HOLT Algebra 2

Edward B. Burger David J. Chard Earlene J. Hall Paul A. Kennedy Steven J. Leinwand Freddie L. Renfro Dale G. Seymour Bert K. Waits

HOLT, RINEHART AND WINSTON

A Harcourt Education Company Orlando • Austin • New York • San Diego • London

Algebra 2 Contents in Brief

CHAPTER	1	Foundations for Functions	2
CHAPTER	2	Linear Functions	
CHAPTER	3	Linear Systems	178
CHAPTER	4	Matrices	242
CHAPTER	5	Quadratic Functions	310
CHAPTER	6	Polynomial Functions	402
CHAPTER	7	Exponential and Logarithmic Functions	486
CHAPTER	8	Rational and Radical Functions	564
CHAPTER	9	Properties and Attributes of Functions	650
CHAPTER	10	Conic Sections	718
CHAPTER	11	Probability and Statistics	790
CHAPTER	12	Sequences and Series	858
CHAPTER	13	Trigonometric Functions	924
CHAPTER	14	Trigonometric Graphs and Identities	986
		Student Handbook	
	9	Extra Practice	

Extra Practice	
Problem Solving Handbook	
Skills Bank	
Selected Answers	
Glossary	
Index	
Symbols and Formulas	Inside Back Cover
	Extra Practice Problem Solving Handbook Skills Bank Selected Answers Glossary Index Symbols and Formulas

Copyright @ 2007 by Holt, Rinehart and Winston

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department, Holt, Rinehart and Winston, 10801 N. MoPac Expressway, Building 3, Austin, Texas 78759.

HOLT and the "Owl Design" are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions.

Printed in the United States of America

If you have received these materials as examination copies free of charge, Holt, Rinehart and Winston retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

Cover photo: Getty Center, Los Angeles, CA. © Richard Cummins/ SuperStock

ISBN 0-03-035829-9

 $1\ 2\ 3\ 4\ 5\ 048\ 09\ 08\ 07\ 06$

AUTHORS

Edward B. Burger, Ph.D.

is Professor of Mathematics and Chair at Williams College and is the author of numerous articles, books, and videos. He has won several of the most prestigious writing and teaching awards offered by the Mathematical Association of America. Dr. Burger has appeared on NBC TV, National Public Radio, and has given innumerable mathematical performances around the world.

Steven J. Leinwand spent 22 years as the Mathematics Supervisor with the Connecticut Department of Education. He is currently a Principal Research Analyst at the American Institutes for Research.

David J. Chard, Ph.D.,

is an Associate Dean of Curriculum and Academic Programs at the University of Oregon. He is the President of the Division for Research at the Council for Exceptional Children, is a member of the International Academy for Research on Learning Disabilities, and is the Principal Investigator on two major research projects for the U.S. Department of Education.

Freddie L. Renfro,

BA, MA, has 35 years of experience in Texas education as a classroom teacher and director/coordinator of Mathematics PreK-12 for school districts in the Houston area. She has served as TEA TAAS/ TAKS reviewer, team trainer for Texas Math Institutes, TEKS Algebra Institute writer, and presenter at math workshops.

Earlene J. Hall, Ed.D.,

is the middle school mathematics supervisor for Detroit Public Schools, and an adjunct professor at Wayne State University in Detroit Michigan where she teaches graduate courses in the College of Education.

Dale G. Seymour is a retired mathematics teacher, author, speaker and publisher. Dale founded Creative Publications in 1968, and went on to found two other mathematics publishing companies. Creating mathematical sculptures is one of his many hobbies.

Paul A. Kennedy, Ph.D. is a professor in the Department of Mathematics at Colorado State University. Dr. Kennedy is a leader in mathematics education. His research focuses on developing algebraic thinking by using multiple representations and technology. He is the author of numerous publications.

Bert K. Waits, Ph.D.,

is a Professor Emeritus of Mathematics at The Ohio State University and co-founder of T3 (Teachers Teaching with Technology), a national professional development program.

CONTRIBUTING AUTHORS

Linda Antinone

Fort Worth, TX

Ms. Antinone teaches mathematics at R. L. Paschal High School in Fort Worth, Texas. She has received the Presidential Award for Excellence in Teaching Mathematics and the National Radio Shack Teacher award. She has coauthored several books for Texas Instruments on the use of technology in mathematics.

Reviewers

Mary Anderson

Mathematics Department Chair Community High School District 99 South Downers Grove, IL

Dave Barker

Mathematics Department Chair Los Alamitos High School Los Alamitos, CA

MaryLane Blomquist Mathematics Department Chair Kewaskum High School Kewaskum, WI

William L. Bonney

Mathematics Department Chair Ballard High School Seattle, WA

Suzanne Castren

Mathematics Teacher Williamsville South High School Williamsville, NY

Lala Geraldine Chambers, NBCT Mathematics Department Chair Forest Hill High School Jackson, MS

Joan Chrismer-McNatt Mathematics Teacher Clear Creek High School League City, TX

Roy L. Conwell, Jr. Mathematics Department Chair Sam Houston High School Houston, TX

Carmen Whitman

Pflugerville, TX

Ms. Whitman travels nationally helping districts improve mathematics education. She has been a program coordinator on the mathematics team at the Charles A. Dana Center, and has served as a secondary math specialist for the Austin Independent School District.

Patricia Daley

Mathematics Teacher, retired Fairfield High School Fairfield, CT

Mohammad Elkhatib

Mathematics Department Chair Jones High School Houston Community College Instructor Houston, TX

Marti Freihofer Mathematics Department Chair Scott High School Taylor Mill, KY

Mary Gesino

Mathematics Department Co-Chair R. L. Turner High School Carrollton, TX

Marilyn Gutman

Mathematics Department Chair Mayfield High School Las Cruces, NM

Jim Harrington

Supervisor of Mathematics Omaha Public Schools Omaha, NE

Marieta W. Harris Mathematics Specialist Memphis, TN

Jere Hassberger, PhD

Mathematics Department Chair Saline High School Saline, MI

James Patrick Herrington

Mathematics Department Chair O'Fallon Township High School O'Fallon, IL

Margie Hill

District Coordinating Teacher for Mathematics, K-12 Blue Valley USD 229 Overland Park, KS

Dr. Douglas Lohnas

Director of Mathematics Niskayuna Central School District Niskayuna, NY

Brenda Lynch

Mathematics Department Chair Montgomery High School Montgomery, TX

Dr. Charlotte May Mathematics Teacher Austin ISD Austin, TX

Ruth Harbin Miles K–12 Coordinator of Mathematics Olathe USD 233 Olathe, KS

Saundra Paschal Mathematics Department Chair Lake View High School San Angelo, TX

Carolyn Randolph Mathematics Department Chair Academic Director Kendrick High School Columbus, GA

Sarah Ritch

Mathematics Department Chair Hebron High School Carrollton, TX

Paul Schwiegerling

Gifted Mathematics Program SUNY at Buffalo Buffalo, NY

Katie Smith Mathematics Department Chair Berea High School Greenville, SC

Stephanie Turner Former Mathematics Teacher Colleyville Heritage High School Colleyville, TX

FIELD TEST PARTICIPANTS

Gerri Chambers-McGee Forest Hill High School Jackson, MS

Stephanie Cundiff Mesa Ridge High School

Colorado Springs, CO

Eddie Hancock Navasota High School Navasota, TX

Brenda Lynch Montgomery High School Montgomery, TX **Lisa Pope** Jacobs High School Cincinnati, OH

Niki Robinson Navasota High School Navasota, TX

Piper Singleton Pershing High School Detroit, MI

Dierdre M. Watkins Dunwoody High School Dunwoody, GA

Preparing for Standardized Tests

Holt Algebra 2 provides many opportunities for you to prepare for standardized tests.

Test Prep Exercises

Use the Test Prep Exercises for daily practice of standardized test questions in various formats.

Multiple Choice—choose your answer.

Gridded Response—write your answer in a grid and fill in the corresponding bubbles.

Short Response—write open-ended responses that are scored with a 2-point rubric.

Extended Response—write openended responses that are scored with a 4-point rubric.

Test Tackler

Use the Test Tackler to become familiar with and practice test-taking strategies.

The first page of this feature explains and shows an example of a test-taking strategy.

Standardized Test Prep

Use the Standardized Test Prep to apply test-taking strategies.

The Hot Tip provides testtaking tips to help you succeed on your tests.

These pages include practice with multiple choice, gridded response, short response, and extended response test items.

Test-Taking Tips

- Get plenty of sleep the night before the test. A rested mind thinks more clearly and you won't feel like falling asleep while taking the test.
- Draw a figure when one is not provided with the problem. If a figure is given, write any details from the problem on the figure.
- Read each problem carefully. As you finish each problem, read it again to make sure your answer is reasonable.

Countdown to Testing

Use the Countdown to Testing to practice for your state test every day.

There are 24 pages of practice for your state test. Each page is designed to be used in a week so that all practice will be completed before your state test is given

Each week's page has five practice test items, one for each day of the week.

- Review the formula sheet that will be supplied with the test. Make sure you know when to use each formula.
- First answer problems that you know how to solve. If you do not know how to solve a problem, skip it and come back to it when you have finished the others.
- Use other test-taking strategies that can be found throughout this book, such as working backward and eliminating answer choices.

COUNTDOWN TO TESTING

WEEK DAY 1 The figure shows a square within a square. Which expression 6 represents the area of the shaded region of the figure in square units? x + 2 (A) $(x+2)^2 - 36$ (C) 2(x+2) - 12**B** (x+2) - 6 **D** $(x+2-6)^2$ DAY 2 DAY 3 If x is a nonzero real number, which If a, b, and c are positive integers, what expression is equivalent to (x + 5) - 8? is the greatest common factor of the expressions 18ab and 8abc? (F) -8x + 5**A** 18 **G** 8 - (x + 5)**B** ab (H) x + (5 - 8)C 2ab $\bigcirc (x+8) - 5$ **D** 72abc DAY 4 DAY 5 $\triangle ABC$ is a right triangle. Simplify the expression $5(x^2 + 4x) + 3(x + 6).$ R (A) $12x^2 + 6$ **B** $12x^2 + 18$ 15 cm 10 cm (C) $5x^2 + 7x + 6$ **(D)** $5x^2 + 23x + 18$ C Δ What is the length of \overline{AC} ? (F) 5 cm $\bigcirc \mathbf{G}$ $5\sqrt{5}$ cm (H) $5\sqrt{13}$ cm **J** 25 cm

2

DAY 1

The figure shows a right triangle. Which equation can be solved for the unknown side length *c*?

- (A) $\sqrt{8.2^2 + 2.4^2} = c$
- **B** $\sqrt{(8.2+2.4)^2} = c$

$$\bigcirc \sqrt{8.2^2 - 2.4^2} = c$$

D
$$\sqrt{(8.2-2.4)^2} = 0$$

DAY 2

What is the perimeter in units of a rectangle with a length of g + 8 units and a width of g - 6 units?

(F)
$$4g + 2$$

(G) $4g + 4$
(H) $g^2 - 16$
(J) $g^2 + 2g - 16$

DAY 3

DAY 4

A particular hummingbird averages 60 wing beats per second. At this rate, how many times would the hummingbird beat its wings during an hour of flight?

- F 2.16 \times 10³
- G 2.16 \times 10⁴
- H 2.16 \times 10⁵
- \bigcirc 2.16 \times 10⁶

DAY 5

A marathon is a 26.2-mile race. Kendra's average speed during marathons is 7.2 miles per hour. Which function *d* represents the distance in miles Kendra has left to run in a marathon *t* hours after the race begins?

(A)
$$d(t) = \frac{t}{7.2} - 26.2$$

(B) $d(t) = 26.2 - \frac{t}{7.2}$

(C)
$$d(t) = 7.2t - 26.2$$

D
$$d(t) = 26.2 - 7.2t$$

WEEK

DAY 1

Which of the following best represents the domain of the function shown in the graph?

- $\textcircled{B} -3 \le x \le 3$
- \bigcirc $-4 \le x \le 4$
- $\bigcirc -5 \le x \le 5$

DAY 2

A diagonal of a rectangle measures 9 meters. The width of the rectangle is 6 meters. What is the length of the rectangle?

- **(F)** 3√5 m
- **④** 9√5 m
- $\oplus \sqrt{15} m$
- $\bigcirc \sqrt{117} \text{ m}$

DAY 3

If a and b are integers, which expression is equivalent to $6^a \cdot 6^b$?

- (A) 6^{a+b}
- **B** 6^{*a*•*b*}
- (C) 36^{a+b}
- D 36^{a·b}

DAY 4

In the diagram, points W, X, Y, and Z are collinear, WX = YZ, and XY = 25. If WX is a whole number, which is NOT a possible value of WZ?

- **G** 30
- **H** 35
- J 37

DAY 5

What is the parent function of the function shown in the graph?

WEEK

WEEK

5

DAY 1

Which graph best represents the function $f(x) = x^2$?

DAY 2

A company determines that 40% of its employees commute for more than 30 minutes each day. If 346 employees commute for more than 30 minutes, how many employees does the company have?

(F) 138	H 577
G 485	J 865

DAY 4

The scatter plot shown is most likely to represent which of the following sets of data?

- (F) The age of a child and the number of toys he or she owns
- G The number of years in college and the amount of student loans
- (H) The number of hours spent practicing per week and the number of free throws missed per game
- ① The duration of a movie and the cost in millions of dollars to produce it

DAY 3

Solve 4z + 16 - 3 = z - 7 + 5z. (A) z = 0

B *z* = 2.5

(C) z = 10(D) z = 20

DAY 5

What transformation of the graph of f(x) = x is the graph of g(x) = 4x?

- A Vertical stretch by a factor of 4
- **B** Translation 4 units up
- C Horizontal stretch by a factor of 4
- **D** Translation 4 units right

6

DAY 3

The graph shows the number of survival kits s a company sells after d days. Which function can best be used to model the data?

(A)
$$s = \frac{1}{15}d + 4$$
 (C) $s = \frac{4}{15}d$
(B) $s = \frac{1}{3}d - 1$ (D) $s = \frac{1}{5}d$

DAY 4

What is the equation of the line shown?

DAY 5

WEEK

DAY 1

Which equation fits the data in the table?

DAY 2

If $a = \frac{1}{2}bh$ and $\frac{1}{2}bh = 25$, which of the following is a true statement? (F) bh = 12.5(G) a = 25(H) $\frac{1}{2}bh = 25 + a$ (J) 2a = 25

DAY 3

Which best illustrates the Associative Property? (A) $3x^2 + 5x^2 - 6 = 3x^2 - 6 + 5x^2$ (B) $x^2(3+5) - 6 = (3x^2 + 5x^2) - 6$ (C) $3x^2 + (5x^2 - 6) = (3x^2 + 5x^2) - 6$ (D) $3x^2 + (5x^2 - 6) = (-6 + 3x^2) + 5x^2$

DAY 4

The position of a moving dot on a computer screen over time is given by the graph. What is the domain of this function?

DAY 5

The graph shown represents which linear function?

8

DAY 1

What is the domain of the function y = |x - 1|?

$$(B) \left\{ x \mid x \ge 0 \right\}$$

- C Positive integers
- **(D)** All real numbers

DAY 2

Identify the property illustrated by the following equation.

$$\frac{2}{3} - \left(\frac{1}{2} - \frac{4}{5}\right) = \frac{2}{3} - \frac{1}{2} + \frac{4}{5}$$

- (F) Additive Inverse Property
- **G** Commutative Property
- (H) Associative Property
- **J** Distributive Property

DAY 3

John is a years old and his aunt is b years old. Nine years ago, John's aunt was 3 times as old as he was. Which equation represents the age relationship of these two relatives 9 years ago?

(A) b = 3a

(B) b - 9 = 3a

(C) b - 9 = 3(a - 9)**D** b = 3(a - 9)

DAY 4

(-

Which ordered pair is the solution of the following system?

$$\begin{cases} 3x - 5y = 12\\ 2x = 4 + 5y \end{cases}$$
(F) $\left(8, 2\frac{2}{5}\right)$

G
$$\left(3\frac{1}{5}, 2\frac{4}{5}\right)$$

$$(\mathbb{H})$$
 (16, 7 $\frac{1}{5}$)

$$\bigcirc \left(3\frac{2}{5}, \frac{12}{25}\right)$$

DAY 5

Teresa has two identical CD binders that are partly filled with CDs.

WEEK

DAY 1

What is the range of the function f(x) = -2|x|? (A) y > 0(B) $y \le 0$ (C) $y \le -2$

D All real numbers

DAY 2

What is the solution of the system? $\begin{cases}
0.5x + 2.5y = -6.4 \\
2x - 5y = 19.4
\end{cases}$ (F) (10.7, 2.1) (G) $(4.\overline{3}, 2.15)$ (H) (2.2, -3)(J) (0.8, -3.56)

DAY 3

Cafeteria lunch sales are shown in the table and circle graph. How many vegetarian meals were sold?

DAY 4

What is the missing number in the following matrix product?

$$\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} ? & -1 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 7 & -7 \\ 8 & -3 \end{bmatrix}$$

(F) -2
(G) 2
(H) 7
(J) Cannot be determined

DAY 5

DAY 4

Faith plans to buy no more than 200 doorknobs to sell at her home improvement store. The doorknobs will be made of either brass or wood. Faith wants to buy at most 75 brass doorknobs and at least 110 wood doorknobs. Which of the following purchases meet Faith's requirements?

- (F) 5 brass; 150 wood
- **G** 20 brass; 90 wood
- (H) 40 brass; 175 wood
- **J** 80 brass; 112 wood

DAY 5

The equation of a least-squares line is $y \approx 0.15x - 0.21$. Predict the *x*-value that corresponds to a *y*-value of 20.

- A 95.24
- **B** 131.93
- **(C)** 134.73
- **D** 175.13

WEEK

DAY 1

What is the range of the function $f(x) = -\frac{1}{4}|x - 2|?$ (A) $y \leq 0$ (B) y > 0 $\bigcirc y \leq -2$ (**D**) y > 2

DAY 2

Which matrix product can be used to solve the following system?

4x = 2y + 68x + 3y = 14

$$(\mathbf{5}\mathbf{x} + \mathbf{3}\mathbf{y} - \mathbf{1}\mathbf{4})$$

$$(\mathbf{F}) \begin{bmatrix} 4 & -2 \\ 8 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 14 \end{bmatrix} \quad (\mathbf{H}) \begin{bmatrix} 4 & -2 \\ 8 & 3 \end{bmatrix}^{-1} \begin{bmatrix} -6 \\ 14 \end{bmatrix}$$

$$(\mathbf{G}) \begin{bmatrix} 4 & 2 \\ 8 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 14 \end{bmatrix} \quad (\mathbf{J}) \begin{bmatrix} 4 & 2 \\ 8 & 3 \end{bmatrix}^{-1} \begin{bmatrix} -6 \\ 14 \end{bmatrix}$$

-6

DAY 3

Video games cost \$29.99 each, and DVDs cost \$19.99 each. If Phillipe has at most \$449.99 to spend, which combination of video games and DVDs is NOT a reasonable purchase?

- (A) 5 games; 14 DVDs
- **B** 10 games; 5 DVDs
- C 7 games; 13 DVDs
- **D** 4 games; 12 DVDs

DAY 4

Which value is equivalent to $30 \div 2 + \sqrt{64} - 4^3(8-4)^{-2}$?

- € -1
- **G** 13
- (H) 19
- J 535

DAY 5

The graph shown represents which parent function?

WEEK

DAY 1

How is the graph of g(x) = |x| - 4transformed from the graph of f(x) = |x|?

- (A) The graph of f is translated 4 units up.
- **B** The graph of *f* is translated 4 units down.
- C The graph of *f* is translated 4 units right.
- **(D)** The graph of f is translated 4 units left.

DAY 2

Given that f(x) is a quadratic function, find the missing value in the table.

x	2	4	6	8			
f(x)	3	-1	-6	?			
(F) 0	1						
(b) −1 (H) −11							
() –	12						

DAY 3

The following graph represents which table of data?

DAY 4

- What is the domain of the function $f(x) = -\frac{1}{2} |x 4|$?
- (F) All real numbers
- **G** *x* < 0
- (H) $x \ge -2$
- x > 4

DAY 5

How is the graph of $g(x) = 2(x + 1)^2$ transformed from the graph of $f(x) = x^2$?

- (A) The graph of f is translated 2 units left and 1 unit up.
- (B) The graph of *f* is vertically compressed by a factor of $\frac{1}{2}$ and translated 1 unit left.
- C The graph of *f* is vertically stretched by a factor of 2 and translated 1 unit up.
- **D** The graph of *f* is vertically stretched by a factor of 2 and translated 1 unit left.

WEEK

DAY 1

Which of the following best describes the correlation found in the scatter plot?

- A Strong positive correlation
- B Weak positive correlation
- C No correlation
- **D** Negative correlation

DAY 2

Which of the following best describes how to graph the function $f(x) = (x - 7)^2 + 3$?

- (F) Move the parent function to the right 7 units and up 3 units.
- G Move the parent function to the right 3 units and down 7 units.
- (H) Move the parent function to the left 7 units and up 3 units.
- Move the parent function to the right7 units and down 3 units.

DAY 3

Which situation is best represented by the data?

t	0	0.5	1	1.5	2	2.5
f(t)	112	108	96	76	48	12

A The distance decreases by 4 miles for every 30 seconds traveled.

B The height of an object above ground decreases nonlinearly over time.

- C As the time increases, the speed of a car increases at a constant rate.
- **D** As the time increases, the distance traveled decreases at a constant rate.

DAY 4

Which function is equivalent to $f(x) = 30x^2 + 2x - 56?$ (F) f(x) = (3x - 4)(5x + 14)(G) f(x) = 2(3x + 4)(5x - 7)

(H)
$$f(x) = (6x - 4)(5x + 7)$$

$$f(x) = 2(3x - 4)(5x + 7)$$

DAY 5

The height *h* of a football *t* seconds after it is kicked is given by $h(t) = -16t^2 + 40t$. What is a reasonable real-world domain for the situation?

(A) all positive real numbers

B all real numbers between 0 and 3

- C all real numbers between 0 and 2.5
- D all real numbers between 0 and 1.25

WEEK

DAY 1

The length x of a rectangle is 6 feet longer than its width. What is a reasonable domain for the function that represents the area of the rectangle?

- A all real numbers
- **B** all positive numbers
- **○** *x* > 6
- (D) $0 \le x \le 6$

DAY 2

Which quadratic equation has nonreal solutions? (F) $x^2 - 8x + 16 = 0$ (G) $4x^2 - 12x + 9 = 0$ (H) $-x^2 + 4x - 5 = 0$

(1) $x^2 - 3x - 7 = 0$

DAY 3

The function $P = (h - 3)^2 + 174$ models the power, in megawatts, generated between midnight and noon by a power plant, where *h* represents hours after midnight. How would the graph of the function change if the minimum power generated increased to 250 megawatts?

- A The vertex would change to (3, 250).
- **B** The vertex would change to (250, 174).
- C The graph of the function would be reflected over the *x*-axis.
- **D** The graph of the function would be horizontally compressed.

DAY 4

To solve the equation $0 = x^2 + 7x - 26$ by completing the square, the first step is to add 26 to both sides of the equation. Which statement best describes the second step?

- (F) Add $\frac{9}{4}$ to both sides.
- G Square the product of 7 and 2.
- H Take half of 7 and square it.
- O Rewrite the perfect square trinomial as a binomial squared.

DAY 5

Which quadratic inequality best represents the graph?

DAY 1

The graph represents the solutions of which system of inequalities?

DAY 2

Which best describes $g(x) = \sqrt{2(x-1)} + 4$ as a transformation of $f(x) = \sqrt{x}$?

- (F) g is f horizontally compressed by a factor of $\frac{1}{2}$ and translated left 1 unit and up 4 units.
- G g is f horizontally stretched by a factor of 2 and translated right 1 unit and up 4 units.
- (H) g is f horizontally compressed by a factor of $\frac{1}{2}$ and translated right 1 unit and up 4 units.
- g is f horizontally stretched by a factor of 2 and translated left 1 unit and down 4 units.

DAY 4

The perimeter P of a rectangle with a length of x feet and a width of y feet cannot exceed 300 feet. Which is NOT a constraint of the feasible region representing P?

(F)
$$x > 0$$

(G) $x > 300 - y$

$$(\textbf{H}) y > 0$$

()
$$x < 150 - y$$

DAY 3

Which statement is always true of the function $f(x) = \frac{1}{5}x + 6$?

- (A) f(x) is less than x.
- **B** If x is positive, then f(x) is positive.
- \bigcirc If x is negative, then f(x) is negative.
- **D** f(x) is greater than x.

DAY 5

In which relationship listed are the two quantities independent of one another?

- (A) The amount of tax paid for an item and the price of the item
- (B) The number of snacks bought from a vending machine and the amount of money in the machine
- C The number of hours worked at \$7.25 per hour and the amount of money earned
- (D) The age of a person and the number of telephones in his or her house

DAY 1

What are the solutions of the equation $3x^2 - 6x - 7 = 0$? (A) $x = \frac{3 \pm 2i\sqrt{3}}{3}$ (B) $x \approx 2.8$ and $x \approx -0.8$ (C) $x \approx 17$ and $x \approx -5$ (D) $x \approx 3.2$ and $x \approx -0.6$

DAY 2

Which function best represents the data in the table?

x	-2	-1	0	1	2	3
f(x)	25	13	5	1	1	5

(F) $f(x) = 2x^2 - 6x + 5$ (G) $f(x) = -2x^2 - 6x + 8$ (H) $f(x) = x^2 - 6x + 5$

(J)
$$f(x) = 2x^2 - 9x + 5$$

DAY 3

The graph can be used to determine the solutions to which quadratic equation?

A	$x^2-5x+4=0$
B	$3x^2 - 7x + 2 = 0$

DAY 4

At the beginning of a basketball game, the referee tosses the ball into the air with an initial vertical velocity of 24 feet per second. The ball's initial height is 5 feet above the floor. Which inequality can be used to find the time interval *t* for which the height of the ball is greater than 10 feet?

- (F) $-16t^2 + 24t + 5 < 10$
- **G** $-16t^2 + 24t + 5 > 10$
- (H) $24t^2 16t + 5 > 10$
- (J) 24t + 5 > 10

DAY 5

The function $P = -16(c - 25)^2 + 10,000$ models the profit the student council makes from a dance, where c is the cost per ticket in dollars. How does the graph of the function change if the maximum profit is made by selling the tickets for \$40?

- (A) The graph of the function would be reflected over the *y*-axis.
- **B** The vertex would change to (25, 40).
- \bigcirc The vertex would change to (40, 10,000).
- (D) The graph of the function would not change.

DAY 1

The school's ticket office sells adult and student tickets to a musical. The auditorium normally holds no more than 2,500 people. There can be no more than 1,200 student tickets and no more than 1,800 adult tickets sold. If *x* represents the number of student tickets sold and *y* represents the number of adult tickets sold, which system of linear inequalities represents the possible combinations of student and adult tickets that can be sold?

$\int x + y > 2500$		$\int x + y \le 1200$
$x + y \le 1200$	\bigcirc	<i>x</i> ≤ 2500
$y \leq 1800$		∫ <i>y</i> ≤ 1800
(r
$x + y \ge 2500$		$x + y \le 2500$
$x \ge 1200$	D -	<i>x</i> ≤ 1200
$y \ge 1800$		<i>y</i> ≤ 1800
	$\begin{cases} x + y > 2500 \\ x + y \le 1200 \\ y \le 1800 \end{cases}$ $\begin{cases} x + y \ge 2500 \\ x \ge 1200 \\ y \ge 1800 \end{cases}$	$\begin{cases} x + y > 2500 \\ x + y \le 1200 \\ y \le 1800 \end{cases}$ $\begin{cases} x + y \ge 2500 \\ x \ge 1200 \\ y \ge 1800 \end{cases}$ D

DAY 2

In chemistry, $pH = -log[H^+]$, where $[H^+]$ is the hydrogen ion concentration of a solution in moles per liter. What is $[H^+]$ of a carbonated soda if its pH is 1.5?

(F) 10^{-1.5}

- **G** 10^{1.5}
- (H) -log1.5

J −log(−1.5)

DAY 4

The distance a spring stretches varies directly as the amount of weight hanging from it. A weight of 60 pounds stretches the spring 15 centimeters. How heavy is the weight hanging on the spring when it stretches 12 centimeters?

- (F) 3 pounds
- G 12 pounds
- (H) 48 pounds
- J 52 pounds

DAY 3

For which of the following functions does *y* vary directly as *x*?

WEEK

(A) $y = \frac{2}{x}$ (B) y = -7x(C) 10 = xy(D) $y = x^0 - 15$

DAY 5

The graph represents which parent function?

DAY 1

The area of a rectangular parking lot with a length of 1500 feet can be no more than 3,000,000 square feet. Which is the most reasonable domain of the function representing the parking lot's area A in square feet in terms of its width w in feet?

- (A) $0 < w \le 1500$
- **B** $0 < w \le 2000$
- **(C)** 1500 < *w* ≤ 2000
- **(D)** $1500 < w \le 3,000,000$

DAY 2

Which ordered pair is NOT a solution of the exponential inequality shown in the graph?

DAY 3

Determine the y-value of the solution of the system of equations.

$$\begin{cases} y = 4x + 12 \\ y = 2x - 5 \end{cases}$$
-2 (B) -3.5 (C) -8.5 (D) -22

DAY 4

Which function represents the graph of $f(x) = \ln x$ translated 2 units right and 5 units up?

5

$$(\mathbf{F}) \ g(x) = \ln(x+2) - \mathbf{i}$$

G
$$g(x) = \ln(x+5) - 2$$

H $g(x) = \ln(x-2) + 5$

$$\textcircled{H} g(x) = \ln(x-2) +$$

DAY 5

Which ordered pair is a solution of the inequality $y > -(x - 3)^2 + 8$? (**A**) (5, 0) **B** (5, 1) **(**5, 4) **D** (5, 6)

DAY 1

The radius of a circle can be determined by dividing the area by π and taking the square root of the result. Which graph best shows the radius as a function of the area?

DAY 2

Which of the following relationships would most likely be characterized by a negative correlation?

- (F) The number of DVDs purchased and the total cost
- G The height of a tree and its age
- (H) The number of workers on a job and the time it takes to complete the job
- ① The age of a person and his or her hat size

DAY 3

What function best represents the data in the table?

WEEK

	x	<i>f</i> (<i>x</i>)	
	0	-2	
	1	—1	
	4	0	
	9	1	
	16	2	
(A) $f(x) =$	<i>x</i> – 2	$\bigcirc f(x) =$	$=\sqrt{x-2}$
B f(x) =	(x - 2) ²	(D) $f(x) =$	$=\sqrt{x}-2$

DAY 4

How does the graph of $g(x) = \sqrt{-x}$ differ from the graph of $f(x) = \sqrt{x}$?

- (F) The graph is reflected across the x-axis.
- **G** The graph is reflected across the *y*-axis.
- (H) The graph is rotated 180° about the origin.
- ① The graph is shifted 4 units down.

DAY 5

Where does a hole occur in the graph of $f(x) = \frac{(x+4)(x-6)}{(x+2)(x-6)(x+3)}?$ (A) x = 6(B) x = -2(C) x = -3(D) x = -4

WEEK 20

DAY 1

The speed of a sound wave traveling through a thin rod is given by the formula

 $v = \sqrt{\frac{Y}{p}}$, where v is the speed of the

waves in meters per second, Y is 8.0×10^{10} pascals, and p is the density of the rod in kilograms per cubic meter. If you know the value of v, which equation can you use to determine p?

(A)
$$p = \sqrt{\frac{Y}{v}}$$

(B) $p = \frac{Y}{v^2}$
(C) $p = \frac{\sqrt{Y}}{v}$
(D) $p = (Yv)^2$

DAY 2

Martha invested \$12,000 and earned \$840 in interest in one year. She invested some of the money in an account that pays 8% per year and the rest of it in an account that pays 5% per year. Which system can be used to find the amount she invested at each rate?

$$\begin{cases} x - y = 12,000\\ 0.08x - 0.05y = 840 \end{cases}$$

$$\begin{cases} y = 12,000 - x\\ 0.08x + 0.05y = 12,000 - 840 \end{cases}$$

$$\begin{cases} xy = 12,000\\ 0.08x + 0.05y = 12,000 - 840 \end{cases}$$

$$(0.08x - 0.05y = 840)$$

$$(J) \begin{cases} y = 12,000 - x \\ 0.08x + 0.05y = 840 \end{cases}$$

DAY 3

Which is the graph of $f(x) = \ln x$? \bigcirc 0 0 B 0 0 -2 DAY 4 DAY 5 Which equation is equivalent to $12^{-x} = 24$? Which function represents a reflection of $f(x) = 2^x$ across the y-axis? (A) $\log_{24} 12 = x$ (C) $\log_{12} 24 = -x$ (F) $g(x) = -2^x$ (H) $g(x) = 2^{-x}$ **B** $\log_x 24 = 12$ **D** $\log_{-x} 12 = 24$ G $g(x) = \left(\frac{1}{2}\right)^x$ J $g(x) = \left(\frac{1}{x}\right)^2$

WEEK 21

DAY 1

The range of a quadratic function is $\{y | y \le 4\}$. What is the range of the same function after translation 3 units up?

- $\textcircled{B} \{y|y \ge 1\}$
- $\bigcirc \{y|y \le 7\}$
- $\textcircled{D} \{y|y \ge 7\}$

DAY 2

Which function represents a translation of $f(x) = 2^x$ six units right?

- (F) $g(x) = 2^x 6$
- **G** $g(x) = 2^{x-6}$
- $\textcircled{H} g(x) = 2^x + 6$
- $\bigcirc g(x) = 2^{x+6}$

DAY 3

What is the domain of the function $f(x) = -\sqrt{7 - x}$? (A) $x \ge -7$ (B) $x \le -7$ (C) $x \ge 7$ (D) $x \le 7$

DAY 4

Which transformation was NOT applied to the graph of $f(x) = \sqrt{x}$ to obtain $g(x) = -4\sqrt{6(x + 3)}$?

- (F) Vertical translation 3 units up
- G Reflection across the *x*-axis
- (H) Vertical stretch by a factor of 4
- (J) Horizontal compression by a factor of $\frac{1}{6}$.

DAY 5

Which quadratic function is represented by the graph?

(A)
$$f(x) = 4x^2 - 2x - 2$$

(B) $f(x) = x^2 - 2$
(C) $f(x) = (x + 1)(x - 1)$
(D) $f(x) = (x - 2)^2 - 2$

DAY 1

Francisco wants to make a scatter plot to determine if there is a correlation between duration of a construction highway project and the number of managers assigned to the project. Which table would be best for Francisco to organize his findings?

A	Duration of Project		
	Manager Names		
B	Number of Managers		
	Project Number		
	Duration of Project		
	Number of Managers		
D	Project Number		
	Manager Names		

DAY 2

Bobby is on a biking trip that consists of 55 miles on paved roads and 18 miles on unpaved roads. He is able to bike twice as fast on paved roads as on unpaved roads. Which function represents the total time T in hours that Bobby needs to complete the trip in terms of his average speed on unpaved roads x in miles per hour?

F	T(x) =	$\frac{55}{x} +$	<u>18</u> 2x
G	T(x) =	$\frac{55}{2x} +$	<u>18</u> x
H	T(x) =	$\frac{55}{x}$ –	<u>37</u> 2x
	T(x) =	$\frac{55}{x}$ –	<u>18</u> 2x

DAY 4

Solve $\sqrt{x + 14} \le x - 16$. (F) $x \ge 16$ (G) $-16 \le x \le 22$ (H) $x \le -22$ (J) $x \ge 22$

DAY 3

The graph of the inequality $y \ge -(x-3)^2 + 8$ is shown below. Which of the given points is not in the solution region?

WEEK

DAY 5

What is the relationship between the graph of the function $y = x^2 - 4x$ and the graph of its inverse?

- (A) Reflection across the line y = x
- (B) Translation of 4 units down
- \bigcirc 180° rotation about the origin
- **D** Vertical stretch by a factor of 4

WEEK

DAY 1

What is the domain of $f(x) = \frac{3x+5}{x^2+3x-18}$?

- All real numbers
- All real numbers except -6
- C All real numbers except 3
- D All real numbers except 3 and -6

DAY 2

One leg of a right triangle measures 9 ft and the hypotenuse measures 15 ft. Which equation can you use to find the length of the third side of the triangle?

(F)
$$b = \sqrt{15^2 - 9^2}$$

(G) $b^2 = \sqrt{15^2 - 9^2}$
(H) $b = \sqrt{15^2 + 9^2}$

(J)
$$b^2 = \sqrt{15^2 + 9^2}$$

DAY 3

Which parent function is shown in the graph?

- (A) $f(x) = e^x$
- (B) $f(x) = \ln x$

$$\bigcirc f(x) = \sqrt{x}$$

(D) f(x) = |x|

DAY 4

Which function does NOT include the values -2, 4, 8, and 12 in the domain?

$$(F) f(x) = \sqrt{12x + 24}$$

$$G f(x) = \sqrt{7(x-4)}$$

$$\textcircled{H} f(x) = \sqrt{x^2 + 5x + 6}$$

$$f(x) = \sqrt{\frac{2}{x^2 + 1}}$$

DAY 5

B hyperbola

C double cone

D ellipse

WEEK 24

Which graph	n can be used t	o determine the	solution	of $x^{2} =$	$\sqrt{2x}$?
-------------	-----------------	-----------------	----------	--------------	---------------

 \bigcirc

DAY 2

DAY 3

The population of Warren County is 55,000 and is growing at a rate of 3.8% per decade. Which of the following expressions represents the population of Warren County after *n* decades?

- **A** 55,000(3.8)ⁿ
- **B** 55,000(1.38)^{*n*}
- **(C)** 55,000(1.038)ⁿ
- **D** $55,000 + (3.8)^n$

DAY 4

What value of x makes the equation $3 = 1 + \log(2x)$ true? (F) 1

- G 10H 50
- <u>п</u> 50
- J 100

DAY 5

The equation $\frac{x^2}{100} - \frac{y^2}{64} = 1$ represents which conic section?

- (A) Circle
- B Hyperbola
- C Parabola
- **D** Ellipse

Foundations for Functions

ARE	You	READY	?.																														3	
-----	-----	-------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--

Properties and Operations

1-1	Sets of Numbers 6	
1-2	Properties of Real Numbers 14	
	Connecting Algebra to Geometry: The Pythagorean Theorem	
1-3	Square Roots	
1-4	Simplifying Algebraic Expressions	
LAB	Explore Negative Exponents 📓 33	
1-5	Properties of Exponents 34	
	MULTI-STEP TEST PREP	
	READY TO GO ON? OUIZ	

Introduction to Functions

1-6	Relations and Functions	44
1-7	Function Notation	51
AB	Chess Translations	58
1-8	Exploring Transformations	59
1-9	Introduction to Parent Functions	67
	MULTI-STEP TEST PREP	74
	READY TO GO ON? QUIZ	75
	Study Guide: Preview	. 4
	Reading and Writing Math	. 5
	Study Guide: Review	76
	Chapter Test	80

CHAPTER

Reading Math 6, 8, 15, 34, 52 Writing Math 12, 19, 25, 32, 41, 49, 56, 65, 73

Vocabulary 3, 4, 10, 24, 38, 47, 54, 63, 70, 76

Tools for Success

Study Strategy 5

Know-It Notes 6, 9, 14, 15, 16, 22, 23, 29, 35, 38, 46, 53, 59, 60, 61, 62, 67, 70

Graphic Organizers 6, 9, 16, 23, 29, 38, 46, 53, 62, 70

Homework Help Online 10, 17, 24, 30, 38, 47, 54, 63, 70

Test Prep Exercises 13, 19, 26, 32, 41, 50, 56, 65–66, 73

Multi-Step Test Prep 11, 18, 25, 31, 40, 42, 49, 56, 64, 71, 74

College Entrance Exam Practice 81 Test Tackler 82

Linear Functions

	ARE YOU READY?
	Linear Equations and Inequalities
2-1	Solving Linear Equations and Inequalities
2-2	Proportional Reasoning
	Connecting Algebra to Geometry:
	Percent Increase and Decrease 104
2-3	Graphing Linear Functions
LAB	Explore Graphs and Windows 📓 113
2-4	Writing Linear Functions 115
2-5	Linear Inequalities in Two Variables
	MULTI-STEP TEST PREP
	READY TO GO ON? QUIZ

Applying Linear Functions

2-6	Transforming Linear Functions	134
	Connecting Algebra to Data Analysis: Statistical Graphs	141
2-7	Curve Fitting with Linear Models	142
2-8	Solving Absolute-Value Equations and Inequalities	150
LAB	Solve Absolute-Value Equations 📲	157
2-9	Absolute-Value Functions.	158
	MULTI-STEP TEST PREP	164
	READY TO GO ON? QUIZ	165
	Study Guide: Preview	. 88
	Reading and Writing Math	. 89
	Study Guide: Review	166
	Chapter Test	170
	Problem Solving On Location: Pennsylvania	176

Reading Math 89, 97, 99, 150 Writing Math 95, 102, 111, 122, 139, 148, 155, 162

Vocabulary 87, 88, 94, 100, 109, 128, 146, 154, 161, 166

Tools for Success

Know-lt Notes 90, 93, 97, 100, 108, 116, 117, 119, 143, 151, 152, 158, 159

Graphic Organizers 93, 100, 109, 120, 127, 137, 145, 153, 160

Homework Help Online 94, 100, 109, 120, 128, 138, 146, 154, 161

Test Prep Exercises 96, 103, 112, 123, 130–131, 140, 149, 156, 163

Multi-Step Test Prep 95, 102, 111, 122, 129–130, 132, 139, 148, 155, 162, 164

College Entrance Exam Practice 171 Test Tackler 172

Standardized Test Prep 174

CHAPTER

go.hrw.com Online Resources KEYWORD: MB7 TOC

ţ

..........

CHAPTER

go.hrw.com Online Resources KEYWORD: MB7 TOC

Linear Systems

ARE YOU READY?	•	. 179
----------------	---	-------

Linear Systems in Two Dimensions

3-1	Using Graphs and Tables to Solve Linear Systems 182
3-2	Using Algebraic Methods to Solve Linear Systems 190
	Connecting Algebra to Geometry:
	Properties of Polygons 198
3-3	Solving Systems of Linear Inequalities
3-4	Linear Programming
	MULTI-STEP TEST PREP
	READY TO GO ON? QUIZ

Linear Systems in Three Dimensions

3-5	Linear Equations in Three Dimensions 214
	Connecting Algebra to Geometry: Views of Solid Figures
3-6	Solving Linear Systems in Three Variables
LAB	Explore Parametric Equations 📓
	Mul ti-Step Test Prep
	READY TO GO ON? QUIZ
EXT	Parametric Equations230
	Study Guide: Preview 180
	Reading and Writing Math 181
	Study Guide: Review
	Chapter Test

Reading Math 191 Writing Math 181, 188, 196, 203, 210, 217, 225

Vocabulary 179, 180, 186, 194, 202, 209, 216, 232

Tools for Success

Know-It Notes 184, 206, 220 **Graphic Organizers** 185, 194, 201, 208, 216, 224

Homework Help Online 186, 194, 202, 209, 216, 224

Test Prep Exercises 188–189, 196–197, 203–204, 211, 218, 226

Multi-Step Test Prep 188, 196, 203, 210, 212, 217, 225, 228

College Entrance Exam Practice 237 Test Tackler 238 Standardized Test Prep 240

ARE YOU READY?	243
Matrix Operations	

4-1	Matrices and Data	246
4-2	Multiplying Matrices	253
	Connecting Algebra to Geometry: Transformations	261
4-3	Using Matrices to Transform Geometric Figures	262
	MULTI-STEP TEST PREP	268
	READY TO GO ON? QUIZ	269

Using Matrices to Solve Systems

4-4	Determinants and Cramer's Rule	270
4-5	Matrix Inverses and Solving Systems	278
LAB	Use Spreadsheets with Matrices to Solve Systems 🎑	286
4-6	Row Operations and Augmented Matrices	287
	MULTI-STEP TEST PREP	294
	READY TO GO ON? QUIZ	295
EXT	Networks and Matrices	296
EXT	Networks and Matrices Study Guide: Preview	296 244
EXT	Networks and Matrices. Study Guide: Preview. Reading and Writing Math.	296 244 245
EXT	Networks and Matrices. Study Guide: Preview. Reading and Writing Math. Study Guide: Review	296 244 245 298
EXT	Networks and Matrices. Study Guide: Preview. Reading and Writing Math. Study Guide: Review Chapter Test	296 244 245 298 302

CHAPTER

Reading Math 245, 262, 270 Writing Math 245, 252, 259, 266, 276, 284, 292, 297

Vocabulary 243, 244, 250, 257, 265, 274, 282, 291, 298

Tools for Success

Know-It Notes 247, 249, 254, 271, 273, 279, 288

Graphic Organizers 249, 256, 264, 274, 281, 290

Homework Help Online 250, 257, 265, 274, 282, 291

Test Prep Exercises 252, 260, 267, 276, 284–285, 293

Multi-Step Test Prep 251–252, 258–259, 266, 268, 276, 284, 292–293, 294

College Entrance Exam Practice 303 Test Tackler 304 Standardized Test Prep 306

CHAPTER

go.hrw.com **Online Resources** KEYWORD: MB7 TOC

Quadratic Functions

	ARE YOU READY?	311
	Quadratic Functions and Complex Numbers	
LAB	Explore Parameter Changes 📓	314
5-1	Using Transformations to Graph Quadratic Functions	315
5-2	Properties of Quadratic Functions in Standard Form	323
	Connecting Algebra to Previous Courses: Factoring Quadratic Expressions	331
LAB	Explore Graphs and Factors 📓	332
5-3	Solving Quadratic Equations by Graphing and Factoring	333
5-4	Completing the Square	341
	Connecting Algebra to Geometry: Areas of Composite Figures	349
5-5	Complex Numbers and Roots	350

5-6	The Quadratic Formula	356
	MULTI-STEP TEST PREP	364
	READY TO GO ON? QUIZ	365

Applying Quadratic Functions

5-7	Solving Quadratic Inequalities	366
5-8	Curve Fitting with Quadratic Models	374
5-9	Operations with Complex Numbers	382
	MULTI-STEP TEST PREP	390
	READY TO GO ON? QUIZ	391
	Study Guide: Preview	312

,	
Reading and Writing Math	313
Study Guide: Review	392
Chapter Test	396

Tools for Success

Reading Math 334, 341, 367, 375 Writing Math 321, 329, 339, 347, 354, 362, 372, 380, 388

Vocabulary 311, 312, 320, 328, 338, 345, 353, 361, 370, 377, 386, 392

Study Strategy 313

LA

Know-It Notes 315, 316, 317, 318, 319, 323, 324, 326, 327, 334, 336, 337, 341, 342, 343, 344, 350, 352, 356, 358, 360, 366, 370, 377, 382, 385

Graphic Organizers 319, 327, 337, 344, 351, 352, 360, 370, 377, 385

Homework Help Online 320, 328, 338, 345, 353, 361, 370, 377, 386

Test Prep Exercises 322, 330, 340, 347-348, 355, 363, 373, 381, 389

Multi-Step Test Prep 321, 329, 339, 347, 354, 362, 364, 372, 378, 388, 390

College Entrance Exam Practice 397 Test Tackler 398

Polynomial Functions

	ARE YOU READY?	403
	Operations with Polynomials	
6-1	Polynomials	406

	Connecting Algebra to Number Theory:	
	Pascal's Triangle 4	13
6-2	Multiplying Polynomials 4	14
	Connecting Algebra to Geometry: Nets4	21
6-3	Dividing Polynomials 4	22
LAD	Explore the Sum and Difference of Two Cubes 4	29
6-4	Factoring Polynomials4	30
	MULTI-STEP TEST PREP 4	36
	READY TO GO ON? OUIZ	37

Applying Polynomial Functions

6-5	Finding Real Roots of Polynomial Equations.	438
6-6	Fundamental Theorem of Algebra	445
LAB	Explore End Behavior	452
6-7	Investigating Graphs of Polynomial Functions	453
6-8	Transforming Polynomial Functions	460
6-9	Curve Fitting with Polynomial Models	466
	MULTI-STEP TEST PREP	472
	READY TO GO ON? QUIZ.	473
	Study Guide: Preview	404
	Reading and Writing Math	405
	Study Guide: Review	474
	Chapter Test	478
	Problem Solving On Location: New Jersey	484

Reading Math 456 Writing Math 412, 420, 427, 434, 444, 450, 459, 464, 471 Vocabulary 403, 404, 410, 426, 442, 457, 474

Tools for Success

Study Strategy 405 **Know-It Notes** 407, 416, 423, 424, 430, 431, 439, 441, 445-447, 453, 455, 460, 466

Graphic Organizers 409, 417, 425, 432, 442, 448, 456, 463, 468

Homework Help Online 410, 418, 426, 433, 442, 449, 457, 463, 469

CHAPTER

Test Prep Exercises 412, 420, 428, 434, 444, 451, 459, 465, 471

Multi-Step Test Prep 411, 419, 427, 434, 436, 443, 450, 458, 464, 470, 472

College Entrance Exam Practice 479 Test Tackler 480

CHAPTER

go.hrw.com Online Resources KEYWORD: MB7 TOC

Exponential and Logarithmic Functions

ARE	You	READY	?.																														4	8	7
-----	-----	-------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---

Exponential Functions and Logarithms

7-1	Exponential Functions, Growth and Decay	190
LAB	Explore Inverses of Functions 📓	197
7-2	Inverses of Relations and Functions	198
7-3	Logarithmic Functions	505
7-4	Properties of Logarithms	512
	MULTI-STEP TEST PREP	520
	READY TO GO ON? QUIZ.	521

Applying Exponential and Logarithmic Functions

7-5	Exponential and Logarithmic Equations and Inequalities 522
	Connecting Algebra to Probability:
	Exponents in Probability 529
LAB	Explore the Rule of 72 🞑 530
7-6	The Natural Base, e 531
7-7	Transforming Exponential and Logarithmic Functions 537
7-8	Curve Fitting with Exponential and Logarithmic Models 545
	MULTI-STEP TEST PREP
	READY TO GO ON? QUIZ
	Study Guide: Preview
	Reading and Writing Math 489
	Study Guide: Review

Reading Math 489, 505 Writing Math 489, 495, 503, 510, 518, 527, 535, 543, 550

Vocabulary 487, 488, 493, 501, 509, 526, 534, 548, 554

Tools for Success

Know-It Notes 506, 512, 513, 514, 532, 537, 538

Graphic Organizers 493, 501, 508, 515, 525, 533, 541, 547

Homework Help Online 493, 501, 509, 516, 526, 534, 541, 548

Test Prep Exercises 495–496, 503–504, 510–511, 519, 528, 536, 544, 550

Multi-Step Test Prep 494–495, 502–503, 510, 517–518, 520, 527–528, 535, 543, 550, 552

College Entrance Exam Practice 559

Test Tackler 560

Rational and Radical Functions

Are	You	READY?					565
-----	-----	---------------	--	--	--	--	-----

Rational Functions

LAB	Model Inverse Variation	568
8-1	Variation Functions	569
8-2	Multiplying and Dividing Rational Expressions	577
8-3	Adding and Subtracting Rational Expressions	583
LAB	Explore Holes in Graphs 📲	591
8-4	Rational Functions	592
8-5	Solving Rational Equations and Inequalities	600
	MULTI-STEP TEST PREP	608
	READY TO GO ON? QUIZ	609

Radical Functions

8-6	Radical Expressions and Rational Exponents)
	Connecting Algebra to Geometry: Area and Volume Relationships	\$
8-7	Radical Functions)
8-8	Solving Radical Equations and Inequalities	3
	MULTI-STEP TEST PREP	;
	READY TO GO ON? QUIZ	,
	Study Guide: Preview	;
	Reading and Writing Math 567	1
	Study Guide: Review 638	5
	Chapter Test	2

Problem Solving on Location: Michigan 648

Reading Math 570, 610 Writing Math 575, 582, 590, 599, 607, 612, 617, 627, 634

Vocabulary 565, 566, 573, 580, 588, 597, 605, 614, 624, 632, 638

Tools for Success

Study Strategy 567

Know-It Notes 573, 578, 580, 584, 587, 592, 593, 594, 596, 604, 611, 612, 614, 620, 621, 623, 628, 632

Graphic Organizers 573, 580, 587, 596, 604, 614, 623, 632

Homework Help Online 573, 580, 588, 597, 605, 614, 624, 632

Test Prep Exercises 575–576, 582, 590, 599, 607, 617, 627, 635

Multi-Step Test Prep 575, 581, 589, 598, 606, 608, 616, 626, 634, 636

College Entrance Exam Practice 643

Test Tackler 644

Standardized Test Prep 646

go.hrw.com Online Resources KEYWORD: MB7 TOC

CHAPTER

<u>C H A P T E R</u>

go.hrw.com Online Resources KEYWORD: MB7 TOC

Properties and Attributes of Functions

ARE YOU READY?	651
----------------	-----

Functions and Their Graphs

9-1	Multiple Representations of Functions	654
9-2	Piecewise Functions	662
LAB	Graph Piecewise Functions 📓	670
9-3	Transforming Functions	672
	MULTI-STEP TEST PREP	680
	READY TO GO ON? QUIZ	681

Functional Relationships

9-4	Operations with Functions
	Connecting Algebra to Geometry: Using Geometric Formulas
9-5	Functions and Their Inverses
LAB	Explore Differences and Ratios 🞑
9-6	Modeling Real-World Data 698
	MULTI-STEP TEST PREP
	READY TO GO ON? QUIZ
	Study Guide: Preview
	Reading and Writing Math 653
	Study Guide: Review
	Chapter Test

Tools for Success

Reading Math 653, 683 Writing Math 660, 668, 678, 687, 695, 704 Vocabulary 651, 652, 666, 686, 708

Know-It Notes 656, 672, 673, 682, 683, 690, 692, 698

Graphic Organizers 658, 665, 676, 685, 693, 701

Homework Help Online 658, 666, 676, 686, 693, 702

Test Prep Exercises 661, 668–669, 679, 688, 695–696, 705

Multi-Step Test Prep 660, 668, 677, 680, 687, 695, 704, 706

College Entrance Exam Practice 713

Test Tackler 714

Conic Sections

ARE Y	OU READY?				719
-------	-----------	--	--	--	-----

Exploring Conic Sections

10-1	Introduction to Conic Sections	/22
10-2	Circles	/29
	Connecting Algebra to Geometry: Surface Area and Volume	735
10-3	Ellipses	/36
LAB	Locate the Foci of an Ellipse	/43
10-4	Hyperbolas	/44
10-5	Parabolas	/51
	MULTI-STEP TEST PREP	/58
	READY TO GO ON? QUIZ	/59

Applying Conic Sections

10-6	Identifying Conic Sections	760
LAB	Conic-Section Art 📓	767
10-7	Solving Nonlinear Systems	768
	MULTI-STEP TEST PREP	776
	READY TO GO ON? QUIZ	777
	Study Guide: Preview	720
	Reading and Writing Math	721
	Study Guide: Review	778
	Chapter Test	782
	Problem Solving on Location: Illinois	788

CHAPTER

 Writing Math
 727, 734, 742, 749, 757, 765, 774

 Vocabulary
 719, 720, 726, 732, 740, 748, 755, 772, 778

Tools for Success

Study Strategy 721 **Know-It Notes** 724, 729, 737, 738, 745, 746, 752, 753, 760, 761,

Graphic Organizers 725, 731, 739, 747, 754, 763, 771

Homework Help Online 726, 732, 740, 748, 755, 764, 772

Test Prep Exercises 728, 734, 742, 750, 757, 766, 774

Multi-Step Test Prep 726, 733, 741, 749, 756, 758, 765, 773, 776

College Entrance Exam Practice 783 Test Tackler 784

Probability and Statistics

ARE YOU READY		91
---------------	--	----

Probability

11-1	Permutations and Combinations	794
	Connecting Algebra to Geometry: Relative Area.	801
11-2	Theoretical and Experimental Probability	802
LAB	Explore Simulations 🥁	810
11-3	Independent and Dependent Events	811
11-4	Compound Events	819
	MULTI-STEP TEST PREP	826
	READY TO GO ON? QUIZ	827

Data Analysis and Statistics

11-5	Measures of Central Tendency and Variation	828
LAB	Collect Experimental Data 🚪	836
11-6	Binomial Distributions	837
	MULTI-STEP TEST PREP	844
	READY TO GO ON? QUIZ	845
EXT	Normal Distributions	846
	Study Guide: Preview	792
	Reading and Writing Math	793
	Study Guide: Review	848
	Chapter Test	852

CHAPTER

go.hrw.com

Online Resources KEYWORD: MB7 TOC

Reading Math 793, 830, 847 Writing Math 793, 799, 808, 817, 824, 832, 842

Vocabulary 791, 792, 798, 806, 815, 822, 833, 840, 848

Tools for Success

Know-It Notes 794, 795, 797, 802, 803, 805, 811, 812, 819, 820, 837, 838

Graphic Organizers 797, 806, 814, 822, 832, 840

Homework Help Online 798, 806, 815, 822, 833, 840

Test Prep Exercises 800, 809, 817, 824–825, 835, 842–843

Multi-Step Test Prep 799–800, 808, 816–817, 824, 826, 835, 841–842, 844

College Entrance Exam Practice 853

Test Tackler 854

Sequences and Series

Are	Υου	READY?				•										•												85	59)
-----	-----	---------------	--	--	--	---	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	----	----	---

Exploring Arithmetic Sequences and Series

12-1	Introduction to Sequences	862
	Connecting Algebra to Geometry: Geometric Patterns and Tessellations	869
12-2	Series and Summation Notation	870
LAB	Evaluate Sequences and Series 📓	878
12-3	Arithmetic Sequences and Series	879
	MULTI-STEP TEST PREP	888
	READY TO GO ON? QUIZ	889

Exploring Geometric Sequences and Series

12-4	Geometric Sequences and Series	890
LAB	Explore Infinite Geometric Series	899
12-5	Mathematical Induction and Infinite Geometric Series	900
	MULTI-STEP TEST PREP	908
	READY TO GO ON? QUIZ	909
EXT	Area Under a Curve	910
	Study Guide: Preview	860
	Reading and Writing Math	861
	Study Guide: Review	912
	Chapter Test	916
	Problem Solving on Location: Nevada	922

go.hrw.com Online Resources KEYWORD: MB7 TOC

CHAPTER

Reading Math 862 Writing Math 861, 868, 876, 886, 897, 906 Vocabulary 859, 860, 865, 874, 884, 895, 904, 912

Tools for Success

Know-It Notes 871, 880, 882, 891–893, 901, 902

Graphic Organizers 865, 873, 883, 894, 903

Homework Help Online 865, 874, 884, 895, 904

Test Prep Exercises 868, 876–877, 886–887, 897–898, 906–907

Multi-Step Test Prep 867, 876, 886, 888, 897, 906, 908

College Entrance Exam Practice 917 Test Tackler 918 Standardized Test Prep 920

CHAPTER 13

go.hrw.com Online Resources KEYWORD: MB7 TOC

Trigonometric Functions

Are	Υου	READ	oy?																										. :	92	25	5
AVE	100	NEAL	J T i	•	• •	•	• •	•	•	• •	•	• •	• •	•	• •	•	•	• •	•	•	• •	•	•	•	•	• •	•	•	- 1	94	2.5	

Trigonometry and Angles

Connecting Algebra to Geometry:

	Special Right Triangles 9	28
13-1	Right-Angle Trigonometry 9	29
13-2	Angles of Rotation	36
LAB	Explore the Unit Circle 📲 9	42
13-3	The Unit Circle	43
13-4	Inverses of Trigonometric Functions	50
	MULTI-STEP TEST PREP	56
	READY TO GO ON? QUIZ	57

Applying Trigonometric Functions

13-5	The Law of Sines.	958									
13-6	The Law of Cosines										
	MULTI-STEP TEST PREP	974									
	READY TO GO ON? QUIZ	975									
	Study Guide: Preview	926									
	Reading and Writing Math	927									
	Study Guide: Review	976									
	Chapter Test	980									

Reading Math 927, 943, 950, 951, 959 Writing Math 935, 941, 948, 955, 964, 972

Vocabulary 925, 926, 933, 939, 947, 953, 976

Tools for Success

Know-It Notes 929–930, 932, 936, 938, 943, 944, 945, 946, 951, 953, 958, 959–960, 962, 966, 969, 970

Graphic Organizers 932, 938, 944, 945, 946, 953, 962, 970

Homework Help Online 933, 939, 947, 953, 962, 970

Test Prep Exercises 935, 941, 948, 955, 965, 973

Multi-Step Test Prep 934, 940, 948, 955, 956, 964, 972, 974

College Entrance Exam Practice 981 Test Tackler 982

Trigonometric Graphs and Identities

Are	Υου	READY?		
-----	-----	---------------	--	--

Exploring Trigonometric Graphs

14-1	Graphs of Sine and Cosine	0					
14-2	Graphs of Other Trigonometric Functions						
	MULTI-STEP TEST PREP 100)4					
	READY TO GO ON? QUIZ)5					

Trigonometric Identities

LAB	Graph Trigonometric Identities	006
	Angle Relationships1	007
14-3	Fundamental Trigonometric Identities 1	800
14-4	Sum and Difference Identities1	014
14-5	Double-Angle and Half-Angle Identities	020
14-6	Solving Trigonometric Equations 1	027
	MULTI-STEP TEST PREP	034
	READY TO GO ON? QUIZ	035
	Study Guide: Preview	988
	Reading and Writing Math	989
	Study Guide: Review1	036
	Chapter Test	040
	Problem Solving On Location: Ohio1	046

go.hrw.com Online Resources KEYWORD: MB7 TOC

CHAPTER

Reading Math 1010, 1022 Writing Math 997, 1003, 1012, 1019, 1025, 1033 Vocabulary 987, 988, 995, 1017, 1036 . cudu

Tools for Success

Study Strategy 989 Know-It Notes 991, 998–1000, 1008, 1014, 1016, 1020, 1022,

Graphic Organizers 994, 1001, 1010, 1017, 1023, 1030

Homework Help Online 995, 1001, 1011, 1017, 1024, 1031

Test Prep Exercises 997, 1003, 1013, 1019, 1026, 1033

Multi-Step Test Prep 996, 1002, 1004, 1012, 1018, 1025, 1032, 1034

College Entrance Exam Practice 1041 Test Tackler 1042

WHO USES MATHEMATICS?

The Career Path features are a set of interviews with young adults who are either preparing for or just beginning in different career fields. These people share what math courses they studied in high school, how math is used in their field, and what options the future holds. Also, many exercises throughout the book highlight the different skills used in various career fields.

Career Path

Career Applications

Advertising 31, 138, 209 Archaeology 727 Architecture 589, 741, 885 Art 24, 266, 961 Astronomy 128, 517, 948 Aviation 187, 359, 763 Biology 147, 615, 704 Business 62, 126, 654 Chemistry 10, 284, 572 Communication 101, 755, 756 Design 266 Ecology 432, 549, 971 Economics 197, 703, 775 Engineering 345, 756, 946 Environment 102, 508, 534 **Film** 376 Finance 468, 527, 661 Forestry 450, 541, 660 Genetics 823, 841, 843 Geology 12, 515, 773 **Government** 576, 800 **Graphic Design 260** Landscape Design 457 Law Enforcement 1002 **Marketing** 128, 440 Medicine 408, 494, 996 Meteorology 142, 528, 615 Music 511, 527, 613 Nutrition 145, 273, 574 Oceanography 69, 996, 1032 Paleontology 148, 533 **Photography** 72, 293, 527 Psychology 155 **Radio** 772 **Real Estate** 703, 894

Go.hrw.com Career Resources Online (KEYWORD: MB7 Career

ECONOMIST p. 277

Economists help people prepare for the future by analyzing political and business trends and data, and then making predictions. Look on page 277 to learn about the type of training you need for this career path.

REAL ESTATE AGENT p. 551

Buying or selling a home can be a complicated process, but real estate agents work with buyers and sellers to make sure transactions go smoothly. Look at the Career Path on page 551 to see how to become a real estate agent.

NURSING STUDENT p. 877

The demand for nurses is expected to increase in the future because doctors and patients alike depend on their assistance and expertise. The Career Path on page 877 describes what it is like to be a nursing student.

WHY LEARN MATHEMATICS?

Links to interesting topics may accompany real-world applications in the examples or exercises. For a complete list of all applications in *Holt Algebra 2*, see page S162 in the Index.

plify. Assume that all expressions are defined **43.** $\frac{\frac{4}{x+2}}{\frac{x+2}{x+2}}$ 44. $\frac{\frac{2}{3x-4}}{5x+3}$ 45. $\frac{\frac{1}{2x} + \frac{2}{3x}}{\frac{x-1}{x-3}}$ Architecture The Renaissance architect Andrea Palladio preferred that the length and width of rectangular rooms be limited to certain ratios. These ratios are listed in the table Palladio also believed that the height of a room with vaulted cellings should be the harmonic mean of the length and width. should be the harmonic mean of the length and wide **a**. The harmonic mean of two positive numbers *a* and *b* is equal to $\frac{2}{a} + \frac{1}{b}$. Simplify this expression. **b**. Complete the table for a rectangular room with a width of 30 feet that meets Palladio's requirements for its length and height. If necessary, round to the nearest tenth. Rooms with a Width of 30 ft Length-to-Width Ratio (ft) 2:1 3:2 4:3 c. What if ...? A Palladian room has a length-to width ratio of 4:3. If the length of this room is doubled, what effect should this change have on the room's width and height, according to Palladio's principles? 5:3 $\sqrt{2}:1$

Aerospace 362 Archaeology 727 Archery 581 Architecture 589 Aviation 187, 954 Biology 39, 329, 615, 694, 834 Chemistry 72

Aerogel has been called the world's lowest density solid. It is 99.8% air and is an excellent heat insulator. As shown above, a layer of aerogel can prevent a flame from melting crayons.

Clocks 885 Collectibles 896 Communication 31 Diving 258 Earthquakes 687 Ecology 535 Engineering 756 Entertainment 64, 339, 443, 574 Fireworks 940 Forestry 450 Fractals 387 Geography 25, 275

Easter Island, a South Pacific island of Chile, contains more than 600 stone statues. The statues were carved between A.D. 1600 and 1730. Most of the heads actually have torsos that have become buried over time.

Geology 427, 773 Health 458 History 139, 494, 733, 741 Hobbies 102 Ice Skating 606 Literature 95 Math History 18, 121, 210, 292, 354, 380, 419, 517, 598, 703, 765, 842, 866, 875, 934, 1002 Medicine 543, 996 Meteorology 111 Money 48 Music 527, 799 Navigation 964 Performing Arts 1032 Pets 667 Physics 502, 626, 749, 1025 Recreation 55 Safety 677 Sculpture 155 Sports 346 Television 823 Tennis 816

Wimbledon has been played annually since 1877 at the All England Lawn Tennis and Croquet Club.

Tornadoes 633 Whales 659

How to Study Algebra 2

This book has many features designed to help you learn and study effectively. Becoming familiar with these features will prepare you for greater success on your exams.

Focus on Problem Solving

The Problem Solving Plan

Mathematical problems are a part of daily life. You need to use a good problem-solving plan to be a good problem solver. The plan used in this textbook is outlined below.

UNDERSTAND the Problem

You must first make sure you understand the problem you are asked to solve.

- What are you asked to find?
- What information is given?
- What information do you need?
- Do you have all the information needed?

Do you have too much information?

Restate the question in your own words. Identify the key facts given in the problem.

Determine which facts are needed to answer the question.

Determine if you need further information.

Determine if there is unnecessary information and eliminate it from your list of key facts.

Make a PLAN

Plan how to use the information you are given.

- What problem solving strategy would best fit this problem?
- Have you solved similar problems?

Choose an appropriate problem solving strategy and decide how you will use it. Think about similar problems you have solved successfully.

SOLVE

Use your plan to solve the problem. Show the steps in the solution. Write a final statement that gives the solution to the problem.

LOOK BACK

Check your answer against the original problem.

Have you answered the original question?	Make sure you have answered the original question.
Is the answer reasonable?	The answer must make sense in relation to the question.
Are your calculations correct?	Check to make sure your calculations are accurate.
Can you use another strategy or	Using another strategy is a good way to

Can you use another strategy or Using another strategy or solve the problem in another way? check your answer.