
field of definition of E1 and E2 is Q if and only if this map is defined over Q.





CHAPTER IX

GAP Results and Mysteries

Wittgenstein [Wi21] said
What we cannot speak about, we must pass over in silence.

I believe that it is traditional, in a Ph.D. dissertation, to ignore this advice,
and attempt to say things that might be. We follow this tradition here. However,
in our case, the computer language [GAP] can be made to speak for us, and we
report on the findings we have coaxed from it.

1. GAP Programs

1.1. Groups. Most of our results have been either originally discovered or
checked with the aid of the public domain computer language [GAP]. This
is an amazingly well designed interpretive language, together with a wealth of
subroutines which do group theoretical (and other algebraic) computations. We
used version 3.4.

The universal exponent 2-Frattini cover of A5 was described in [Fr95], and
was originally taught to [GAP] using a package for cohomology. This coho-
mology package only runs under Unix, and since most of the programming was
done on a DOS machine, this was the sole use we made of this package. By
passing it matrices for the Frattini module, it returned generators and relations
for a nonsplit extension of A5. We found a coreless subgroup to create a per-
mutation representation, and eventually searched for all coreless subgroups in
order to both shrink the degree for faster execution, and to help understand spin
representations.

Occasionally one finds that the specific situation is not amenable to the
general algorithm. In our case, we wished to find automorphism groups, normal-
izers and centralizers, as subgroups of symmetric groups. We found [GAP] to
be nearly interminable for our cases, even though it is extremely fast for some
computations.

Since U5 and U4 are generated by two elements of order three, their auto-
morphism groups were found by an exhaustive search which looked for other
pairs of elements of order three to see if mapping one pair to the other pro-
duced an automorphism; these groups were returned as subgroups of NS1920(U5)
and NS384(U4), acting on the elements in the regular representation. Then one
may generate the full normalizer as the group generated by U5 or U4 and its
automorphism group; this outperformed [GAP]’s Normalizer command in our
case.

1.2. Covers. Our [GAP] programs views topological covers as given by the
permutation representations on the fibers; in [GAP], they appear as permutation
groups.

129
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To find the automorphism group of a cover, we need the centralizer of the
monodromy group in Sn. We wrote a program utilizing the explicit isomorphism
NG(S)/S → CSn

(G), where S is a one point stabilizer. This outperformed
[GAP]’s Centralizer command in our case, probably because the order of G
was small relative to the degree.

For ramified covers of the Riemann sphere, we add an entry to the Group
record for the branch cycle description. From this, the Riemann-Hurwitz formula
can compute the genus. All of the kappa operators discussed in this paper have
been implemented in [GAP] as functions which act on branch cycle descriptions,
realized as lists of permutations.

1.3. Nielsen Classes. We implemented Nielsen classes as a [GAP] do-
main. This means that it has an operations record which instructs various gen-
eral [GAP] commands, such as Size, Elements, and Print, what to do.

Our function to declare a Nielsen class takes the basic form
Ni := NielsenClass(<group>,<list of conjugacy classes>)

Here, <group> is a subgroup of the automorphism group of the group generated
by <list of conjugacy classes>, and for inner classes should equal it.

The main subroutine with respect to Nielsen classes is that which finds all of
its elements. Once these are found, braiding them is relatively easy, although it
can be time consuming. Eventually the program creates a list of Nielsen tuples,
assigning each a number, and returns the action of each braid generator Qi as a
permutation of these integers. Then the monodromy group of the Hurwitz space
cover becomes the subgroup of Sn generated by these permutations, where n is
Size(Ni). The orbits can then be found with [GAP]’s Orbits command.

Various operators on Nielsen classes, specifically those for complex conjuga-
tion, are produced in [GAP] as elements of Sn.

1.4. Quotient Classes. Any block system for the braid action allows one
to equivalence elements in the Nielsen class, and condense the monodromy group
accordingly, along with any associated operators. We implemented absolute and
reduced Nielsen classes using this idea.

Much more can be said about reduced Nielsen classes in the case of four
branch points, and we have additional code for this case. In particular, the
program uses the reduction kernel to find the reduced Nielsen class, and computes
the genus of each component of a reduced Hurwitz space.

1.5. Branch Cycle Designs. The algorithms discussed in chapter V for
finding design generators and combining branch cycle descriptions via condens-
ing, crunching, and splicing, have all been implemented in [GAP].

2. GAP Results

2.1. Description of H(U4,C32
±
).

2.1.1. Components. There are six components of H(U4,C32
±
)in,rd, two of

genus 1, two of genus 0, and two of genus 3. The two of genus 1 contain Harbater-
Mumford points, and so they are unobstructed, and the components above them
at level two contain real points; label these H1A(U4) and H1B(U4). One of
the genus three components contains real points and one does not; label these
H3R(U4) andH3I(U4), respectively. The two genus zero components are complex
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conjugates; label these H0A(U4) and H0B(U4). The number of real points in
a fiber over an appropriate branch point set is indicate has been determined
through use of the kappa operators.

2.1.2. Spin Covers. We have described the three spin covers θ1, θ2, and θ3 of
U4. Each of these obstructs a different set of components. The only unobstructed
components are the Harbater-Mumford components.

2.1.3. Automorphisms. Outer automorphisms of U4 swap the two genus one
components and the two genus zero components. Thus the absolute spaces given
by the regular representation of U4 contains four components.

Inner Components Regular Components
Comp Deg Red HM κ4 κ2 κ0 Obs Deg Red HM κ4 κ2 κ0

H(A3) 3 2 1 0 0 4 3 2 1 3 1 3
H+(A4) 18 2 4 0 0 8 9 1 2 5 1 5
H-(A4) 12 2 0 0 0 8 θ0 6 2 0 4 2 4
H+H(O4) 144 4 16 0 0 24 36 1 2 8 0 8
H+R(O4) 144 4 0 0 0 16 θ1 36 2 0 2 2 6
H-A(O4) 96 4 0 0 0 0 θ0 24 2 0 8 4 4
H-B(O4) 96 4 0 0 0 0 θ0

H1A(U4) 288 4 16 0 0 48 36 1 2 12 0 12
H1B(U4) 288 4 16 0 0 48
H3R(U4) 576 4 0 0 0 64 θ2, θ3 36 2 0 4 0 12
H0A(U4) 288 4 0 0 0 0 θ1, θ3 36 4 0 4 2 4
H0B(U4) 288 4 0 0 0 0 θ1, θ3
H3I(U4) 576 4 0 0 0 0 θ1, θ2 36 4 0 0 2 4

Reduced Inner Components Reduced Regular Components
Comp Deg Gen HM κ4 κ2 κ0 Obs Deg Gen HM κ4 κ2 κ0

H(A3) 3 0 1 3 1 3 3 0 1 3 1 3
H+(A4) 9 0 2 5 1 5 9 0 2 5 1 5
H-(A4) 6 0 0 2 0 2 θ0 3 0 0 3 1 3
H+H(O4) 36 0 4 16 0 16 18 0 2 8 0 8
H+R(O4) 36 0 0 8 0 8 θ1 9 0 0 5 1 5
H-A(O4) 24 0 0 0 0 0 θ0 12 0 0 4 2 4
H-B(O4) 24 0 0 0 0 0 θ0

H1A(U4) 72 1 4 24 0 24 36 1 2 12 0 12
H1B(U4) 72 1 4 24 0 24
H3R(U4) 144 3 0 32 0 32 θ2, θ3 18 0 0 8 0 8
H0A(U4) 72 0 0 0 0 0 θ1, θ3 9 0 0 5 1 5
H0B(U4) 72 0 0 0 0 0 θ1, θ3
H3I(U4) 144 3 0 0 0 0 θ1, θ2 9 0 0 5 1 5

Table of Components for MT2(A4,C32
±
)

θ1 θ2 θ3
Lifts 1A, 1B, 3R 1A, 1B, 0A, 0B 1A, 1B, 3C
Obstructs 0A, 0B, 3C 3R, 3C 0A, 0B, 3R

Table of Obstruction for MT2(A4,C32
±
)



132 IX. GAP RESULTS AND MYSTERIES

2.2. Description of H(U5,C52
±
). We present [GAP] information regard-

ing the Hurwitz spaces relating to H(U5,C52
±
). One notes the striking similar-

ity with the U4 case. Indeed, we have used [GAP] to find a map between the
Harbater-Mumford fibers which shows thatH(U4,C32

±
)in,rd → H(A4,C32

±
)in,rd,HM

and H(U5,C52
±
)in,rd → H(A5,C52

±
)in,rd,HM are equivalent as covers.

This is made possible by the following observation: the branch cycle de-
sign for H(A5,C52

±
)in,rd → J4, when simplified for final ramification, is identical

to the branch cycle design in the A4 case except for the occurance of a single
additional generator: γ0γ

6
∞γ

−1
0 , which corresponds to the six cycle over∞. How-

ever, one computes that this cycle acts trivially on tuples g = (g1, g2, g3, g4) ∈
Ni(A5,C52

±
)in,rd if ord(g1g3) = 3. When g is a Harbater-Mumford tuple whose

middle product is four, this is the case, and the detrivialized branch cycles de-
signs are the same.

Let θ0 and θ1 denote the unique spin covers of A5 and U5, respectively.

Inner Components Regular Components
Comp Deg Red HM κ4 κ2 κ0 Obs Deg Red HM κ4 κ2 κ0

H+(A5) 30 2 4 14 2 6 15 1 2 7 1 7
H-(A5) 12 2 0 8 4 4 θ0 6 2 0 4 2 4
H1A(U5) 480 4 16 0 0 48 240 2 8 0 0 40
H1B(U5) 480 4 16 0 0 48
H3R(U5) 960 4 0 0 0 64 240 4 0 0 0 32
H0A(U5) 480 4 0 0 0 0 θ1 240 4 0 0 0 24
H0B(U5) 480 4 0 0 0 0 θ1
H3I(U5) 960 4 0 0 0 0 θ1 240 4 0 0 0 16

Reduced Inner Components Reduced Regular Components
Comp Deg Gen HM κ4 κ2 κ0 Obs Deg Gen HM κ4 κ2 κ0

H+(A5) 15 0 2 7 1 7 15 0 2 7 1 7
H-(A5) 6 0 0 4 2 4 θ0 3 0 0 3 1 3
H1A(U5) 120 1 4 28 0 28 120 1 4 28 0 28
H1B(U5) 120 1 4 28 0 28
H3R(U5) 240 3 0 32 0 32 60 0 0 20 0 20
H0A(U5) 120 0 0 0 0 0 θ1 60 0 0 12 0 12
H0B(U5) 120 0 0 0 0 0 θ1
H3I(U5) 240 3 0 0 0 0 θ1 60 0 0 12 0 12

Table of Components for MT2(A5,C52
±
).

2.3. Description of H(U5,C34). The following table lists the same infor-
mation for the case of four 3-cycles in A5 and U5. [BF02] explains is detail ex-
actly why these things are true; in particular, there is a precise module-theoretic
explanation for the two components of H(U5,C34)in, describing exactly which
tuples are obstructed by the spin cover.
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Inner Components Regular Components
Comp Deg Red HM κ4 κ2 κ0 Obs Deg Red HM κ4 κ2 κ0

H(A5) 18 1 2 4 2 4 9 1 1 3 3 3
H+(U5) 1152 4 16 0 0 32 288 4 4 0 16 16
H−(U5) 1152 4 0 0 0 0 θ1 288 4 0 8 0 0

Reduced Inner Components Reduced Regular Components
Comp Deg Gen HM κ4 κ2 κ0 Obs Deg Gen HM κ4 κ2 κ0

H(A5) 18 0 2 4 2 4 9 1 1 3 3 3
H+(U5) 288 12 4 16 0 16 72 2 1 8 8 8
H−(U5) 288 9 0 0 0 0 θ1 72 2 0 8 0 8

Table of Components for MT2(A5,C34).
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