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1. Motivation

The initial responsibility of algebra is the solution of polynomial equations.
The quadratic formula for producing the roots of a degree two polynomial was
known in ancient times. During the European Renaissance, a formula for com-
puting the roots of a cubic polynomial was discovered. The search began for
solutions of higher degree polynomial equations.

Early in the nineteenth century, Galois gave necessary and sufficient conditions
that the roots of a polynomial with rational coefficients be expressible by an
algebraic formula. His criterion introduced a group of permutations of its roots,
now known as the Galois group of the polynomial. This motivated the eventual
definition of abstract group. Once abstracted, it was natural to ask if anything
new had been introduced by the abstraction, which led to an unsolved problem
in mathematics, the Inverse Galois Problem; is every finite group the Galois
group of a polynomial with rational coefficients?

Meanwhile, others were pushing the frontiers of calculus. It was realized that
phenomena hidden in the world of the real line were illuminated by considering
complex plane, and that additional information is obtained by adding a single
point ∞ to the plane to obtain the Riemann sphere.

In an attempt to solve integrals such as
∫

dx√
x3+cx+d

, which were known as
elliptic integrals, Abel discovered that this antiderivative is best understood when
viewed as the inverse of a function whose domain is the set of points (z, w) which
satisfy the equation w2 = z3 +cz+d, where z and w are complex variables. Such
a set of points became known as an elliptic curve, which naturally maps onto
the Riemann sphere by sending (z, w) to z. Later, Riemann generalized this by
considering sets of points defined by any polynomial in two variables; such a set
became known as a Riemann surface.

To obtain information about families of elliptic curves, modular curves were
developed; these are Riemann surfaces whose points correspond to elliptic curves
and the maps between them. It is known that functions between objects induce
functions between associated moduli spaces (spaces whose points correspond to
objects). Thus functions between elliptic curves induce functions between mod-
ular curves, a process that forms infinite sequences of modular curves.

Hurwitz spaces are moduli spaces of ramified covers of the Riemann sphere.
Michael Fried’s Modular Towers are towers of Hurwitz spaces which simultane-
ously generalize the classical towers of modular curves and test our penetration
of the inverse Galois problem. My research studies the maps between Hurwitz
spaces, such as those which constitute a Modular Tower.
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2. History

2.1. Simple Branching. In 1891, Hurwitz [Hu91] considered the moduli space
of ramified covers of the Riemann sphere with degree n and simple branching;
that is, exactly one ramification point of index two over each branch point. The
monodromy group of such a cover is Sn, with ramification coming from the
conjugacy class of transpositions. In particular, it was shown that these spaces
are connected. We now denote Hurwitz’s spaces by H(Sn,C2r )ab, where C2 is
the conjugacy class of transposition, and r is the number of branch points.

2.2. Absolute Hurwitz Spaces. In 1977, Fried [Fr77] proposed using a gener-
alization of this idea, with any group G replacing Sn and any tuple C of conju-
gacy classes of ramification from G replace transpositions, for application to the
Inverse Galois Problem. Denote the moduli space of such covers by H(G,C)ab.
We now call this an absolute Hurwitz space.

Each point on an absolute Hurwitz space corresponds to a strong equivalence
class of covers; we say that ϕ1 : Y1 → P1 is strongly equivalent to ϕ2 : Y2 → P1

if there exists an isomorphism ξ : Y1 → Y2 such that ϕ1 = ϕ2 ◦ ξ.
Let r denote the number of conjugacy classes in C; this is the number of

branch points for the covers being parameterized, and is called the rank of the
tuple. The rank is equal to the dimension of the Hurwitz space.

As is common with moduli spaces, the initial question about H(G,C)ab is
whether or not it is connected.

2.3. Reduced Hurwitz Spaces. In 1987, Fried [Fr87] discusses the moduli
space of weak equivalence classes of covers; this is a reduced Hurwitz space,
denoted H(G,C)ab,rd.

We say that ϕ1 : Y1 → P1 is weakly equivalent to ϕ2 : Y2 → P1 if there exists
an isomorphism ξ : Y1 → Y2 and a linear fractional transformation α ∈ PSL2(C)
such that α ◦ϕ1 = ϕ2 ◦ ξ. Thus reduced Hurwitz spaces are formed by modding
out by the action of PSL2(C); this cuts the dimension by three. When the rank
r = 4, reduced Hurwitz spaces have dimension one, and are quotients of the
upper half plane by a subgroup of PSL2(Z) which naturally cover the j-line, P1

j .

2.4. Inner Hurwitz Spaces. In 1991, Fried and Volklein [FV91] studied mod-
uli spaces of static covers. A static cover is a normal ramified cover ϕ : Y → X
together with an isomorphism τ : G → Aut(ϕ). Denote the moduli space by
H(G,C)in. This is called an inner Hurwitz space.

If G is centerless, these spaces have the property that the rational points on
them correspond to regular realizations of G as a Galois group over Q. [FV91]
shows that every group is covered by a centerless group.

2.5. Modular Towers. In 1995, Fried [Fr95] introduced Modular Towers, which
are towers of Hurwitz spaces. This construction generalizes of towers of modular
curves.

The open modular curves Y1(n) and Y0(n) are, respectively, H(Dn,C24)in,rd

and H(Dn,C24)ab,rd. The group cover Dpk+1 → Dpk induces a cover of Riemann
surfaces Y1(pk+1)→ Y1(pk), producing a tower of modular curves.

To generalize this, consider that the map Dpk+1 → Dpk has these properties:
(1) ker = Z/p;
(2) it is a Frattini cover.
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A homomorphism f : H → G is a Frattini cover if any lift of any set of generators
for G generates H. Indeed, Dpk+1 → Dpk is versal for covers of Dpk among
Frattini covers with elementary p-group kernel. Every group G admits such a
cover 1

pG̃, its universal elementary p-Frattini cover. Replace Dp with any group
G, and replace the homomorphisms Dpk+1 → Dpk with k+1

p G̃ → k
pG̃. This

produces a sequence MTp(G,C)in,rd of Riemann surfaces

· · ·H(k+1
p G̃,C)in,rd → H(k

pG̃,C)in,rd → · · · → H(G,C)in,rd → P1
j .

Implicit in this construction is the fact that conjugacy classes of elements whose
order is prime to p lift uniquely through a p-Frattini cover. Call H(k

pG̃,C)in,rd

the kth level of the Modular Tower. The main conjecture for reduced rank four
Modular Towers is that the genus of every component becomes unbounded as
the level increases.

2.6. Level One of MT2(A5,C34)in,rd. The main example of [BF02] is level
one of the Modular Tower MT(A5,C34)in,rd, where C34 contains four conju-
gacy classes of three cycles in A5. This investigation started after I developed
a computer program in [GAP] to compute the group 2

1Ã5, the Nielsen class
Ni(21Ã5,C34)in, and the action of the braid group on this Nielsen class, showing
that that H(21Ã5,C34)in consists of two components of genus 12 and 9. We de-
veloped tools such as the shift-incidence matrix and explored spin separation to
explain these phenomena and prove these statements.

2.7. Level One of MT2(A4,C32
±
)in,rd. My dissertation [Ba02] investigates the

Modular Tower MT2(A4,C32
±
)in,rd, where C32

±
contains one pair each of the

conjugacy classes of three cycles in A4.
Certain configurations of the branch points give Harbater-Mumford covers,

which are necessarily defined over R, producing real points on the Hurwitz space.
If p = 2, these are the only points which lie in projective systems of real points
up the tower, and lay at the center of computations.

Given a ramified cover, [Ba02] develops its Nielsen graph, which dictates which
covers can factor through the given one. Classical generators for the base space
of the cover lift to an embedded realization of the graph in the covering space;
this is a branch cycle design, and it produces classical generators for the covering
space. Using branch cycle designs as platforms and real points as ladders, [Ba02]
ascends to the first level of the Modular Tower MT2(A4,C32

±
)in,rd.

3. Construction of Hurwitz Spaces

3.1. Topological Covers ↔ Subgroups of π1. A continuous function ϕ :
Y → X induces a homomorphism ϕ∗ : π1(Y, y0)→ π1(X,x0), where x0 = f(y0),
by [γ] 7→ f ◦ γ. If ϕ is a topological cover, this map is injective, producing a
subgroup ϕ∗(π1(Y )) ≤ π1(X). Equivalent covers produce conjugate subgroups.

This process has an inverse; namely, if H ≤ π1(X,x0), define YH to be the set
of paths in X based at x0 modulo fixed endpoint homotopy and the relation that
γ1 ∼ γ2 if they have the same endpoint and [γ1γ

−1
2 ] ∈ H. This has a natural

topology, and a map ϕH : YH → X given by sending the equivalence class of
a point to its endpoint; this map is a topological cover. Let y0 ∈ YH be the
equivalence class of the trivial loop. Then ϕH∗ : π1(YH , y0)→ π1(X,x0) = H.
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3.2. Ramified Covers ↔ Nielsen Tuples. Let X = P1 and ϕ : Y → X
be a ramified cover; it is a nonconstant holomorphic map between compact
connected Riemann surfaces. There are finitely many points in Y where this
map is ramified, and their images in X are the branch points of the cover. Let
B = {x1, . . . , xr} denote the branch points. Let X◦ = XrB, Y ◦ = Y rϕ−1(B),
and ϕ◦ = ϕ �Y ◦ . Then ϕ◦ : Y ◦ → X◦ is a ramified cover. Conversely, given
a topological cover of a punctured sphere, we can fill in the missing points in a
unique way to obtain a ramified cover.

A classical loop in X◦ about x ∈ X is a loop based at x0 which is homotopic
in x◦ to a loop of the form λ = αδα−1, such that

(a) δ is a circle around x, based at u ∈ X, which is null homotopic in
X◦ ∪ {x};

(b) α is an injective path in X◦ r U from x0 to u.
A bouquet of classical loops inX◦ with respect (x, x0) is a tuple λ = (λ1, . . . , λr)

of loops in X based at x0 such that
(a) λi is a classical loop about xi;
(b) λi(t1) = λj(t2)⇒ t1, t2 ∈ {0, 1} for i 6= j;
(c) there exists a circle around x0 which intersects each path exactly once

in the given order.
Notice that such loops generate π1(X,x0), and that the concatenation of the
loops in a bouquet is homotopic on the sphere to a trivial loop.

A classical generator of π1(X◦, x0) is the homotopy class of a classical loop,
and a classical tuple is a tuple of homotopy classes of a bouquet.

The action of π1(X◦, x0) on the fiber ϕ−1(x0) produces a permutation repre-
sentation Tϕ : π1(X◦, x0) → Sn, where n = deg(ϕ). Let λ be a classical tuple
for (x, x0), and let g = (g1, . . . , gr), where gi = Tϕ(λi). Then

(a) G = 〈g〉 is a transitive subgroup of Sn;
(b) Πg = 1.

A Nielsen tuple of degree n and rank r is an element of Sr
n satisfying these

conditions.
Given a bouquet λ and a Nielsen tuple g, produce a permutation representa-

tion of the fundamental group by mapping λ to g. Pull back the stabilizer of 1
in G = 〈g〉 to obtain a subgroup of π1(X,x0). This produces a ramified cover of
P1, and provides an inverse for this process.

3.3. Nielsen Classes. Let G ≤ Sn and let C be a tuple of conjugacy classes
from G. The total Nielsen class of (G,C) is

Ni(G,C)to = {g ∈ Gr | 〈g〉 = G, Πg = 1, g � C},
where g � C means that some rearrangement of the entries of g are in the
conjugacy classes of C. The inner Nielsen class is

Ni(G,C)in = Ni(G,C)to/Inn(G);

these correspond to equivalence classes of static covers. The absolute Nielsen
class is

Ni(G,C)ab = Ni(G,C)ab/Abs(G),
where Abs(G) is the group of automorphism of G which preserve the conjugacy
class of a one point stabilizer; these correspond to equivalence classes of covers.
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3.4. Braid action on Nielsen Tuples. Set

Ur = {(x1, . . . , xr) ∈ (P1)r | xi = xj ⇒ i = j}.
The group Sr acts discretely on Ur by permuting the slots; let Ur denote the
quotient space. Then Ur is the parameter space whose points correspond to
unordered sets of r distinct points from P1.

The Hurwitz monodromy group is the fundamental group

Hr = π1(Ur).

It is a quotient of the Artin braid group, freely generated byQ1, . . . , Qr−1 modulo
the relations

(a) QiQj = QjQi if |i− j| > 1;
(b) QiQi+1Qi = Qi+1QiQi+1;
(c) Q1 · · ·Qr−1Qr−1 · · ·Q1 = 1.

The Hurwitz monodromy group acts on the Nielsen class on the right via the
formula

(g1, . . . , gi, gi+1, . . . , gr)Qi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gr).

We call this braid action; it corresponds to continuous deformation of the cover
induced by motion of its branch points.

3.5. Hurwitz Spaces. Each orbit of the action of Hr on Ni(G,C)in produces
a topological cover of Ur. Specifically, let g ∈ Ni(G,C)in, and let O denote the
orbit of g under the action of Hr. The stabilizer of g is an index |O| subgroup
of Hr = π1(Ur,x), which produces a cover HO → Ur. The points in the fiber of
x correspond to the elements of O.

Let H(G,C)in be the collection of these components; this is an inner Hurwitz
space. Each point on H(G,C)in corresponds to a unique equivalence class of
static covers with automorphism group G and ramification in C.

3.6. Reduced Hurwitz Spaces. The action of PSL2(C) produces an equiva-
lence relation on the classical tuples; call the equivalence classes reduced classical
tuples. The kernel of the action of Hr on reduced classical tuples is generated
the group K̂4 = 〈Q1Q

−1
3 , (Q1Q2Q3)2〉. The reduced Nielsen class is the quotient

of the Nielsen class under the action of this group. Let M̄4 = H4/K̂4; then
M̄4
∼= PSL2(Z). Reduced Hurwitz spaces can be computed from the action of

M̄4 on the reduced Nielsen class.
Let γ0 = Q1Q2, γ1 = Q1Q2Q3, and γ∞ = Q2. The action of these braids on

the reduced Nielsen class is equivalent to the action of the following paths in P1
j

on the fiber in a reduced Hurwitz space.

s s s acR ∞ 0 1 z0��
��

��
��

��
��

� � �γ∞ γ0 γ1

Primary paths for cover of J4.
This produces a branch cycle description for the cover H(G,C)in,rd → P1

j .
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4. Results and Mysteries

4.1. Branch Cycle Designs. Let ψ : Z
ξ→ Y

ϕ→ X be a factored ramified cover
of compact Riemann surfaces, where Y and X both have genus zero. Each of
these covers admits a branch cycle description. Given two of them, we would
like to be able to compute the third. My dissertation [Ba02] produces algorithms
to do exactly this. Moreover, I have written [GAP] programs which implement
these algorithms.

This is accomplished through the use of a Nielsen graph embedded in Y to form
a branch cycle design. This branch cycle design is determined by (and, conversely,
determines) a branch cycle description, and hence a cover. It produces an explicit
bouquet in Y written in terms of lifts of generators for π1(X).

The main example of [Ba02] uses a sequence of groups

1← A3 ← A4 ← O4 ← U4,

where U4 = 1
2Ã4. This produces a sequence of ramified covers

P1
j ← H(A3,C)in,rd ← H(A4,C)in,rd ← H(O4,C)in,rd ← H(U4,C)in,rd,

where C is two pairs of conjugacy classes of three cycles. Now compute the
Nielsen class at the first stage, apply the specific paths of section 3.6 to produce
a branch cycle description for the first cover, and use branch cycle designs to
find generators for π1(H(A3,C)). Repeat this process up the tower.

4.2. Future Directions. The method of branch cycle design ascent was used in
[Ba02] to show that H(U4,C)in,rd contains to Harbater-Mumford components.
These are the only components capable of supporting rational points at higher
levels. Thus, we would like to understand their fields of definition, and under-
stand to what extent we can explicitly identify the elliptic curves.

Let E denote an elliptic curve component of H(U4,C)in,rd, and let R denote
the genus zero component of H(O4,C)in,rd which it covers. My dissertation finds
the branch points of E → R up to PSL2(C) equivalence, whence it produces the
j-invariant of this curve. This identifies the complex structure of the curve, but
not its arithmetic nature. The next task here is to introduce tools to detect this
arithmetic information.

Our initial examples of Modular Towers yielded many interesting phenomena.
Yet, mysteries revealed themselves and other directions remain to be explored.
We list some of these.

(a) Vary p. The examples of [BF02] and [Ba02] choose p = 2, which implies
that real points on the moduli space live over points given by Harbater-
Mumford tuples.

(b) Vary r. In particular, if r = 5, the reduced Hurwitz spaces are surfaces,
and the classification of surfaces comes into play.

(c) Increase r in one tower. If a branch cycle description does not lift through
a group homomorphism H → G, we can add a branch point to force a
lift. This will produce a map between Hurwitz spaces which is a fiber
bundle as opposed to a topological cover.

(d) Explore other maps between Hurwitz spaces. For example, an A5 Galois
cover ψ : Z → X automatically produces an A4 cover ξ : Z → Y by
setting Y to Z modulo the action of A4 ≤ A5. This in turn induces a
map between the corresponding Hurwitz spaces.
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